Recent Upgrades of the Optical Synchronization System at FLASH

FEL Seminar

Jost Müller on behalf of the LbSync team Hamburg, 5. February 2019

Outline

01 Introduction

- laser-based synchronization at DESY
- FLASH: Why upgrading the LbSync system?

02 Optical Reference & Distribution

- overview
- master laser oscillator
- synchronization laboratory
- fiber link stabilization
- MicroTCA.4

03 End Stations

- laser-to-RF phase detection and RF resynchronization
- laser synchronization
- (BAM)

04 FLASH Upgrades 2018+

- overall timeline
- upgrades 2018
- status & next steps

05 Summary

Introduction

LbSync Activities at DESY

Group Structure and Historical Overview

LbSync team: currently 7 members

- 2004: first developments started in collaboration with MIT, hosted in FLA group,
- 2008: LbSync operation at FLASH started
- 2010: project moved to MSK
- 2017: first experiments at XFEL using optical synchronization
- 2018: renewal of FLASH LbSync system
- 2018: SINBAD injector laser synchronization
- 2019: finish installation of XFEL LbSync system
- 2020: finish renewal of FLASH LbSync system
- 2020+: installation LbSync at SINBAD

FLASH Optical Synchronization Upgrades 2018+

Why Upgrading?

Performance

- MZI-based MLO synchronization: jitter 30 fs \rightarrow 3 fs, drift stability
- single-mode fiber (SMF) replaced by polarization-maintaining (PMF)
 - jitter 3 fs \rightarrow 0.5 fs
 - enhanced drift stability
- MicroTCA.4-based system
- laser synchronization: jitter 15 fs \rightarrow 5 fs

Space

- old structure (optical table, infrastructure, etc) allowed only 8 links
- 24 optical links required including potential future upgrades

Discontinued Components

- VME system
- migration of all control electronics to MicroTCA.4

Reliability & Maintainability

- same setup like at the XFEL
- software / firmware

Optical Reference & Distribution

FLASH Optical Synchronization System

System Overview

DESY. | Recent Upgrades of the Synchronization System at FLASH | Jost Müller, 05.02.2019

Main Synchronization Laboratory XFEL

Infrastructure

- strict separation of optics, electronics, general working space
- no electronics in optics part → no heat sources, EMI, vibration
- environmental stability \rightarrow dT < 0.1K / dRH < 5%
- EMI → proper grounding (single grounding point), optical cables used if possible, separate potential EMI sources from critical systems
- acoustics & vibrations → optics part acoustically isolated
- UPS for operation-critical systems

main optical table at XFEL, UG5

Master Laser Oscillator (MLO)

onefive

The Main Optical Reference

Oscillator

- commercial (NKT, former Onefive)
- SESAM-based, passively mode-locked
- ultra-low phase noise, Erbium, 1550 nm
- 24/7 operation

Synchronization

 laser-to-RF based, low-noise (~3 fs), low-drift, amplitude insensitive locking scheme

Redundancy

• two similar laser oscillators

• fast switching of active source: no link lock lost, timing preserved

Free-Space Distribution

Laser Beam Distribution for 24 Fiber Link Stabilization Units

- SuperInvar optical table
 - thermal expansion coefficient ~1 fs/m/K
 - no bimetallic effects (sandwich)
- second optical table for motorized delay lines
- space for 24 link stabilization units
 - identical path lengths, symmetric setup
- 8 link stabilization units with 4 ns optical delay
 - arbitrary timing possible for BAM operation
- table completely covered and environmentally stable
 - \ll 0.1 K rms temperature stability
- **online diagnostics**: power, pointing, temperature (air, table, each station, MLOs), humidity

Free-Space Distribution

Laser Bea

- Superl
 - thern
 - no bi
- second
- space t
 - ident
- 8 link s
 - arbitr
- table constable
 - « 0.
- online (air, tat

Free-Space Distribution

Laser Bea

- Superl •
 - thern
 - no bi
- seconc ٠
- space 1 •
 - ident
- 8 link s •
 - arbitr
- table c • stable
 - << 0.1
- online • (air, tat

CAD drawing courtesy of C. Sydlo

LSU: Principle of Operation

Measurement and Compensation of Fiber Link Transit Time Variations

- balanced optical cross-correlation
 - insensitive to laser pulse amplitude fluctuations
 - typical slope 5 mV/fs
- **polarization-maintaining fibers** to mitigate PMDrelated timing errors

Detection and control

- self-built, low noise balanced photodetector BPD (0.1 mV rms in 1 MHz bandwidth)
- MTCA.4: digitizer, FPGA-based controller, piezoand motor drivers

Actuators

- piezo-based **fiber stretcher** (~ 3.5 ps range, fast)
- optical delay line (4 ns, slow), self-built

LSU: nainle of Anaratian

- Measurem
- balance ٠
 - inser
 - typic
- polariz ٠ related

Detection

- self-bu • (0.1 m)
- MTCA. • and mo

Actuators

- piezo
- optic

Link Stabilization Units (LSU)

