FLASH RF gun developments.

Sven Pfeiffer for the LLRF team

FEL Seminar Hamburg, 19.04.2016

- > Introduction
- > LLRF
 - Feedback & Limitations
 - Learning Feedforward
- > Pulse Width Modulation
 - RF gun cooling system
 - Temperature estimation
 - Precision temperature control
- > Fast Protection
 - The why and wherefore
- > Current problems
 - After start-up

- > Introduction
- > LLRF
 - Feedback & Limitations
 - Learning Feedforward
- Pulse Width Modulation
 - RF gun cooling system
 - Temperature estimation
 - Precision temperature control
- > Fast Protection
 - The why and wherefore
- > Current problems
 - After start-up

Introduction

- > Introduction
- > LLRF
 - Feedback Loop
 - Concepts & Achievement
- Pulse Width Modulation
 - RF gun cooling system
 - Temperature estimation
 - Precision temperature control
- > Fast Protection
 - The why and wherefore
- > Current problems
 - After start-up

Main.GUN Panel

LLRF

- > Ampl. SP [MV/m]
 - (new: before power SP [MW])
- > Phase SP [deg]
- > Pulse length [µs]
- Feedforward
- Feedback
- > OVC, LFF etc.

Small signal system model

$$\begin{pmatrix} \Delta Y_I(z) \\ \Delta Y_Q(z) \end{pmatrix} = \begin{bmatrix} G_1(z) & -G_2(z) \\ G_2(z) & G_1(z) \end{bmatrix} \begin{pmatrix} \Delta U_I(z) \\ \Delta U_Q(z) \end{pmatrix}$$

Identified parameters:

- I/Q gains as function of frequency
- Cross-couplings
- Bandwidth ~ 52 kHz
- Loop delay ≈ 1.4 μs

dA/A<0.01%

<0.01 deg (rms)

- Minimize repetitive errors from pulse to pulse

- Intra-pulse feedback
- Main limitation: Loop delay ≈ 1.4 μs
- limits control gain
 - max. FB gain 2-3; SRF ≈ 20-40 (!)

- > Introduction
- > LLRF
 - Feedback & Limitations
 - Learning Feedforward

> Pulse Width Modulation

- RF gun cooling system
- Temperature estimation
- Precision temperature control
- > Fast Protection
 - The why and wherefore
- > Current problems
 - After start-up
- > Outlook

RF gun cooling system

RF gun cooling system

Long term error ± 1 bit (about 14mK rms)

@Resolution (12 bit ADC) of 0.02 K – 0.03 K

Required stability for d□ < 0.01 deg without LLRF control:

$$\Delta T = \frac{\tan \psi \cdot f}{2 Q_L K_{fT}} \approx \frac{d\phi \cdot f}{2 Q_L K_{fT}} < \mathbf{0}.45 mK,$$

$$(f = 1.3GHz, Q_L = 12000, K_{fT} = -21kHz/K)$$

RF gun cooling system

Long term error ± 1 bit (about 14mK rms)

@Resolution (12 bit ADC) of 0.02 K – 0.03 K

Required stability for d□ < 0.01 deg without LLRF control:

$$\Delta T = \frac{\tan \psi \cdot f}{2 Q_L K_{fT}} \approx \frac{d\phi \cdot f}{2 Q_L K_{fT}} < \mathbf{0}.45 mK,$$

$$(f = 1.3GHz, Q_L = 12000, K_{fT} = -21kHz/K)$$

Pressure +0.09bar T_{IRIS} +100mK SASE

Sven Pfeiffer | FLASH RF g

Idea: Usage of LLRF Signals

Use pulse width modulation to control the dissipated power (heat balance) to the RF gun body within pre-defined limits

Needed is a high precision temperature estimation with no time delay for pulse to pulse feedback

Idea: Usage of LLRF Signals

Delayed T_{IRIS} (9s) and T_{IN} (5s) information

- Transition from cavity body to sensor
- Low pass behavior of temp. sensor

FLASH RF GUN data Temp. sensor (12 bit ADC)

Blue: single pulse, Red: mean 100 pulses (10s@10Hz)

- > RF GUN phase at 1st beam position (700µs) for 50 minutes
- Without and with modulation to minimize disturbances from cooling water circuit
 Pulse to pulse compensation (10 Hz)
- Improvement for phase x3
 (dφ = 53 mdeg. → 16 mdeg.)
 - Part of the properties of the prop
- Running @ FLASH, PITZ, (XFEL)

