# BC2 Chicane BPM Commissioning 

## 01-12-09


< 5 um resolution over 10 cm range robust operation for all beam shapes

## 7 Independent BC2 Energy Stability/Position Measurements

| Measurement System | Position resolution | Energy resolution | Dynamic range |
| :--- | :--- | :--- | :--- |
| In-loop Vector Sum (drifts) | $70 \mu \mathrm{~m}$ | $2 \mathrm{e}-4 \pm 1 \mathrm{e}-2$ | 10 cm |
| Out-of-loop Vector Sum (drift- <br> free) | $70 \mu \mathrm{~m}$ | $2 \mathrm{e}-4$ | 10 cm |
| BC2 BPM 1.3 GHz front-end | $25 \mu \mathrm{~m}$ | $7 \mathrm{e}-5$ | 80 mm |
| Photomultiplier Tube Monitor | $15 \mu \mathrm{~m}$ to $30 \mu \mathrm{~m}$ | $4 \mathrm{e}-5$ to $9 \mathrm{e}-5$ | 2 mm |
| BC2 BPM 10.4 GHz front-end | $(3 \mu \mathrm{~m}$ to) $5 \mu \mathrm{~m}$ | $1 \mathrm{e}-5$ | 2 mm |
| BC2 BPM optical front-end | $2 \mu \mathrm{~m}$ | $6 \mathrm{e}-6$ | 1 mm |
| time-of-flight with 2 BAMs | $(6 \mathrm{fs})$ | $(1 \mathrm{e}-5)$ anticipated |  |

## BC2 BPM Beam Position Measurement Basics


left $=(R 16-R 56)^{*} d E / E$
right $=(R 16+R 56)^{*} d E / E$
sum $=2 * R 16 * d E / E$
diff $=2 * R 56 * d E / E$
arrival = sum $/ 2$
position $=$ diff $/ 2$

If both signals increase or decrease, you have an arrival time change

If the signals go in opposite directions, you have a position change

## BC2 BPM Beam Position Measurement Basics


left $=(R 16-R 56)^{*} d E / E$ right $=(R 16+R 56)^{*} d E / E$
sum $=2 * R 16 * d E / E$ diff $=2^{*}$ R56* $\mathrm{dE} / \mathrm{E}$
arrival = z_sum/2
position = z_diff/2

If both signals increase or decrease, you have an arrival time change

If the signals go in opposite directions, you have a position change

## BC2 BPM Beam Position Measurement Basics


left $=(R 16-R 56)^{*} d E / E$ right $=(R 16+R 56)^{*} d E / E$
sum $=2 * R 16 * d E / E$ diff $=2 * R 56 * d E / E$
arrival = z_sum/2
position = z_diff/2

If both signals increase or decrease, you have an arrival time change

If the signals go in opposite directions, you have a position change

## BC2 BPM Beam Position Measurement Basics


left $=(R 16-R 56)^{*} d E / E$ right $=(R 16+R 56)^{*} d E / E$
sum $=2 * R 16 * d E / E$ diff $=2 * R 56 * d E / E$
arrival = z_sum/2
position = z_diff/2

If both signals increase or decrease, you have an arrival time change

If the signals go in opposite directions, you have a position change

## BC2 BPM Beam Position Measurement Basics


left $=(R 16-R 56)^{*} d E / E$ right $=(R 16+R 56)^{*} d E / E$
sum $=2 * R 16 * d E / E$ diff $=2^{*}$ R56* $\mathrm{dE} / \mathrm{E}$
arrival = z_sum/2
position = z_diff/2

If both signals increase or decrease, you have an arrival time change

If the signals go in opposite directions, you have a position change

## BC2 BPM Beam Position Measurement Basics


left $=(R 16-R 56)^{*} d E / E$ right $=(R 16+R 56)^{*} d E / E$
sum $=2 * R 16 * d E / E$ diff $=2 * R 56 * d E / E$
arrival = z_sum/2
position = z_diff/2

