

Status Cavity BPM's for E-XFEL

Dirk Lipka, MDI, DESY Hamburg

- 1. Requirements
- 2. Overview (all BPM's)
- 3. In kind contribution (Saclay, DESY, PSI)
- 4. Cavity BPM: principle
- 5. Design
- 6. Measurements:
 - a. Laboratory measurements: frequency and loaded Q, compare with expectation (second generation)
 - Beam measurement: sensitivity, orthogonal coupling, compare first and second generation, compare with expectation, resolution measurement
- 7. Outlook: New teststand
- 8. Status
- 9. Summary

Kind of BPM

- Cold button: accelerator modules
- Cold re-entrant cavity: accelerator modules
- Warm button: distribution system, compressor
- Warm cavity: intra bunch feedback system (IBFB), matching
- Undulator cavity: undulator

XFEL Requirements

Specified by Beam dynamics group

beam charge range: 0.1 - 1 nC

BPM Type	#	Beam Pipe Diameter	Maximum Length	Туре	Single Bunch Resolution (RMS)	Drift over Bunch Train	Drift over 1 hour	Drift over 1 week	Max. resolution[1] range	Reasonable signal[2] range	Linearity	x/y cross-talk	Bunch to bunch crosstalk
		mm	cm		μm	μm	μm	μm	mm	mm	%	%	μm
Standard	219	40.5	20	Button	50	1	5	50	± 3.0	± 10	5	1	5
Cold	104	78.0	17	Button/ Re-entrant	50	1	5	50	± 3.0	± 10	10	1	5
Precision	12	40.5	20	Cavity	10	1	1	10	± 1.0	± 2	2	1	1
IBFB	2	40.5	20	Cavity	1	0.1	0.1	1	± 1.0	± 2	1	1	0.1
Precision	117	10.0	10	Cavity	1	0.1	0.1	1	± 0.5	± 2	2	1	0.1

[1] Maximum resolution means that within this operating range the BPM works according to the specifications within this table. [2] Reasonable signal means that the BPM provides at least the correct sign for absolute position and position changes.

XFEL In kind contribution

All BPM for European XFEL (cold and warm)

Collaboration (institutes and task)

- Saclay: re-entrant cavity BPM for cold module including front end electronics
- DESY: button and cavity BPM mechanics
- PSI: front end electronics (button and cavity BPM) and digitalization (all)

Subject of this talk:

Cavity BPM from DESY

XFEL Basic principle

Electric Field of a charged Bunch

- Resonator can be produced with high accuracy
- With antenna: Measured voltages can be used to characterize beam with high resolution
- Non destructive Monitor

European **Basic principle**

 $Q_1 = \text{loaded}$ Quality factor

Damping of resonance with $\exp(-t/\tau)$

Q = Beam Charge r = Beam offset

By measuring *r* the beam offset is obtained → Beam Position Monitor (BPM)

For charge normalization and sign: Reference Resonator or Monopole Mode

Problem: Monopole Mode (TM₀) leakage into Dipole Mode (TM₁)

BTW: 2 ports per plane

XFEL Reject monopole mode

Dipole Mode is surrounded by magnetic fields

Between both magnetic fields a TE_{10} is produced which matches with boundary condition of wave guide and is propagating

Monopole Mode does not match with boundary condition of wave guide

Ref: V. Balakin et al., PAC 1999

XFEL Reject monopole mode

Simulation to show

- propagation of dipole mode in waveguide
- monopole mode no propagation in waveguide

European XFEL Design

Based on a design from T. Shintake (SPring-8)

First DESY prototype, 4.4 GHz, (first generation)

Second DESY prototype Before brazing, 3.3 GHz, (second generation)

Reference and Dipole resonator

Vacuum design view

08.12.2009, FLASH seminar D. Lipka, MDI, DESY Hamburg **Undulator BPM**

Reference and Dipole resonator Vacuum design view

2 channel network analyser (NWA), measurement of scattering matrix (Sparameter: S11 [reflection] and S12 [transmission])

Other ports terminated with 50 Ohm

European

12

Transmission data analysis

Laboratory measurements of Undulator cavity BPM

European XFEL

Transmission data results

BPM	f _R / (GHz	Q _L		
	Ports 1-3	Ports 2-4	Ports 1-3	Ports 2-4	
1	3.301	3.301	68.2	70.3	
2	3.303	3.305	70.8	67.9	
3	3.309	3.310	78.1	77.8	
4	3.307	3.308	68.8	66.7	
5	3.310	3.310	76.0	80.5	
6	3.302	3.301	67.9	66.7	

Errors:

