Implementation of the feed forward correction for the FLASH photo injector laser and future plans for a feedback system

Sebastian Schulz^{1,2}, Vladimir Arsov², Patrick Gessler², Olaf Hensler², Karsten Klose², Kay Rehlich², Holger Schlarb², Siegfried Schreiber²

¹Institut für Experimentalphysik Universität Hamburg

²Deutsches Elektronen-Synchrotron, Hamburg

FLASH Seminar, 2008/12/02

イロト イポト イヨト イヨト

Outline

1 Motivation and Introduction

2 The Photo Injector Laser Feed Forward System

- Hardware Installation and Commissioning
- First Measurements

3 Future Plans for a Feedback System

- Implementation
- Balanced Optical Cross-Correlation
- Detectors and the uTCA-System

Summary and Outlook

<ロト <回ト < 回ト < 回ト

Motivation and Introduction

During **FEL operation of FLASH** SASE intensity highly sensitive to changes of the gun RF gradient (0.2%) and the phase (0.2 deg).

Understanding of all subsystems beginning with the gun is crucial.

(日) (同) (三) (三)

Motivation and Introduction

During **FEL operation of FLASH** SASE intensity highly sensitive to changes of the gun RF gradient (0.2%) and the phase (0.2 deg).

Understanding of all subsystems beginning with the gun is crucial.

Observations

- slope in gun RF phase: pprox 4 deg over 800 μ s
- can be corrected for with RF gun feedback system
- remaining phase unstability traced back to the EOM of the injector laser

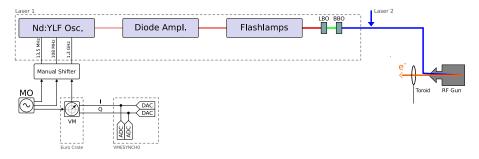
(日) (同) (三) (三)

Motivation and Introduction

During **FEL operation of FLASH** SASE intensity highly sensitive to changes of the gun RF gradient (0.2%) and the phase (0.2 deg).

Understanding of all subsystems beginning with the gun is crucial.

Observations


- slope in gun RF phase: pprox 4 deg over 800 μ s
- can be corrected for with RF gun feedback system
- remaining phase unstability traced back to the EOM of the injector laser

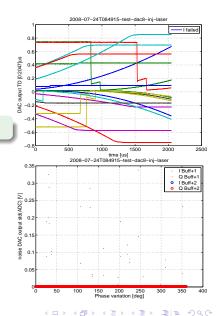
The laser itself should be stabilized (especially the arrival time).

- Step 1: feed forward system to correct for the phase slope
- Step 2: feedback to stabilize the arrival time

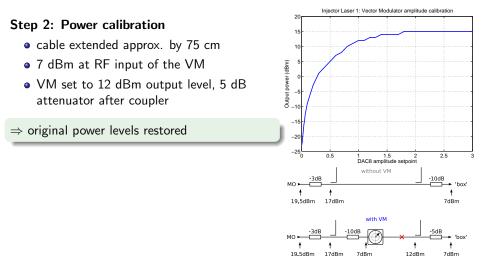
Synchronization to the optical timing reference and monitoring is desirable to correlate arrival time jitter of the injector laser with other diagnostic systems.

Feed Forward: Hardware Installation

- Vector Modulator incorporated into the 1.3 GHz branch driving the electro-optic modulator (EOM) inside the pulse train oscillator (PTO) of injector laser 1
- *I* and *Q* set-points delivered by a DAC installed in VMESYNCHO, simultaneously monitored by an ADC
- DAC is controlled by a new DOOCS server to set the feed forward tables


イロト イポト イヨト イヨト

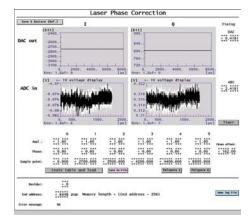
Commissioning of the Hardware


Step 1: Investigation of the DAC output

- DAC values should be constant, but:
- not machine-synchronous writing observed, 5% error rate
- modification of DOOCS server necessary

 \Rightarrow DAC writing errors resolved

Commissioning of the Hardware



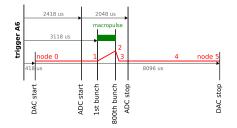
イロト イヨト イヨト イヨ

DOOCS Server & Panel for the Feed Forward Tables

Principle of operation:

- linear interpolation between six nodes: t, (A, φ)
- memory writing process triggered by VME interrupt and finished before machine trigger

(日) (同) (三) (三)


a) DOOCS > Crates > Synch Crates > VMESYNCH0 > Laser Phase Control
b) Injector > Laser > PhaseCtrl

• Simple control of the feed forward system suited for operators!

