

FS-LA Laser Science and Technology Group, DESY Bastian Manschwetus

FEL Seminar 2-Apr-2019 DESY

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

- Motivation
 - Pump probe experiments at FLASH
 - FLASH2 pump probe laser
 - Arrival time and synchronization
- Experiment
 - Xe photoionization
 - Results
 - Interpretation
- Summary + Outlook
 - Recent user experiments
 - Upcoming timing experiments
 - Improvements

Soft X-ray FEL in Hamburg - FLASH

FLASH2

- Photon pulse duration 10-200 fs
- 10 Hz bursts (≤ 800 intra burst pulses)
- Fundamental photon energy 14 - 310 eV
- Beamlines 2 (up to 7)

Science at FLASH

Average over last calls

~80 % time-resolved (pump-probe) experiments

FEL/FEL (with split & delay units)

➤ THz/FEL

The performance of FEL and optical laser is crucial for the success of a pump probe experiment

Control of:

- Wavelength
- Pulse energy
- Pulse duration
- Arrival time
- Spatial overlap

Optical lasers for FLASH

FLASH2

Looking into the FLASH2 hall "Kai Siegbahn"

Pump-probe Experiment @ FLASH2

Pulse arrival time stability

Optical path length stability: <3 x 10⁻⁸

Arrival time stability

Main effects

Free electron laser

- RF phases
- Beam energy
- Thermal expansion
- SASE process

Optical laser

- Refractive index of optical fibers
- Thermal expansion
- Refractive index of air
- Vibrations

Golden Rules

- Passive stability
- Measure arrival time
- Feedback loops
- Minimize uncontrolled path

Electron Bunch Arrival Monitors (BAMs)

New Pickups, Electronics and Synchronization

- Temporal resolution: < 10fs
- Even very low electron bunch charges used in short-pulse operation
- All individual BAMs will be put into operation one by one 2018/2019

40GHz pickups (•) installed for all BAM locations at FLASH (07/2018)

OPCPA Laser System

System Overview

Laser parameters

Rep.-Rate: 100 kHz in 800µs burst @ 10Hz Pulse energy: 400 µJ (before transport) Pulse duration: Wavelength: 15 fs - 50 fs 700nm – 900 nm

Drift compensation system laser system

OPCPA - Pump vs. Seed

Wavelength Stabilization

- Fast change of central wavelength
- · drift control with temperature controlled fiber delay line

Timing drift stabilization

Balanced cross correlator

- Crosscorrelation of oscillator pulse and amplifier pulse
- two cross correlations with small time delay

Timing drift stabilization

Performance

- Full fiber amplifier is in feedback loop
- OPCPA amplifier, beamtransport and pulse compresson is not controlled
 - 50 m out of loop beam path
- Standard drift deviation: 5.7 fs rms
- Oscillations of 30 s period

- Single shot measurement in burst
 - No slope over the pulse train visible
 - But high noise

Wavelength and timing drift stability

FLASH2 FEL-pump optical-probe experiment

- Test the performance of the new FLASH2 pump probe laser and the FLASH2 FEL by performing a standard timing experiment
- Xenon(4d) ionization [Krikunova et al 2009 New J Phys. **11** 123019]

Pathway 1. Xe + $hv_{XUV} \rightarrow Xe(4d^{-1}) + e^{-1}$ 2. Xe $(4d^{-1}) \xrightarrow[Augerdecay < 5fs]{} Xe(5p^{-2})^* + e^{-1}$ 3. Xe $(5p^{-2})^* + hv_{IR} \rightarrow Xe(5p^{-3}) + e^{-1}$

 Xe³⁺ ion yield is increased when IR pulse arrives after XUV pulse

Experimental apparatus REMI@FL26

- Reaction microscope
 - lons and electrons detectors
 - coincidence detection
- Added incoupling optics for the optical laser
- Only ion TOF measurement required

Experimental results

FLASH1

DESY.

Discussion: many open questions

- Time resolution in this experiment: 79 fs rms why are we not better?
- correction of electron arrival time 4DBC3 BAM jitter $\sigma_{iitter} \approx 70$ fs rms
 - No significant improvement, BunchID mismatch?
 - Influence of FLASH2 extraction?
- Laser pulse duration on target?
 - FL26 laser incoupling not optimized for ultrashort pulses
 - No influence on signal when changing laser pulse duration between 20 and 80 fs (FWHM)
- FEL pulse duration on target?
 - Settings similar to experiment 1 week earlier
 - No pulse duration measurement during beamtime?
- OPCPA amplifier and laser transport not drift controlled
 - Jitter/drifts?

Summary

- Importance of arrival time for pump probe experiments
- Measured arrival time performance using Xe photoionization
 - Achieved resolution 79fs rms/186 fs FWHM without BAM correction
- Drift stabilization systems at FLASH
 - Beam arrival monitors at FLASH
 - Arrival time jitter 70fs rms / Resolution < 10fs (4DBC3)
 - Drift stabilization of FLASH2 pump probe laser
 - Wavelength stabilized with 3.2 nm instability for 80 nm FWHM
 - Temporal drift stabilized to 5.7 fs rms

Outlook

- So far two user beamtimes with FLASH2 pump probe laser
 - Spatial and temporal overlap stable over several days without issues
 - But no experiments with ultrashort pulses again, limited by laser pulse duration
- Next dedicated beamtime April 2019
 - Toleikis et al. using a timing tool
- Influence of length drift in laser beam transport and at the endstation
 - Is a free space length stabilization possible and practical?
 - Measurement of laser arrival time at endstation with respect to MLO link

Acknowledgements

Thank you for your attention

FS-LA Laser science and technology, DESY

Skirmantas Alisaukas, Uwe Große-Wortmann, Thomas Hülsenbusch, Bastian Manschwetus, Christian Mohr, Nora Schirmel, Angad Swiderski, Falko Peters, Lutz Winkelmann, Jiaan Zheng, Tino Lang and Ingmar Hartl

Max-Planck-Institut für Kernphysik Heidelberg Robert Moshammer, Kirsten Schnorr

FS-FLASH, DESY Markus Braune

Expected drifts and their origins in the laser

Fiber drifts

Temperature	4 fs / (m * 0.1 K)
Humidity	5 fs / (%hum * m)
50 m fiber	Oscillator to CPA
70 m fiber	in CPA for pump

→ All fibers are compensated

Free space beam path drifts

Aluminum Breadboard	7.7 fs / (m * 0.1 K)
Steel Table	3.7 fs / (m * 0.1 K)
Concrete Floor	4.0 fs / (m * 0.1 K)
Invar pump-probe Delay Line	0.7 fs / (m * 0.1 K)

Refraction index changes of air by changes in humidity, temperature and pressure

Typical lab conditions: ± 0.2 K / h, ± 5 %hum / h

FLASH2 pump-probe laser

... available since second half of 2018

Beamline layout in FLASH2 hall

"Panorama view" into the ~80 m² laser hutch

Initial las	ser parame
Technology	Optical para (OPCPA)
Wavelength	700 nm – 90
Repetition rate	50 kHz (1 - 4
Pulse duration	< 20 fs (fwh
Pulse energy	> 250 µJ
Beam transport	Relay Imagi 2 Experimer

Optical laser synchronization

During September 2018

- balanced optical crosscorrelation with MLO
- optical delay line for user delays scans (4 ns, resolution 1 fs)
- rms jitter < 10 fs