Resonance frequency:

Stat. = 0.01 MHz

Syst. = 5 MHz

Loaded quality factor:

Stat. = 0.3

Expectation: $f_R = 3.30 \pm 0.01$ GHz, $Q_L = 70.0 \pm 15.0$

Compare Measurement and Simulation: all of the cavity BPM's are within tolerances

European

S21

Laboratory measurements of Undulator cavity BPM

Coupling of orthogonal ports:

Results between -31 and -33 dB, compared to previous design coupling is decreased because of improved design and more restricted tolerances

€ 0.034

f/Hz

European XFEL

Laboratory measurements of Undulator cavity BPM

Reference Resonator Results

BPM	f _R / GHz	Q _L
1	3.297	77.8
2	3.297	79.5
3	3.289	82.5
4	3.293	83.2
5	3.295	79.5
6	3.292	80.8

Errors:

- Resonance frequency:
 - Stat. = 7 MHz
 - Syst. = 5 MHz
- Loaded quality factor:

Stat. = 0.5

Syst. = 10

Expectation: $f_R = 3.30 \pm 0.01$ GHz, $Q_I = 70.0 \pm 15.0$

Compare Measurement and Simulation:

all of the cavity BPM's are within tolerances

European

XFEL Beam measurement of Undulator cavity BPM

Cavity BPM included in FLASH beamline at Christmas shutdown 2008

- Beam measurement with oscilloscope (6 GHz, 20GS/s), 123 m cable between BPM and oscilloscope
- Available: stepper motor in x and y, Toroid and button BPM
- Test of movement range, boundaries determined by beam loss monitor

European XFEL

Beam measurement of Undulator cavity BPM

Analysis: To increase oscilloscope resolution for amplitude a fit is applied to the time signal, in addition resonance frequency and loaded quality factor is observed:

XFEL Bea

Beam measurement of Undulator cavity BPM

Stable beam conditions and monitored with Toroid and reference resonator

Result

- Linear dependence between reference resonator and Toroid
- Resolution of both together: 6.2 pC

19

European XFEL Be

Beam measurement of Undulator cavity BPM

Beam charge was changed and monitored with Toroid and reference resonator

XFEL Beam measurement of Undulator cavity BPM

Sensitivity of dipole resonator

Cavity BPM was moved in one direction, other direction was settled to beam on axis

XFEL Beam measurement of Undulator cavity BPM

Spectrum dipole resonator

XFEL Beam measurement of Undulator cavity BPM

Orthogonal coupling of first and second prototype:

Amplitude of spectrum at dipole resonance frequency as a function of mover position

XFEL Beam measurement of Undulator cavity BPM

Resolution at FLASH

XFEL Undulator Cavity BPM

European XFEL

Resolution cavity BPM vs. bunch charge

Beam measurement of Undulator cavity BPM

Resolution affected due to:

- Oscilloscope ADC 8 bit, estimated influence of 10 μm, improved due to spectral analysis
- Sampling rate of oscilloscope: 20 GS/s, results in 6 points per period
 - Resolution of other BPM at FLASH (for decreasing charge the resolution of other BPM is increasing), other BPM's are assumed to be noise free, only an upper limit can be estimated,

Resolution of XFEL Cavity BPM will be dominated by electronics, here only an oscilloscope is used. When electronics ready an improved resolution is expected.

European **Beam measurement of Cavity BPM** XFFI

08.12.2009. FLASH seminar D. Lipka, MDI, DESY Hamburg New Teststand at FLASH Installation: 01/2010

Principle:

Two BPM's are measuring position and predict position at the third BPM, residual corresponds to resolution of system

- Design of Undulator cavity BPM for XFEL Undulator intersection ready, prototypes from DESY workshop within expectation
- Production of improved Undulator cavity BPM's for Teststand ongoing, preseries at industry
- Production of cavity BPM 40.5 mm for Teststand ongoing, preseries at industry
- Electronics Status 08/2009: 4 front end prototypes produced at PSI without clock, functionality test successfully, not yet tested with beam, digital part not yet ready. Will be ready for beam test 2010.

XFEL Summary

- Requirements for observing beam position fixed
- In kind contribution
- Cavity BPM principle
- Produced two generation with improvements, measurements
- New teststand for measurement of resolution

Thank you for your attention!

XFEL Clip board – copy and paste

 Headline first level second level third level 	Headline Texttext texttext texttext texttext texttext texttext			
Keyword	 Keyword Keyword 	keywordkeyword		
Result Headlineresult textresult text	Result headline Result text, result text, result text	 Result headline result text result text result text 		

