Upgrade of the FLASH beamlines

New diagnostic and beam transport tools

Kai Tiedtke FLASH Seminar 16.3.2010

Installation in the tunnel and experimental hall

Experimental hall

Installation of a focusing mirror at BL3

Experimental hall

- Installation of a focusing mirror at BL3
- Modify differential pumping units of the BL2 and BL3 end stations to allow users to choose either the focused or the unfocused beam

Fast Switching Mirror

 Installation of a fast switching mirror unit in collaboration with Zeuthen (M. Sachwitz and colleagues)

Motion of the Mirror

Up to 2.5 Hz Motion Frequency

Experimental hall

Include the autocorrelator as a permanent device in the direct beamlines

Autocorrelator / beam splitter

VLS Spectrometer

Repair VLS spectrometer

VLS-Spectrometer

Principle of the VLS at FLASH

• Mirror replaced by grating -> at FLASH: combination of mirror plus VLS-grating on top

- In contrast to a standard grating, the blazed angle for the 0th order is transported to the experiments
- Depending on the wavelength:
 1-10% of the beam for the spectrometer
- Detector can follow the focal plane of the gratings

Functional principle of the construction

- Sophisticated principle evolved by Bessy/HZB
- 6 rod bearing system allows 6 degrees of freedom
- In case of VLS: only 5 degrees of freedom are motor-operated

Old drive <-> New drive: a comparison

- Challenging design-values for drives:
 - translation 10nm
 - rotation 40nrad
- Fine thread spindle: pitch= 0.5 mm/rotation
- Bearing plate connects the spindle to the funnel

Bearing plate:

- Connects the outer rotational movement of the spindle to the inner translatory motion of the rods
- Gives the opportunity to vary the play of the drive

bearing plate

Measurement results of the old optics-holders

Mapping of the mirror surface

deformation

deformation

deformation

aperture 2

aperture 2

aperture 1

Slope Errors

Height profile of the mirror

Height map (nm) measured with NOM (Nanometer Optical Machine at HZB)

-200

Measurement results of the new optics-holders

Courtesy of Frank Siewert

Height profile measured at the 18"Zygo-Interferometer

Visual Beam Position Monitor

BPM Zeuthen (reinstallation)

Detector Unit F1 (Apertures, Detectors)

Beamline for the synchrotron radiation of the dipole magnet

FEL

Kai Tiedtke | FLASH seminar | March 2010 | Page 16

Electrons

Visual BPM

In collaboration with DESY Zeuthen

Visual BPM

In collaboration with DESY Zeuthen

Upgrade of MCP-based photon detector

MCP based intensity monitor

Detector Unit F1 (Apertures, Detectors)

Electrons

Beamline for the synchrotron radiation of the dipole magnet

00

FEL

Kai Tiedtke | FLASH seminar | March 2010 | Page 19

Upgrade of MCP-based photon detector

MCP detector: 2004

- MCP detectors were developed in collaboration with JINR, Dubna.
- Four generations of MCP detectors has been developed an installed at the TESLA Test Facility/FLASH in 1999, 2001, 2004, and 2007.
- MCP-detector is the main tool for search, tuning and primary characterization of SASE.

MCP detector: 2007

Kai Tiedtke | FLA:

Upgrade of MCP-based photon detector in 2009/10

- During 2009/10 upgrade MCP-based beam observation system (BOS) has been installed.
- This upgrade has been done in collaboration with JINR (Dubna) and EXFEL.
- An idea is to use it for photon beam profile characterization and (possibly) for visual SASE search.

Online Photionization Spectrometer

Detector Unit F1 (Apertures, Detectors)

Electrons

Beamline for the synchrotron radiation of the dipole magnet

00

FEL

Kai Tiedtke | FLASH seminar | March 2010 | Page 22

Online Photoionization Spectrometer

M. Wellhöfer, J. T. Hoeft, M. Martins, W. Wurth, M. Braune, J. Viefhaus, K. Tiedtke, M. Richter, *Photoelectron spectroscopy as a non-invasive method to monitor SASE-FEL spectra*. JINST 3, P02003 (2008) P. N. Juranić, M. Martins, J. Viefhaus, S. Bonfigt, L. Jahn, M. Ilchen, S. Klumpp, K. Tiedtke, *Using I-TOF spectrometry to measure photon energies at FELs*, JINST 4, P09011 (2009)

Online determination of the spectral distribution

using i- and e- TOF spectrometer

Resolving Power

Neon at 22 eV

Kinetic energy (eV)

Well-Resolved I-TOF Spectra

From the Spectra, Ratios

We must be at 100 eV photon energy! But it could also be 170 eV...

Other Gases

Small Error Bars
Lots of Literature Data
Lots of Signal!

Uncertainty

Steep slopes are good! Oxygen looks particularly nice . . .

A Final Comparison (for FLASH)

	E-TOF	I-TOF
Speed of measurement	Nanoseconds	Hundreds of nanoseconds to microseconds
Uncertainty of "center" photon energy measurement	0.1 to 0.05 eV	0.7 eV to 0.3 eV
Expected "bonus" information	Can see the whole spectral distribution of the pulse and higher harmonics of a pulse	Can see the average photon energy
Robustness	Sensitive to electric and magnetic fields, beam stability	Like a rock

> Everything proceeding very smoothly!

Many thanks to: FS-BT group, Colleagues from Dubna, Martin Sachwitz and colleagues (DESY Zeuthen), H. Zacharias and colleagues (Uni Münster), Rolf Mitzner, Tino Noll, and Frank Siewert (HZB) and in particular to: Svea Kapitzki, Susanne Bonfigt, Fini Jastrow, Pavle Juranic, Günter Brenner and to the entire FLASH crew