DOOCS Server & Panel for the Feed Forward Tables

Principle of operation:

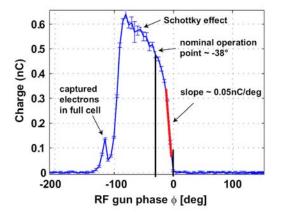
- linear interpolation between six nodes: t, (A, φ)
- memory writing process triggered by VME interrupt and finished before machine trigger
- timing structure:
 - chosen with respect to known DAC bug
 - additional node allows more complex pattern

a) DOOCS > Crates > Synch Crates > VMESYNCHO > Laser Phase Control b) Injector > Laser > PhaseCtrl

• Simple control of the feed forward system suited for operators!

DOOCS Server & Panel for the Feed Forward Tables

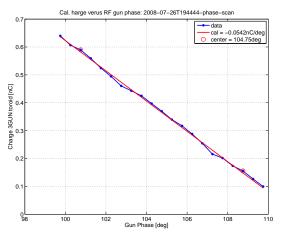
Principle of operation:


- linear interpolation between six nodes: t, (A, φ)
- memory writing process triggered by VME interrupt and finished before machine trigger
- timing structure:
 - chosen with respect to known DAC bug
 - additional node allows more complex pattern
- features: e.g. SR (auto)

file	Time		Cammer	et .	Last	update	C Sun Marr	30 19 22	57 2008			
10,253,24047,447499444,47 566 966 30 10.22.07.2000 Autom			20 June 1			inenti der 1	etting					
			Actual				Estoresco					
11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000 11172.09000	NOCONCERNING ACTION 1011	GE_PERTPHAN -I_ -I_ -I_ -I_ -I_ -I_ -I_ -I_		6, 31595 6, 23240 -60 282 -33 275 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0	-8.00	87415	:	1 6.31 1 6.32 1 -62 1 -73 8 1 2799 8 1 2799 8 1 3500 0 1 4200 8 1 4200 8 1 4200 8 1 5 1		8067413		
Selected set to:)	Selected items I	Different B	*****	Lores			All item		INT for		141.	
Selected delete (Selected Save: Actual -> Ref.)			Selected Restore Actual (- Ref.)			(.14						
Capy to devices with merge address: ///			Selected Ref COm				all before	Dev J	5010.50	The)	Nety	
Comparison accuracy (final asfult 4			Scaling factor: 1.0			Selector .	Selected Residue Art.1			Selected Restain for		

イロト イ団ト イヨト イヨト

a) DOOCS > Crates > Synch Crates > VMESYNCH0 > Laser Phase Control
b) Injector > Laser > PhaseCtrl

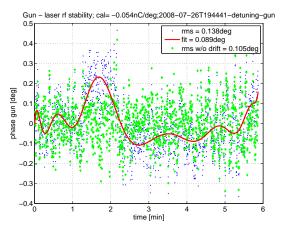

• Simple control of the feed forward system suited for operators!

Measurement Principle

"gun detuning"

• precise charge measured with toroid translates to phase

Measurement Principle


"gun detuning"

• precise charge measured with toroid translates to phase

Calibration

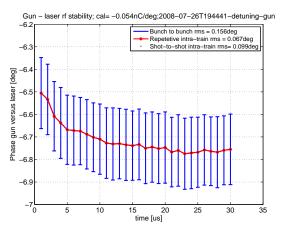
• constant 0.0524 nC/deg

イロト イヨト イヨト イヨ

Measurement Principle

"gun detuning"

• precise charge measured with toroid translates to phase


Calibration

• constant 0.0524 nC/deg

Phase Stability over 6 Minutes

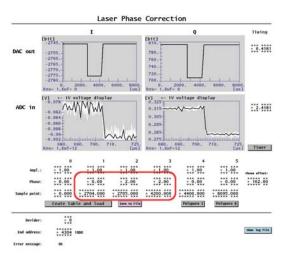
• after removing slow drifts 0.105 deg (rms)