Measurement Results

Link-Stabilization-Units: Out-of-loop measurement

- drift: 3.3 fs / 24 h
- observed drift compensation at XFEL: up to 200 ps/km! •

MicroTCA.4

MicroTCA.4 for LbSync

- DRTM-DWC10: 10 channel RF down-converter for laser synchronization
- DRTM-LASY: dedicated laser synchronization board
- DRTM-AD84: ADC board for link signal detection
- **DRTM-PZT4**: 4-Ch, ±100V piezo driver for link & laser synchronization
- **DAMC-FMC20**: FMC carrier board laser synchronization
- **DAMC-FMC25**: FMC carrier / FPGA link synchronization
- **SIS8300L2**: 10-Ch 125 MS/s 16-bit ADC, 2x 16-bit DACs, Virtex FPGA
- **DFMC-MD22**: 2-Ch, encoder
- **DFMC-UNIIO**: universal I/O, MLO/shutter control
- DFMC-AD16
- X2TIMER

End Stations

The Optical Reference Module (Refm-Opt)

Femtosecond RF Reference Phase Stabilization

- uses a stabilized fiberlink from the pulsed optical synchronization system as reference
- employs a drift-free L2RF phase detector
- locally **re-synchronizes the 1.3 GHz** RF reference with femtosecond precision in a PLL
- phase-stabilized Wilkinson splitter to provide multiple outputs

Engineering

- fully integrated stand-alone 19" module
- temperature and humidity stabilized optical compartment

Laser Synchronization

Laser Synchronization Schemes – Comparison

RF

- easy to implement
- low-jitter (<20 fs)
- large drift (hundreds of fs), AM-to-PM

Laser-to-RF

- low-jitter (~3 fs)
- low-drift (<10 fs)
- requires high-power budget
- implementation challenging

Laser-to-Laser

- ultra low-jitter (<1 fs)
- low-drift (<10 fs)
- implementation challenging

Laser Synchronization – RF-based

Based on Conventional RF Synchronization Scheme

Concept

- RF mixing scheme: reference at 1.3 GHz mixed with 1.3 GHz + f_{rep}
- IF signal at *f*_{rep} is digitized by fast ADCs (clock derived from reference) and evaluated regarding magnitude/phase
- no DC error signal
 - \rightarrow locking to arbitrary phase set point possible
 - \rightarrow less EMI-related distortions
 - \rightarrow no DC-offset drifts
 - \rightarrow better 1/f noise performance

MicroTCA.4-based controls

- variety of oscillator configurations supported (1 or 2 piezos, motor/piezo stage/temperature tuning, ...)
- dedicated laser sync RTM under development

•

•

•

Laser-to-Laser Synchronization

Performance

- laser oscillator: Origami-15
- reference via 3.5 km stabilized fiber link
- PPKTP-based OXC
- **1.3 fs rms in-loop jitter** [10 Hz..10 MHz]

FLASH LbSync Upgrades 2018+

FLASH LbSync Upgrades 2018+

Timeline

Phase 1 (summer 2018)

- **complete removal** of old components (optical table, VME electronics, cabling, ...)
- infrastructure installation (new optical table & cover, cabling, rack preparation, MTCA systems, ...)
- MLO1 laser lock (RF)
- commissioning of **7 optical links**
- Phase 2 (summer 2019)
 - commissioning of 6 optical links
 - MLO2 laser lock (RF)

Phase 3 (summer 2020)

- main rack \rightarrow MO room
- commissioning of 8 optical links
- MZM-based MLO lock

Optical Links at FLASH

Timeline: Link Commissioning

2018				2019				2020			
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	1UBC2										
2	3DBC2										
3		4DBC3									
4					FL2BURN						
5					1SFELC	:	_				
6						FLASH FWD					_
7										FL2EXTR	
8										15ACC	7
9					ACC1						
10										ACC23	
11										ACC45	67
12	Injecto	or Laser (passive)								Injecto	or Laser
13	FLASH	1 Seed									
14	FLASH	1 PPL									
15		FLASH2 PPL									
16		FLASH1 THz (pa	issive)								
17		FLASH	2 THz Streaking								
18					FLASH FWD						
19					FLASH	2 FL24					
20										FLASH2 FL23	
21										FLASH2 FL26	
22										FLASH	2 Seed

DESY. | Recent Upgrades of the Synchronization System at FLASH | Jost Müller, 05.02.2019

Work in progress...

before...

Work in progress...

before...

Work in progress...

before...

Work in progress...

after 2 days

FLASH LbSync Upgrades 2018+

Status & Next Steps

already installed/upgraded

- main distribution system with infrastructure for 12
 LSUs
- 7 fiber links in operation: **jitter 0.5 fs**
- laser synchronization
 - MLO1 RF-based: jitter 17 fs
 - pump-probe laser FLASH1/2: jitter 5 fs

next steps

- fiber links
 - 6 additional links 2019
- laser synchronization
 - MLO2 installation **ongoing**
 - injector laser 1 OXC **ongoing**
 - FLASH2 THz streaking laser synchronization **ongoing**
 - PPL: redundant systems for FLASH1 & FLASH2 Q2/2019
 - exchange remaining VME systems by MTCA .4 (FLASH1 seed, THz beamline) Q2/2019

DOOCS Controls

Before...

After.

Thanks.