ın developments | 19.04.2016 | Page 18

Goal:

dA/A<0.01% d□ <0.01 deg (rms)

Remember:

Factor 3-5 improvement in phase is necessary using only LLRF control

Applying PWM:

- No improvement of RF amplitude
 - Detuning affects mainly the RF phase
- Great improvement in standard deviation of RF phase
- Achieved by using disturbance minimization of detuning with precision temperature control

Sven Pfeiffer | FLASH RF gun developments | 19.04.2016 | Page 19

Pulse Width Modulation – Panel

Additional Info

Using pulse width modulation – panel for start-up of RF gun

Direct response

RF gun is in resonance, to cold or to warm

- → Relative detuning / temperature information
- → What is the current optimal Iris set-point etc.

- > Introduction
- > LLRF
 - Feedback & Limitations
 - Learning Feedforward
- Pulse Width Modulation
 - RF gun cooling system
 - Temperature estimation
 - Precision temperature control
- > Fast Protection
 - The why and wherefore
- > Current problems
 - After start-up

Fast Protection

- > Implementation in FPGA (L. Butkowski, C. Schmidt et al.)
- Threshold for reflected signal is defined (scaled by forward signal)
- Cut RF pulse if reflected signal is too high (sparks, detuning, etc.)

Fast Protection

> 6 Events since 01/2016 → no known false alarms

```
12.04.2016 12:05

S. Schreiber

Hist: FLASH.RF/LLRF.CONTROLL

rf gun fast protection: events where the fast protection triggered

event 1: 12-Jan-2016 16:03 h tests, rf was off

event 2: 2-Feb-2016 9:59 h unknown reason

event 3: 19-Feb-2016 10:52 h increase of cooling water pressure

http://ttfinfo.desy.de/elog/XMLlist?file=/TTFelog/data/2016/07/19.02 M/2016-02-19T10:53:12-03.x

event 4: 2-Mar-2016 11:50 h no DAQ data for this event, together with RF-6, could be timing issue

http://ttfinfo.desy.de/elog/XMLlist?file=/TTFelog/data/2016/09/02.03 a/2016-03-02T17:12:06-07.x

event 5: 18-Mar-2016 9:10 h cooling water pressure oscialltions

http://ttfinfo.desy.de/elog/XMLlist?file=/TTFelog/data/2016/11/18.03 a/2016-03-18T16:08:07-01.x

event 6: 11-Apr-2016 16:08 h sudden phase jump, also ACC1, llrf issue with reference RF

http://ttfinfo.desy.de/elog/XMLlist?file=/TTFelog/data/2016/15/11.04 a/2016-04-11T17:36:35-07.x
```


- > Introduction
- > LLRF
 - Feedback & Limitations
 - Learning Feedforward
- Pulse Width Modulation
 - RF gun cooling system
 - Temperature estimation
 - Precision temperature control
- > Fast Protection
 - The why and wherefore
- > Current problems
 - After start-up

- > After RF gun start-up
 - Phase at end is not on set-point

- > How to check?
 - Look in LFF panel

- > RF gun start-up without FB, LFF
 - (1) Adjust OVC before FB and LFF is enabled
 - (2) Enable FB, LFF
 - FF correction are centered after a while
 - FF correction limits: 7000 bits

$$\rightarrow$$
 t = 0

- (3) FF correction tables 20 minutes later
- (4) After 40 minutes
- FF tables (Q channel) hits limit

Why?
Slowly waveguide heating (guess)

- > After RF gun start-up
 - Phase at end is not on set-point

- > Why?
 - Slowly waveguide heating (guess)
- How to check?
 - Look in LFF panel
- What can I do?
 - Adjust OVC phase by ~ -4 deg

- After RF gun start-up
 - Phase at end is not on set-point

- > Why?
 - Slowly waveguide heating (guess)
- How to check?
 - Look in LFF panel
- What can I do?
 - Adjust OVC phase by ~ -4 deg
- Why is it not done automatically?
 - Most of the time OVC is OFF...
 - OVC ON does not mean that its active...
 - Active limiter deactivate OVC

- > Introduction
- > LLRF
 - Feedback & Limitations
 - Learning Feedforward
- Pulse Width Modulation
 - RF gun cooling system
 - Temperature estimation
 - Precision temperature control
- > Fast Protection
 - The why and wherefore
- Current problems
 - After start-up