< ロ > < 同 > < 三 > < 三

Measurement Principle

- "gun detuning"
 - precise charge measured with toroid translates to phase

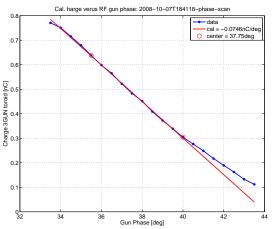
Calibration


• constant 0.0524 nC/deg

Phase Stability over 6 Minutes

 after removing slow drifts 0.105 deg (rms)

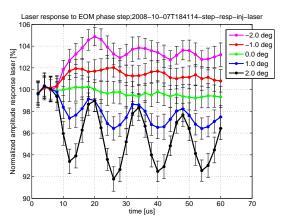
Phase Stability across Macro Pulse


• bunch-to-bunch 0.156 deg (rms)

Applying Phase Steps to EOM

•
$$\Delta\phi\in\{-2,-1,0,1,2\}$$
 deg

イロト イポト イヨト イヨト


Applying Phase Steps to EOM

• $\Delta\phi\in\{-2,-1,0,1,2\}$ deg

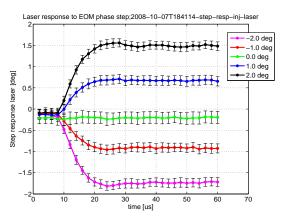
Calibration

• constant -0.0746 nC/deg

<ロ> (日) (日) (日) (日) (日)

Applying Phase Steps to EOM

• $\Delta\phi\in\{-2,-1,0,1,2\}$ deg


Calibration

• constant -0.0746 nC/deg

Charge Measurement

- normalized to first 3 bunches
- phase jump may induce amplitude modulation

イロト イヨト イヨト イヨ

Applying Phase Steps to EOM

• $\Delta\phi\in\{-2,-1,0,1,2\}$ deg

Calibration

• constant -0.0746 nC/deg

Charge Measurement

- normalized to first 3 bunches
- phase jump may induce amplitude modulation

Response to Phase Jumps

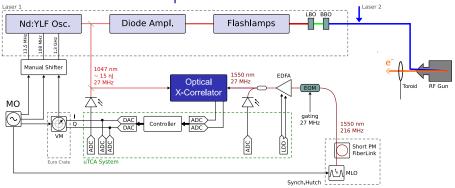
 corrected with charge measurement

(日) (同) (三) (三)

- nominal value not reached
- systematic error?

Notes on the Measurements

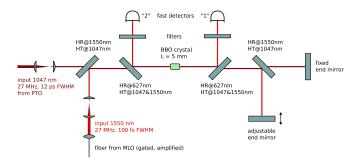
- recently a very good charge stability had been observed
- operation with EOM phase shifted by 180 deg possible, but then PTO slow feedback does not work
- results are somehow academic (only slope expected)
- phase steps advantageous to optimize feedback


Future investigations must include

- long pulse trains
- amplitude modulation of the laser oscillator
- phase relation of the AOMs and the EOM
- ...

and taking these into account in the measurement routine

イロト イヨト イヨト イヨト


Feedback: Planned Implementation

- master laser oscillator (MLO) delivers precise timing information over a "Short Fiberl ink"
- gating to repetition rate of PTO with an EOM and amplification by an EDFA
- measuring timing jitter between PTO and reference on $\mathcal{O}(10 \text{ fs})$ level with the optical cross-correlator
- stabilize 1.3 GHz phase of the PTO's EOM by closing a control loop implemented in a uTCA system driving the VM

S. Schulz (Uni Hamburg, DESY)

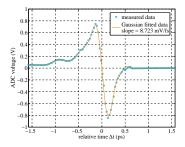
Balanced Optical Cross-Correlation I

- collinear overlap of incoming pulses (⇒ collinear phase matching)
- sum-frequency generation I_+ and detection "1" after dichroic mirror
- seperation of the pulses and generation of a "temporal swap"
- \bullet sum-frequency generation I_- of backward travelling pulses and detection "2"

 \Rightarrow difference signal $\mathit{I_-}-\mathit{I_+}$ ("S-curve") is control signal for feedback loop

