Recent experimental results with BAMs at FLASH.

Marie Kristin $Bock^1$ on behalf of the LbSyn Team

¹Deutsches Elektronen-Synchrotron (DESY), Hamburg

FLASH Seminar

Outline.

1 Overview

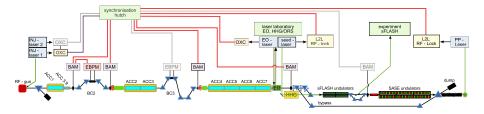
2 Introduction

- How To Sample a RF Signal with Optical Pulses...
- General Operating Principle
- Opto-Mechanical Design

3 Recent Measurements

- Calibration
- Orbit Scans

4 Applications of BAM Data


- BAM-Server Channels in DAQ
- Useful Tool for FLASH Operation

5 Summary

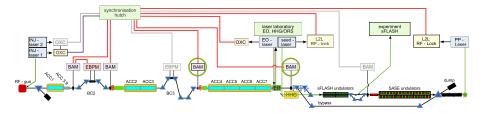
(日) (同) (日) (日)

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors

1. Generation: BAM 4DBC3 and 18ACC7

- 2. Generation: BAM 1UBC2
- 3. Generation: BAM 3DBC2
- 4. Generation: BAM 1SFELC


- installed in 2009
- installed May 2010
- scheduled for 2012
- 5. Generation: BAMs for FLASH2 mode of operation

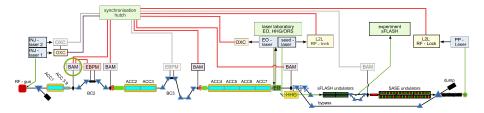
first prototypes of engineered design

- : general redesign of opto-mechanics
- : minor design changes
- : further design improvements
- : extensive redesign necessary

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors

1. Generation: BAM 4DBC3 and 18ACC7


- 2. Generation: BAM 1UBC2
- 3. Generation: BAM 3DBC2
- 4. Generation: BAM 1SFELC
- 5. Generation: BAMs for FLASH2 mode of opera

:first prototypes of engineered design

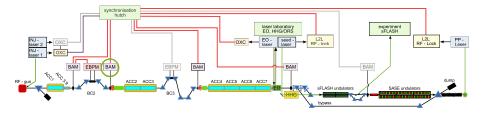
- : general redesign of opto-mechanics
- : minor design changes
- : further design improvements
- : extensive redesign necessary

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors

- installed in 2009

1. Generation: BAM 4DBC3 and 18ACC7


- 2. Generation: BAM 1UBC2
- 3. Generation: BAM 3DBC2
- Generation: BAM 1SFELC
- 5. Generation: BAMs for FLASH2 mode of operation

:first prototypes of engineered design

- : general redesign of opto-mechanics
- : minor design changes
- : further design improvements
- : extensive redesign necessary

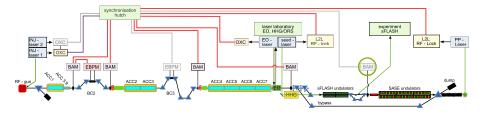
Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors

- installed in 2009

- installed May 2010

- 1. Generation: BAM 4DBC3 and 18ACC7
- 2. Generation: BAM 1UBC2
- 3. Generation: BAM 3DBC2
- 4. Generation: BAM 1SFELC
- 5. Generation: BAMs for FLASH2 mode of operation


:first prototypes of engineered design

- : general redesign of opto-mechanics
- : minor design changes
- : further design improvements
- : extensive redesign necessary

Overview

Laser-based Synchronisation Infrastructure at FLASH.

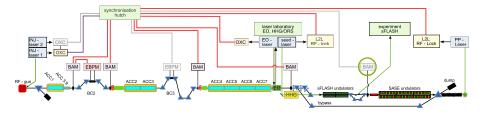
Locations of Bunch Arrival Time Monitors

- installed in 2009

- installed May 2010

- scheduled for 2012

- 1. Generation: BAM 4DBC3 and 18ACC7
- 2. Generation: BAM 1UBC2
- 3. Generation: BAM 3DBC2
- 4. Generation: BAM 1SFELC
- 5. Generation: BAMs for FLASH2 mode of operation

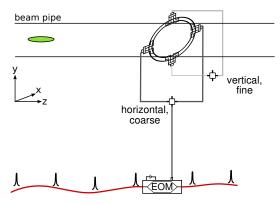

:first prototypes of engineered design

- : general redesign of opto-mechanics
- : minor design changes
- : further design improvements
- : extensive redesign necessary

Overview

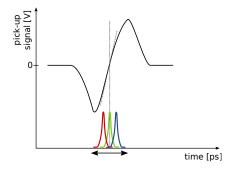
Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors


- 1. Generation: BAM 4DBC3 and 18ACC7
- 2. Generation: BAM 1UBC2
- 3. Generation: BAM 3DBC2
- 4. Generation: BAM 1SFELC

- installed in 2009
- installed May 2010
- scheduled for 2012
- 5. Generation: BAMs for FLASH2 mode of operation

:first prototypes of engineered design

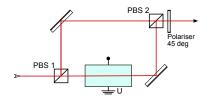

- : general redesign of opto-mechanics
- : minor design changes
- : further design improvements
- : extensive redesign necessary

How to sample a RF signal with an optical pulses...

