

FLASH seminar

Beam phase measurement with single bunch

Petr Morozov DESY Beam phase measurement with single bunch

Commission (accelerator start-up)

Vector sum calibration quality RF field regulation

?

Diagnostic purposes

$$\frac{\Delta \varphi}{\Box} \longrightarrow \frac{\Delta U}{\Box} \longrightarrow \frac{\Delta E}{E}$$

$$\Delta \varphi = \pm 0.5^{\circ} for \ 8 \ cavities \rightarrow \frac{\Delta E}{E} \approx 10^{-4}$$

(Alexander Brandt PhD. Theses)

High beam charge measurement:

- 30 bunches
- ~3nC for each conditions

Special setup for that measurement

Charge limits resolution of this method

There is a risk to destroy equipment installed in tunnel

Develop a new more sensitive method

- accuracy \pm 1 deg. or better
- reasonable bunch charge (1nC or less)

Direct measurement

Petr Morozov DESY Beam phase measurement with single bunch

HELMHOLTZ

GEMEINSCHAFT

Resolution ADC

Bunch phase deg.

Petr Morozov DESY Beam phase measurement with single bunch

Resolution ADC

Bunch phase deg.

Petr Morozov DESY Beam phase measurement with single bunch

Measurement in 2 steps

1. Conditions :

HELMHOLTZ

GEMEINSCHAFT

Hardware setup

Hardware and software :

- variable gain amplifier: -70 dB to +47 dB
- new downconverter, IF 54MHz, Input power +17dBm, 16bit ADC
- Advanced-Carrier-Board (ACB2.0), based on FPGA
- MatLab for I/Q calculation

HELMHOLTZ

Measurement result at ACC6

Measured phase comparison

Petr Morozov DESY Beam phase measurement with single bunch

Bunch phase for different set point

Petr Morozov DESY Beam phase measurement with single bunch

Which of two measurements is telling the truth?

Condition:

- Set point phase 128 deg.
- All cavity at ACC6 was tuned to ~on-crest
- New method was used as indicator the beam phase

Energy measurement results:

Before	~695 ± 0.5 MeV
After	~696 ± 0.5 MeV
Back	~695 ± 0.5 MeV

Where the phase offset come from...

RF - off Bunch - ~3nC

Discover a new method for bunch phase measurement

- Commission (accelerator start-up)
 - single bunch 1-2 nC
 - reduce risk of breaking equipment installed in tunnel
- Vector sum calibration
 - more precise beam phase measurement (better 0.5 deg)
 - expected better RF field regulation

Open point:

Source for difference (offset) compared to high bunch charge measurement

Surprise:

Possibility to also use dark current!

<u>MSK</u>

<u>MHF-p</u>

<u>MHF-sl</u>

Stefan Simrock

Markus Hoffmann

Frank Ludwig

Matthias Hoffmann

Waldemar Koprek

Valeri Ayvazyan

Thomas Froelich

Denis Kostin Guennadi Kreps

