Status of THz spectroscopy as a standard diagnostic method.

Stephan Wesch, Christopher Behrens, Bernhard Schmidt

FLASH seminar – 24th February 2009

Overview

- Introduction
 Used radiation
 Present monitors at FLASH
- 2 Single shot IR spectrometer
- Spectroscopy as bunch compression monitoring Spectra
 Behavior at phase variations
 SASE - CTR intensity correlation
- Longitudinal profile reconstruction Method Examples
- 5 Activities (Big Shutdown) New spectrometer Spectroscopy with 3rd harmonic cavity
- 6 Conclusions

Transition radiation

Intensity distribution for single electron

Ginzburg-Frank-Formula:

$$\left. \frac{d^2 U}{d\omega d\Omega} \right|_{e^-} = \frac{e^2}{4\pi^3 \epsilon_0 c} \cdot \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2}$$

Consideration of electron ensemble:

$$\left. \frac{d^2 U}{d\omega d\Omega} \right|_{bunch} = \left. \frac{d^2 U}{d\omega d\Omega} \right|_{e^-} \cdot \left(N + N(N-1) \cdot |F(\omega)|^2 \right)$$

Coherent part dominates + small tranverses dimensions:

$$\left. \frac{d^2 U}{d\omega d\Omega} \right|_{bunch} \approx \left. \frac{d^2 U}{d\omega d\Omega} \right|_{e^-} \cdot N^2 \cdot \left| F_{long}(\omega) \right|^2$$

Radiation emitted in small cone of $2/\gamma$:

$$\left. \frac{dU}{d\omega} \right|_{bunch} pprox \left. \frac{dU}{d\omega} \right|_{e^-} \cdot N^2 \cdot \left| F_{long}(\omega) \right|^2$$

Formfactor

$$F_{long}(\lambda) = \int \! dz \, \rho_{norm}(z) \cdot \exp(-2\pi \, \mathrm{i} \, z \cdot \lambda^{-1}) \quad \mathrm{with} \quad \int \! dz \, \rho_{norm}(z) = 1$$

TR vs. DR

incoherent spectral energy – finite screen (d=40mm)

Extension to finite screen sizes:

TR finite full screen

→ cutoff at long
wavelengths

DR hole in screen

→ damping smaller wavelengths

 \rightarrow TR is recommended for small structures!

Compression monitor

CDR monitor behind BC2

Coherent diffraction monitor:

- parasitic detection (non destructive)
- integrated energy measured via pyroelement
- cut-off wavelength at 80 μm (window)

 \rightarrow empirical value on which phase of ACC1/ACC23 is regulated

Setup I

Intention:

Do broadband spectroscopy of CTR from compressed electron bunches.

Scheme of radiation generation FLASH@140m

Setup II

Broadband single shot grating spectrometer. Developed by H. Delsim-Hashemi.

Last spectrometer configuration used (S. Wesch)

Characteristics:

- 3 staged reflective blazed gratings (filter + 2 dispersive elements)
- focussing ring mirrors
- $\bullet \ \ 2\times 30 \ pyro \ detectors$
- 3 grating combinations (3 μm up to 65 μm)
- limit of |F| = 0.001 at 1 nC
- experimental setup to establish method

FEL spectrum

FEL bunch spectrum at $700MeV - 3 \times 330$ shots

 coherent radiation down to spectrometer limit strong fluctuations due to machine stability

Spectrum BC3 only

bunch spectrum – BC2 off / BC3 on –
$$\phi_{ACC23}$$
=–30° – 3 × 120 shots

 enhancement of intensity at short wavelengths • fluctuations on lower level

Behavior at phase variations

- extremely strong dependence near SASE condition (sharpness not understood)
- → setpoint to monitor compression

- phase independent radiation (microbunching)
- → complicates profile reconstruction

SASE - CTR correlation

- maximum SASE intensity shifted about $\Delta\phi_{ACC1}=0.6^\circ$ with respect to maximum CTR signal
- → @140m compression is not completed (dogleg)

Reconstruction method

Spectroscopy indirect method of measuring the longitudinal shape of bunch.

 \rightarrow determination of |F|, but phase information gets lost!

Example I

Example II

New Spectrometer I

Engineered and improved version of spectrometer.

CAD picture (Courtesy K. Ludwig)

Charateristic:

- 4 stages
- 2 grating combinations
- ightarrow spectral range 2 μ m 200 μ m
 - 120 pyros
 - · motorized beam alignment
 - · more compact

Additional new location:

- in front of 1st undulator
- uses same (O)TR station as LOLA

New Spectrometer II

3rd harmonic bunch

Outlook to formfactor of bunch

simulation I. Zagorodnov

location of minima determines bunch length

Conclusions

2 stage spectrometer (prototype):

- i. bunch profile construction \rightarrow spike width in μ m range.
- ii. extensively used for microbunch studies
- iii. not ideal to correlate SASE with spectra (dogleg)

Conclusions

2 stage spectrometer (prototype):

- i. bunch profile construction \rightarrow spike width in μ m range.
- ii. extensively used for microbunch studies
- iii. not ideal to correlate SASE with spectra (dogleg)

engineered 4 stage spectrometer:

- I. spectrometer leaves experimental status
- II. larger spectral range
- III. additional location in front of undulators