- RF-Signal from Bunch $\Delta T \sim 100 \text{ ps}$
- Bunch Separation 1 μs@ 1 MHz
- Optical Pulse Trains 216.67 MHz Pulse Separation 4.65 ns= 1.4 m
- Small Optical Pulse Width \sim 330 fs \simeq 100 μm

How to sample a RF signal with an optical pulses...

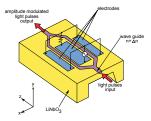
set correct timing of optical pulses relative to pick-up signal:

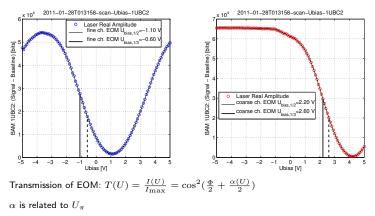

 globally: shift the 1.3 GHz phase of MLO using VM

locally:

- change optical path length of input laser pulses with motor stage
- 2 change RF cable length (only once when commissioning 1st time)

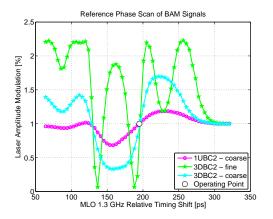
A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


How to sample a RF signal with an optical pulses...


- interferometric device
- refractive index depends linearly on electrical field strength
- voltage signal induces phase shift between both interferometer arms

イロト イヨト イヨト イヨト

• relative phase shift is translated into an intensity modulation of optical pulses

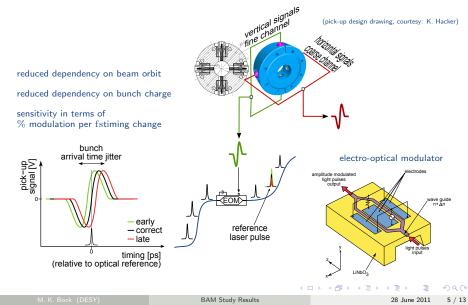


How to sample a RF signal with an optical pulses...

 $\alpha(U) = -\pi * \frac{U}{U\pi}$

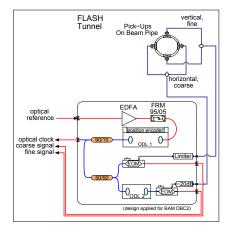
How to sample a RF signal with an optical pulses...

 two channels, 'Fine' & 'Coarse':


 RF-signal + limiter large signal small dynamic range: 4 ps
 RF-signal + attenuator small signal large dynamic range: 65 ps

 coarse channel used for motor

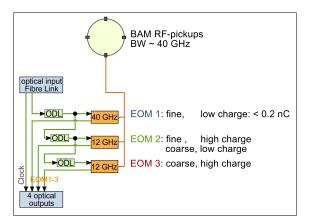
position FB on fine channel


General Operating Principle.

Electro-Optical Detection Scheme

Opto-Mechanical Front-End.

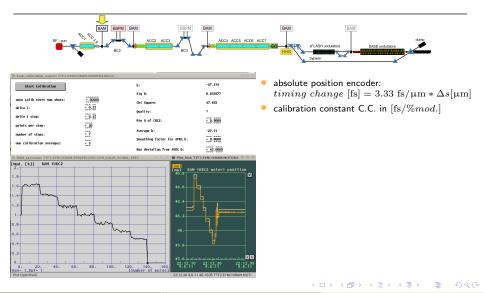
Schematic & Design Drawing.



(19" rack slide-in module, 4 HE)

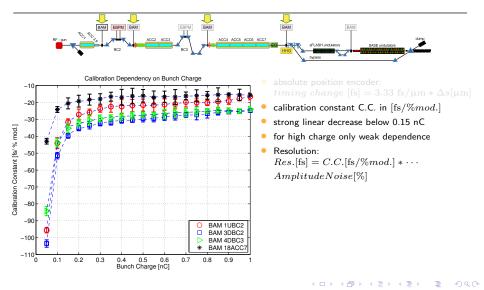
Opto-Mechanical Front-End.