If both signals increase or decrease, you have an arrival time change

If the signals go in opposite directions, you have a position change

## BC2 BPM Beam Position Measurement Basics


left $=(R 16-R 56)^{*} d E / E$ right $=(R 16+R 56)^{*} d E / E$
sum $=2 * R 16 * d E / E$ diff $=2 * R 56 * d E / E$
arrival = z_sum/2
position = z_diff/2

If both signals increase or decrease, you have an arrival time change

If the signals go in opposite directions, you have a position change

Beam position ( $\alpha=18.0 \mathrm{deg}$ )


## BPM Front-end

## Strategies:

## Tactics:

| Low resolution |  |
| :---: | :---: |
| Measurement helps put |  |
| High resolution |  |
| Measurement in range | Monitor can be <br> periodically calibrated <br> with a phase shifter |




## 3 different front-end chassis constructed and commissioned



## 1 pickup : 4 distinct front-ends

|  | HF |  | Optical |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Downmixing at <br> 1.3 GHz | Downmixing at <br> 10.4 GHz | EOM sampling <br> with attenuated <br> signal | EOM sampling <br> with limited <br> signal |
|  | $\sim 25 \mu \mathrm{~m}$ | $\sim 5 \mu \mathrm{~m}$ | $\sim 25 \mu \mathrm{~m}$ | $\sim 2 \mu \mathrm{~m}$ |
| Moving parts? | no | yes | yes | yes |
| Infrastructure <br> required | MO, 2 VMs, VME: ADC, DAC | MLO, VM, fiber links, piezo drivers, <br> motors, Beckhoff, VME: ADC, DSP, <br> DAC |  |  |
| ADC | Struck 108 MHz <br> Good for this application <br> only 40 bunches at a time | In-house 108 MHz with extras <br> Nightmare clock bucket jumps <br> gets whole bunch train |  |  |
| Cost | 10,000 EUR |  |  |  |

$\mathrm{MO}=$ Master HF Oscillator
MLO = Master Laser Oscillator
VM = Vector Modulator
EOM = Electro-Optical Modulator

## EOM sampling




## Thermal Stability



1 m fiber drifts 5-10 um / deg C
$\sim 8 \mathrm{~m}$ fiber in box
0.8 um drift / 0.01 deg $C$

## Thermal stability



## Thermal stability

Recovery from maintenance day : 12 hours


Plate temperature changes are $\sim 6 \%$ of outer box changes
0.12 degree change shown

Inner box floor temperature tracks tunnel temperature

2 degree change shown

# Optical front-end commissioning process 

- $\sim 12$ hour process repeated for each of 4 EOMs
-Find signal
-Adjust cable lengths (tunnel access)
-Calibrate
-Set up motor feedback
- Complicated by ADC clock bucket jumps
-Every few hours or more
-Requires resetting board until correct bucket is found for all channels


## Finding the sample position

Adjusting cable lengths $\sim 4$ hours per signal + tunnel access


## Calibration and Resolution

## - Out of Tunnel

17 fs resolution $=55 \mathrm{fs} / \%$ modulation * $0.3 \%$ amplitude detection noise


- In Tunnel (short cables => drift free)

10 fs resolution = $35 \mathrm{fs} / \%$ modulation * 0.3 \% amplitude detection noise
2 um resolution

## EOM measurements

Out-of-tunnel : $3 \mu \mathrm{~m}$ resolution In tunnel : $\quad 2 \mu \mathrm{~m}$ resolution


## HF Down Mixing Front-end

| 60V | Center $\sim 10.4 \mathrm{GHz}$ |
| :--- | :--- |
| 200ps | $\mathrm{BW}=400 \mathrm{MHz}$ | | Big Bandwidth $=>$ <br> nicely behaved group delay |
| :--- |



Noise on LO is common mode


## Using a coarse measurement to put fine measurement in range



One phase shifter moves both signals until the left mesurement is in range

## Using a coarse measurement to put fine measurement in range



One phase shifter moves both signals until the left mesurement is in range

## Using a coarse measurement to put fine measurement in range



One phase shifter moves both signals until the left mesurement is in range

## Using a coarse measurement to put fine measurement in range



One phase shifter moves both signals until the left mesurement is in range

## Using a coarse measurement to put fine measurement in range



Another phase shifter optimizes just one side, using a lower frequency signal as a guide.

