Optical Diffraction Radiation as a Diagnostics Tool at FLASH

M. Castellano, E. Chiadroni, A. Cianchi*, K. Honkavaara*, G. Kube*

INFN-LNF – Frascati Italy
#INFN and Universita’ di Roma Tor Vergata Roma Italy
*DESY - HH

DESY FLASH Seminar
Hamburg, 16/12/2008
Diffraction Radiation

- DR is produced by the interaction between the EM fields of the traveling charge and the conducting screen

 \[I \propto e^{-\frac{2\pi a}{\gamma \lambda}} \]

- The radiation intensity is

- DR impact parameter is

 \[\frac{\gamma \lambda}{2\pi} \] if \(a \)

 \[
 \begin{cases}
 >> \frac{\gamma \lambda}{2\pi} & \text{No radiation} \\
 \approx \frac{\gamma \lambda}{2\pi} & \text{DR} \\
 << \frac{\gamma \lambda}{2\pi} & \text{TR}
 \end{cases}
 \]

- Excellent candidate to measure beam parameters \textit{parasitically}
ODR Experiment @ FLASH

Experimental site

Lens for beam imaging

Lens for beam distortion
OTR Image and Focal Plane

800 nm filter, polarizer
4 pulses, 0.8 nC per pulse
1 s exp time

σ_y = 90 µm

E = (870 +/- 6) MeV
σ'_y = (150 +/- 5) µrad

Thanks to N. Golubeva and V. Balandin
Optical Diffraction Radiation Interferometry (ODRI)

To reduce the synchrotron radiation background, we mounted a stainless steel shield in front of our ODR screen, with a larger cut in it.

In the case of a wavelength of 800 nm and 1 GeV beam energy the 1 mm cut is not large enough to prevent the production of ODR in the forward direction, reflected by the screen and interfering with the backward ODR produced by the screen itself.

An ODR analogous of the Wartski interferometer used for OTR, with the difference that in this case the two interfering amplitudes are different in intensity and angular distribution.

![Experimental data vs Simulation](image)

- **Experimental curve**
 - Single slit
 - Double slit
 - Experimental data
 - Simulation

- **Normalized intensity [a.u.]**
 - $\theta_y [\text{mrad}]$

- **Parameters**
 - $\sigma_y = 99 \, \mu\text{m}$
 - $\sigma' = 70 \, \mu\text{rad}$
 - $E = 900 \, \text{MeV}$
 - 800 nm filter and polarizer
ODRI: Transverse Scan within the Slit (1)
ODRI: Transverse Scan within the Slit (2)

<table>
<thead>
<tr>
<th>Distance (um)</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>center</td>
<td></td>
</tr>
<tr>
<td>+25 um</td>
<td></td>
</tr>
<tr>
<td>+50 um</td>
<td></td>
</tr>
<tr>
<td>+75 um</td>
<td></td>
</tr>
<tr>
<td>+100 um</td>
<td></td>
</tr>
<tr>
<td>+125 um</td>
<td></td>
</tr>
<tr>
<td>+175 um</td>
<td></td>
</tr>
</tbody>
</table>
ODRI Angular Distribution

0.8 nC, 13 pulse, 2 s, $\sigma = 90 \ \mu m$

Strong differences going from one side to the other
The strong asymmetry shown by the ODR experimental distributions can only be explained as an interference effect between the two half planes of the slit.

Suppose that the two half planes are parallel but not perfectly coplanar, as in the picture, the field of a particle incident with angle α will be “reflected” by one half plane earlier than by the other. The phase difference between the two fields, in the approximation of $d << \gamma \lambda$ and $\beta \approx 1$, is

$$\phi = \frac{4 \pi d}{\lambda \cos \alpha}$$

and the vertical polarization component of the total field becomes

$$E_y = \frac{e^{-a(f-ik_y)}}{f-ik_y} - e^{i\phi} \frac{e^{-a(f+ik_y)}}{f+ik_y}$$
The effect of the phase factor is of preventing the perfect cancellation of the real part of the field amplitude in the interference effect, resulting in a “mixing” of the real and imaginary parts

\[\Phi = 0 \]

\[\Phi = \pi \]

\[\Phi = \frac{\pi}{2} \]

For a wavelength of 800 nm and an incidence angle of 45° the phase difference of \(\pi/2 \) is given by a difference in planarity of \(d = 70 \text{ nm} \).

This means that

- this effect is not completely controllable and must enter in the general fit evaluation
- depending on the thickness of the aluminum layer, the relative phase can be changed as required
The theoretical curve has been calculated assuming the transverse beam size, the angular divergence and the energy known, as measured by fitting the OTR, and varying:

i) the phase difference between the two half planes of the 0.5 mm slit, which takes into account their non-coplanarity

ii) the misalignment between the two slits

iii) the phase difference between the two slits.