Redesign for 5^{th} Generation BAM



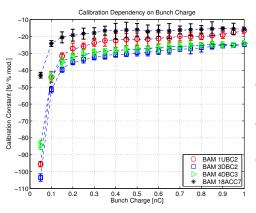
- Bunch charge pattern with 2 different states within 1 bunch train or between bunch trains
- 3rd detection channel needed
- currently: redesign of RF pickups to extend to BW $\sim 40 \text{ GHz}$

in collaboration with Uni Darmstadt


Charge Dependence of Calibration.

Resolution for high and low bunch charge.

Charge Dependence of Calibration.

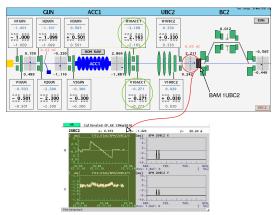

Resolution for high and low bunch charge.

Charge Dependence of Calibration.

Resolution for high and low bunch charge.

- absolute position encoder: timing change [fs] = $3.33 \text{ fs}/\mu\text{m} * \Delta s[\mu\text{m}]$
- calibration constant C.C. in [fs/%mod.]
- strong linear decrease below 0.15 nC
- for high charge only weak dependence
- Resolution: Res.[fs] = C.C.[fs/%mod.] * · · · AmplitudeNoise[%]
- averaged amplitude noise of unmodulated transmitted laser pulses typically
 0.20 % - 0.45 %

()

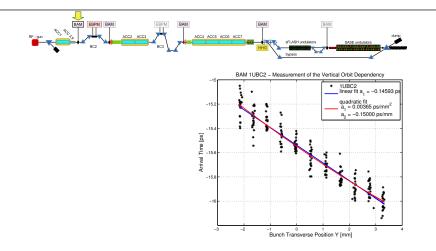

 at high bunch charges: resulting resolution of BAMs < 10 fs (shot-to-shot)

Orbit Scans

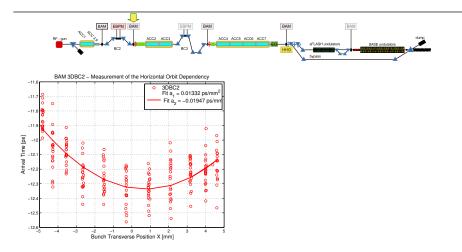
Dependency of Arrival Time Measurement on Bunch Orbit.

Orbit Scans from Nov 2010 & Jan 2011

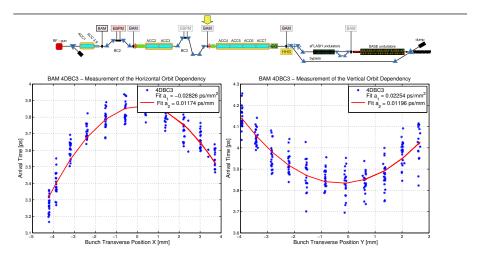
- need 1 BPM right next to a BAM
- changed bunch orbit with steerer magnets upstream of BAMs

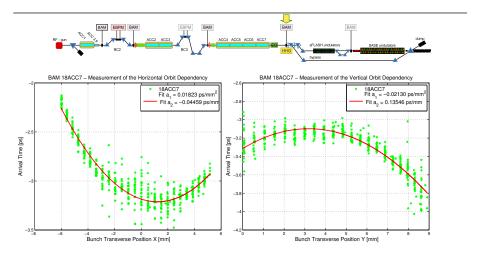

イロト イポト イヨト イヨ

in both planes for all BAMs individually

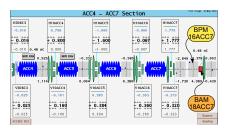

Orbit Scans

Dependency of Arrival Time Measurement on Bunch Orbit.


Orbit Scans from Nov.2010 & Jan. 2011.


Orbit Scans from Nov 2010 & Jan 2011

Orbit Scans from Nov 2010 & Jan 2011

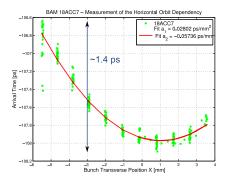


Orbit Scans from Nov 2010 & Jan 2011

Arrival Time Orbit Correction in BAM-Server.

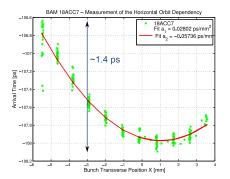
- need 1 BPM right next to a BAM
- algorithm implemented in BAM-Server
- set some DOOCS properties:
 - > ADDRESS_BPM1_X
 - > ADDRESS_BPM1_Y
 - ORBIT_COORECTION_X.POLY_PARA
 - > ORBIT_CORRECTION_Y.POLY_PARA
 - > CORRECT_ORBIT_DEPENDENCE_ON
- currently: only useful for Slow Arrival Time FB
- in future:

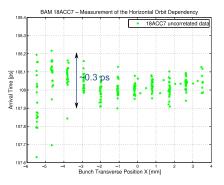
for Intra-Train Arrival Time FB need fast BPM read-out


(a)

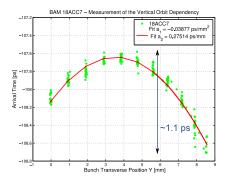
Orbit Scans

Dependency of Arrival Time Measurement on Bunch Orbit.