## Using a coarse measurement to put fine measurement in range



Another phase shifter optimizes just one side, using a lower frequency signal as a guide.

## Using a coarse measurement to put fine measurement in range



Another phase shifter optimizes just one side, using a lower frequency signal as a guide.

## Using a coarse measurement to put fine measurement in range



Another phase shifter optimizes just one side, using a lower frequency signal as a guide.



## Phase Scan with Vector Modulator



BAM: $1 \mathrm{~V} / \mathrm{ps}->0.3 \mathrm{~mm} / \mathrm{V}$

## Correlation with PhotoMultiplier Monitor





EBPM arrival

EBPM position

PMT position
(C. Gerth)

## Correlation with PM Monitor



## Drift and Resolution Measurement

```
right = (R16 + R56)*dE/E
sum = 2* (R16 + R56)*dE/E
diff = 0
```

Difference of split signals should stay constant RMS Jitter of split signal gives monitor's resolution


## cable phase drift and jitter on a

 quiet night

## 5 um drift and 5 um resolution over a quiet night



## 20 um drift over 3 days



## ACC1 gradient scan Off-crest ACC1

Calibration done once at beginning VM kept sample point at zero crossing (of one signal)
No trombone change

For a 1\% energy change:

```
dE/E * R16 = 3.5 mm
Measured = 3.5 + 0.1 mm
over first 2 pts => 1-2 mm range
```


## ACC1 gradient scan Off-crest ACC1

Calibration done once at beginning
VM kept sample point at zero crossing (of one signal)

For a 1\% energy change:

$$
\mathrm{dE} / \mathrm{E} \text { * } \mathrm{R} 56 / 2=3.1 \mathrm{ps}
$$

Measured $=2.8 \pm 0.4 \mathrm{ps}$
$\sim 5$ ps range
No trombone change



### 1.3 GHz (coarse) signal down-mixed

$5 \%(0.5 \mathrm{~cm})$ of monitor's range 25 um resolution (RMS)



## Fiducializing the Trombone



Bump comes from reflection in pickup


## Trombone Feedback On



Each measurement point averaged over 20 shots Scan repeated 3 times

Done with higher power amps (smaller dynamic range)

## Which one is right?



ACC1 Setpoint
1.3 GHz BPM (25 um)
10.4 GHz BPM (5 um)

PMT Monitor (15 um)

## Coarse and Fine BPM measurements



## PMT and BPM

Sometimes they agree


Done with higher power amps (smaller dynamic range)

## PMT and BPM

 Sometimes they don't

## 3 Independent Energy Monitors



## 5 Independent BC2 Energy Stability Measurements



## Exactly what is available to operators on day one?



## Conclusion

- HF can do the job without optical synchronization infrastructure
- 1.3 GHz measurement in BC 2 ready for users
- DOOCS BPM server
- Not yet linearized (2ond order polynomial parameters)
- 25 um resolution
- 10.4 GHz meas still needs babysitting
- DOOCS BPM server works in principle (not bulletproof)
- Takes $\sim 10$ seconds to settle in on a new sampling position after dynamic range is exceeded
- Sampling location is sometimes bad => algorithm needs work
- Trombone potentiometer adds errors => linear encoder desired
- Optical method works, but infrastructure needs development
- 2 um resolution demonstrated
- Motor feedbacks operated for a few hours unattended


## Outlook (BC3)

- Quick fix with 1.3 GHz front-end could make ( $\sim 25 \mathrm{um}$ ) low resolution measurement available in BC3 for machine start up
- Components for BC3 optical chassis are ordered, but it is low on priority list for optical synchronization => no stabilized link available