We assume a Gaussian distributed beam both in size and in angular divergence.
The scan has been repeated with a smaller transverse beam size

$$\sigma_y = (78 \pm 4) \, \mu m.$$

The ODRI angular distribution is compared with the theory assuming a misalignment between the two slits of 130 µm and a phase difference between the two half planes of the 0.5 mm slit corresponding to a misalignment of 70 nm.
Comparison between the ODRI angular distribution for different beam sizes

- 78 um
- 90 um
COTR & CODRI Evidence

The total radiation intensity emitted by a bunch of electrons is given by

\[I_{\text{tot}}(\omega) = I_{sp}(\omega)[N + N(N - 1)F(\omega)] \]

in which \(I_{sp} \) is the intensity emitted by a single particle and \(F(\omega) \) is the form factor of the bunch, defined as

\[F(\omega) = \left| \int_{-\infty}^{\infty} dz S(z)e^{i\omega z} \right|^2 \]

with \(S(z) \) the longitudinal density distribution of the bunch.

The form factor is typically different from zero for wavelengths equal or longer than the bunch length.

If part of the bunch emits coherently, then \(I_{coh} = N^2_{coh}F(\lambda) \)

\[\Rightarrow I_{\text{OTR}}^{\text{tot}} = I_{\text{OTR}}^{\text{sp}}(\theta, \gamma)[Ne + N^2_{coh}F(\lambda)] \]

We expect a different behavior at 800 nm and 550 nm w.r.t. the OTR incoherent emission.
Coherent Optical Diffraction Radiation Interferometry (CODRI)

- Fluctuation shot by shot more than 50% of intensity
- Charge fluctuation was about 2%
- Total intensity greatly enhanced
- Big differences between 550 nm and 800 nm
- Angular distribution with single pulse even down to 0.3 nC (while more than 100 nC, integrated, in standard operation)!!!
1 pulse
0.2 s
Beam @ the Beginning of the Shift

Thanks to N. Golubeva and V. Balandin

\[\sigma_y = (98 \pm 3) \, \mu m \]
OTR angular distribution: 800 nm
1 pulse, 5 Hz, 0.2 s, 0.8 nC

2 different shots

Intensity [a.u.]
Angle [rad]
data
fit
OTR angular distribution: 550 nm
1 pulse, 5 Hz, 0.2 s, 0.8 nC

2 different shots
Incoherent emission

Coherent emission

0.8 nC
1 pulse
0.2 s
COTR @ 800 pC

Q=800 pC \Rightarrow $N_e = 4.972 \times 10^9$

\[
f(\lambda) \propto e^{-\left(\frac{\sigma_z}{\sqrt{2\lambda}}\right)^2}
\]

with $\sigma_z = 1.5$ μm and $N_{coh} = 1.243 \times 10^6$
COTR @ 520 pC

$Q=520 \text{ pC} \Rightarrow N_e = 3.232 \times 10^9$

$N_{\text{coh}} = 8.08 \times 10^5$
COTR @ 310 pC

\[Q=310 \text{ pC} \Rightarrow N_e = 1.927 \times 10^9 \]

\[N_{\text{coh}} = 4.817 \times 10^5 \]
Dependence on Charge

![Graphs showing intensity dependence on charge at 800 nm and 550 nm wavelengths.](image)

- **800 nm**: Graphs for 310 pC, 520 pC, and 800 pC charges, showing peak intensity variations with angle.
- **550 nm**: Similar graphs for the same charges, illustrating intensity changes at a different wavelength.
10 pulses
0.8 nC
1 s

CODRI

Intensity [a.u.]

θ_y [rad]

Intensity [a.u.]

θ_y [rad]
The theoretical curve is calculated assuming the following measured parameters:

\[\sigma_y = 98 \, \mu m \]
\[\sigma_y' = 75 \, \mu rad \]
\[E = 860 \, \text{MeV} \]

The depth of the central minimum is strongly dependent on the transverse beam size.
CODRI: A comparison with the theory (2)

\[
\begin{align*}
\text{Theory} & \quad \ast \quad \text{data} \\
\sigma_y = 25 \, \mu m
\end{align*}
\]
Conclusions

- DR is totally non-intercepting, allowing to fully characterize high density electron beams without loosing their quality
 - It could be interesting to apply this technique to high brightness machine (XFEL, ILC)

- The DR angular distribution is affected, in different ways, both by beam size and divergence allowing a single shot emittance measurement in a phase space waist

- DR angular distribution strongly depends on the target
 - Even machining imperfections can be controlled in order to study new effects

- We use Optical Diffraction Radiation Interferometry which, better than ODR, allows us to distinguish different effects

- Evidences of coherence effects in the optical wavelength range have been observed

- A preliminary analysis allowed us to quantify both the transverse and longitudinal part of the bunch which contributes to the Coherent Optical Emission
Acknowledgements

✓ We are grateful to Nina and Vladimir for their fundamental help in setting the machine up and for significant discussions

✓ Thanks to the shift crew

✓ Thanks to Ben Polzin

✓ Thanks to Luciano Cacciotti and Rossano Sorchetti

✓ THANKS FOR THE ATTENTION