Arrival Time Orbit Correction in BAM-Server.

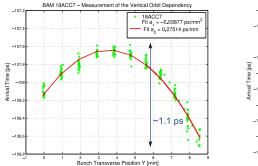


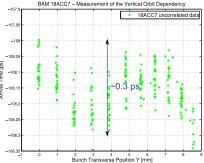
Arrival Time Orbit Correction in BAM-Server.



Orbit Scans

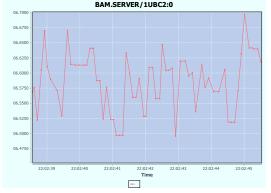
Dependency of Arrival Time Measurement on Bunch Orbit.


Arrival Time Orbit Correction in BAM-Server.



Arrival Time Orbit Correction in BAM-Server.

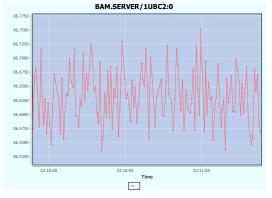
BAM data spectra & statistics.



BAM-Server sends data to DAQ

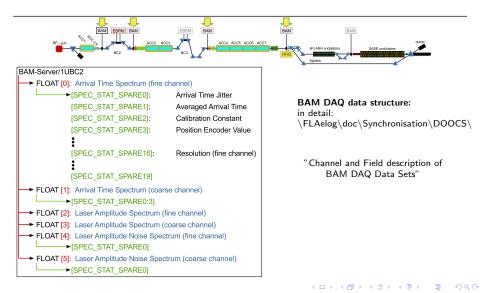
BAM data spectra & statistics.

Arrival Time of 1^{st} Bunch, \sim 70 events:


04.06.2011: identified problem of data being sent from BAM-Server to DAQ:

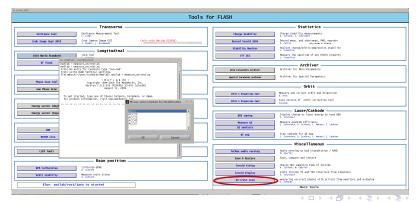
duplicated data in all BAM channels, 50 % of all events corrupted

BAM data spectra & statistics.

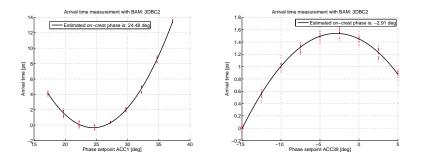


Arrival Time of 1^{st} Bunch, \sim 150 events:

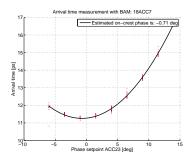
21.06.2011: software error in BAM-Server finally solved

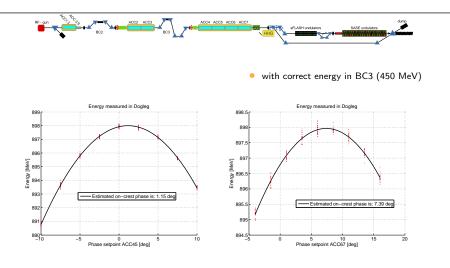

BAM data spectra & statistics.

Matlab Tool "measure_oncrest.m"


home\ttflinac\user\cschmidt\Matlab

M. K. Bock (DESY


Matlab Tool "measure_oncrest.m"



Matlab Tool "measure_oncrest.m"

Matlab Tool "measure_oncrest.m"

Summary & Outlook.

Functionality & Reliability of BAMs.

- Identified residual Charge- & Orbit Dependency of current BAM Pick-Up Design
 - > Software correction for orbit dependency possible
 - $>\,$ Hardware change necessary to remove charge dependency for $< 200~{
 m pC}$
- Availibility of BAM data through DAQ
- Successively Reducing Down-Time of BAM operation
 - > currently, through improvements in BAM-Server
 - > in future: more reliable & stable signal read-outs with μ TCA technology (hopefully · · ·)
- Expanded Application of BAMs:
 - > Measurement of on-crest phases of modules ACC1, ACC3.9 & ACC23
 - > Slow Arrival Time Feedback on ACC1 & ACC23
 - > Intra Bunch Train Arrival Time Feedback on ACC1/ACC3.9 & ACC23
 - > (yet to prove) Enlarging data accuracy of User Experiments when sorting data with bunch arrival time information

	DESY)