BC2 Chicane BPM Commissioning

01-12-09

Goals: < 5 um resolution over 10 cm range robust operation for all beam shapes

7 Independent BC2 Energy Stability/Position Measurements

Measurement System	Position resolution	Energy resolution	Dynamic range
In-loop Vector Sum (drifts)	70 µm	2e-4 <u>+</u> 1e-2	10 cm
Out-of-loop Vector Sum (drift- free)	70 µm	2e-4	10 cm
BC2 BPM 1.3 GHz front-end	25 µm	7e-5	80 mm
Photomultiplier Tube Monitor	15 µm to 30 µm	4e-5 to 9e-5	2 mm
BC2 BPM 10.4 GHz front-end	(3 µm to) 5 µm	1e-5	2 mm
BC2 BPM optical front-end	2 µm	6e-6	1 mm
time-of-flight with 2 BAMs	(6 fs)	(1e-5) anticipated	

left = (R16 - R56)*dE/Eright = (R16 + R56)*dE/E

sum = 2*R16*dE/E diff = 2*R56*dE/E

arrival = sum/2 position = diff/2 If both signals increase or decrease, you have an arrival time change

left = (R16 - R56)*dE/Eright = (R16 + R56)*dE/E

sum = 2*R16*dE/E diff = 2*R56*dE/E

arrival = z_sum/2 position = z_diff/2 If both signals increase or decrease, you have an arrival time change

left = (R16 - R56)*dE/Eright = (R16 + R56)*dE/E

sum = 2*R16*dE/E diff = 2*R56*dE/E

arrival = z_sum/2 position = z_diff/2 If both signals increase or decrease, you have an arrival time change

left = (R16 - R56)*dE/Eright = (R16 + R56)*dE/E

sum = 2*R16*dE/E diff = 2*R56*dE/E

arrival = z_sum/2 position = z_diff/2 If both signals increase or decrease, you have an arrival time change

left = (R16 - R56)*dE/Eright = (R16 + R56)*dE/E

sum = 2*R16*dE/E diff = 2*R56*dE/E

arrival = z_sum/2 position = z_diff/2 If both signals increase or decrease, you have an arrival time change

left = (R16 - R56)*dE/Eright = (R16 + R56)*dE/E

sum = 2*R16*dE/E diff = 2*R56*dE/E

arrival = z_sum/2 position = z_diff/2 If both signals increase or decrease, you have an arrival time change

left = (R16 - R56)*dE/Eright = (R16 + R56)*dE/E

sum = 2*R16*dE/E diff = 2*R56*dE/E

arrival = z_sum/2 position = z_diff/2 If both signals increase or decrease, you have an arrival time change

BPM Front-end

Strategies:

Low resolution Measurement helps put High resolution Measurement in range

Monitor can be periodically calibrated with a phase shifter

Tactics:

Optical method: EOM sampling (a la BAM) HF method: BP Filter Down mix get phase

3 different front-end chassis constructed and commissioned

2

HF

EOM

1

1 layer not actively thermally stabilized Short lifetime delay stages 5 um resolution 2 layers Actively thermally stabilized Easy to construct 5 um resolution

Ш

2 layers Actively thermally stabilized Tedious to construct 2 um resolution

In Tunnel

Out-of-tunnel

1 pickup : 4 distinct front-ends

	HF		Optical	
	Downmixing at 1.3 GHz	Downmixing at 10.4 GHz	EOM sampling with attenuated signal	EOM sampling with limited signal
Resolution	~25 µm	~5 µm	~25 µm	~2 µm
Moving parts?	no	yes	yes	yes
Infrastructure required	MO, 2 VMs, VME: ADC, DAC		MLO, VM, fiber links, piezo drivers, motors, Beckhoff, VME: ADC, DSP, DAC	
ADC	Struck 108 MHz Good for this application only 40 bunches at a time		In-house 108 MHz with extras Nightmare clock bucket jumps gets whole bunch train	
Cost	10,000 EUR		30,000 EUR	
			MO = Master HI MLO = Master La VM = Vector M	F Oscillator aser Oscillator odulator

EOM = Electro-Optical Modulator

EOM EBPM Front End

Thermal Stability

1 m fiber drifts 5-10 um / deg C ~8 m fiber in box 0.8 um drift /0.01 deg C

Thermal stability

Thermal stability

Recovery from maintenance day : 12 hours

Optical front-end commissioning process

- ~12 hour process repeated for each of 4 EOMs
 - -Find signal
 - -Adjust cable lengths (tunnel access)
 - -Calibrate
 - -Set up motor feedback
- Complicated by ADC clock bucket jumps
 - -Every few hours or more
 - -Requires resetting board until correct bucket is found for all channels

Finding the sample position

Adjusting cable lengths ~ 4 hours per signal + tunnel access

Calibration and Resolution

• Out of Tunnel

17 fs resolution = 55 fs/% modulation * 0.3 % amplitude detection noise 3 um resolution

In Tunnel (short cables => drift free)

10 fs resolution = 35 fs/% modulation * 0.3 % amplitude detection noise 2 um resolution

EOM measurements

Out-of-tunnel : 3 µm resolution In tunnel : 2 µm resolution

HF Down Mixing Front-end

HF front-end Upper Level

Phase Scan with Vector Modulator

BAM: 1V/ps->0.3 mm/V

Correlation with PhotoMultiplier Monitor

Correlation with PM Monitor

diff = 0

Difference of split signals should stay constant RMS Jitter of split signal gives monitor's resolution

cable phase drift and jitter on a quiet night

5 um drift and 5 um resolution over a quiet night

20 um drift over 3 days

ACC1 gradient scan Off-crest ACC1

Calibration done once at beginning VM kept sample point at zero crossing (of one signal) No trombone change For a 1% energy change:

dE/E * R16 = 3.5 mm Measured = 3.5 <u>+</u> 0.1 mm over first 2 pts => 1-2 mm range

ACC1 gradient scan Off-crest ACC1

Calibration done once at beginning VM kept sample point at zero crossing (of one signal) No trombone change For a 1% energy change:

dE/E * R56/2 = 3.1 ps Measured = 2.8 <u>+</u> 0.4 ps ~5 ps range

1.3 GHz (coarse) signal down-mixed

Fiducializing the Trombone

Trombone Feedback On

Each measurement point averaged over 20 shots Scan repeated 3 times

Done with higher power amps (smaller dynamic range)

Which one is right?

Coarse and Fine BPM measurements

PMT and BPM Sometimes they agree

Done with higher power amps (smaller dynamic range)

3 Independent Energy Monitors

5 Independent BC2 Energy Stability Measurements

Exactly what is available to operators on day one?

Conclusion

- HF can do the job without optical synchronization infrastructure
 - 1.3 GHz measurement in BC2 ready for users
 - DOOCS BPM server
 - Not yet linearized (2ond order polynomial parameters)
 - 25 um resolution
 - 10.4 GHz meas still needs babysitting
 - DOOCS BPM server works in principle (not bulletproof)
 - Takes ~10 seconds to settle in on a new sampling position after dynamic range is exceeded
 - Sampling location is sometimes bad => algorithm needs work
 - Trombone potentiometer adds errors => linear encoder desired
- Optical method works, but infrastructure needs development
 - 2 um resolution demonstrated
 - Motor feedbacks operated for a few hours unattended

Outlook (BC3)

- Quick fix with 1.3 GHz front-end could make (~25 um) low resolution measurement available in BC3 for machine start up
- Components for BC3 optical chassis are ordered, but it is low on priority list for optical synchronization => no stabilized link available