Balanced Optical Cross-Correlation II

Beta barium borate (BBO)


- large birefringence $(n_o > n_e, \Delta n \approx 0.13)$
- low temperature sensitivity
- large phase-matching bandwidth

Some considerations

- collinear type-*I*[−] phase matching
 ⇒ walk-off of sum frequency component
- focussing
- pulse lengths
- GVD
- effective length
- ...
- \Rightarrow optimal crystal length 5 mm
- \Rightarrow conversion efficiency > 1.5%

Control Signal

- SFG intensities $I_{-}(t) I_{+}(t)$
- slope near zero crossing highly sensitive to timing jitter

(SFG-Control signal measured with center wavelength of 800 nm and 1550 nm in another X-Correlator setup)

Detectors and the uTCA-System

Planned feedback control loop

- detection of SFG intensities with fast photo diodes or photo multipliers
- 2 ADC input channels
 - minimum sampling rate is 27 MHz
- FPGA-based algorithm
 - \cdot clock speed up to 500 MHz possible
 - signal filtering easy and cheap
 - implementation not started yet
- DAC output for Vector Modulator control
- latency and signal propagation delay might be a problem
 ⇒ investigations necessary
- fall-back is proven but very slow VME system

First non-prototype uTCA-system running at FLASH.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tentative Schedule and Summary

- Jul 2008: Hardware installation and commissioning for the feed forward system (done)
- Jul & Oct 2008: First measurements and investigations with the feed forward system (done)
- Oct 2008: Installation of optical fibers from synch hutch to both lasers (done)
- Sep Nov 2008: Ordering of optics and opto-mechanics (mostly done)
- Nov Dec 2008: Installation and commissioning of the optical synchronization system (infrastructure ready, systems to be installed)
- Dec 2008 Feb 2009: Setup and commissioning of the optical cross-correlator (using unstabilized fibers)
- Mar 2009: Installation and Commissioning of the uTCA system
- Apr 2009: First measurements and results
- May 2009: Completion and Installation of the Short-FiberLink

비로 시로에 시로에 시작하는 시작에

Acknowledgements

Thank you for your attention!

<ロ> (日) (日) (日) (日) (日)

S. Schulz (Uni Hamburg, DESY)

Photo Injector Feed Forward and Feedback

▶ < 콜 ▶ 콜 = ∽ < ↔ FLASH Seminar 15 / 18

References

- I. Will, G. Koss, I. Templin

The upgraded photocathode laser of the TESLA Test Facility *Nucl. Instr. Meth. A*, 541:467–477, 2005

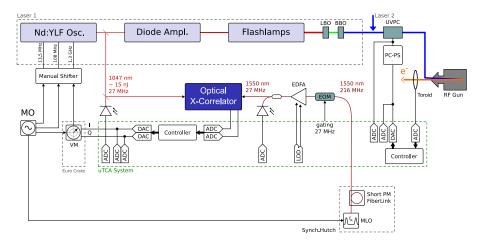
H. Schlarb et al.

Precision RF Gun Phase monitor System for FLASH Proc. EPAC 2006, Edinburgh, Scotland, TUPCH025, 2006

A. Winter et al.

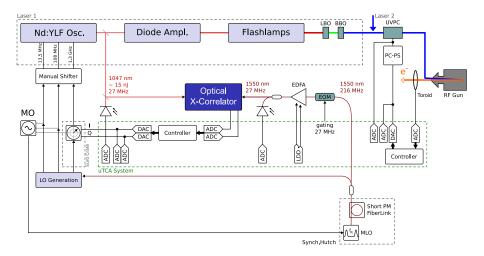
Layout of the Optical Synchronization System for FLASH *Proc EPAC 2006*, Edinburgh, Scotland, TUPCH026, 2006

J. Zemella


Driftfreier Detektor zur Messung des Zeitversatzes durch Überlagerung zweier Laserpulszüge auf einer Photodiode

DESY-THESIS-2008-xxx, Diploma Thesis, University of Hamburg, 2008

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan Handbook of Nonlinear Optical Crystals


Springer Verlag - Berlin Heidelberg New York, 3rd Edition, 1999 =

Further Idea: Amplitude Stabilization

イロト イヨト イヨト イヨト

Further Idea: LO Generation

<ロ> (日) (日) (日) (日) (日)