Seeding at FLASH

Jörn Bödewadt on behalf of the seeding team

FLASH Seminar 17.05.2016

- > Introduction
- Recent experimental results from sFLASH

Supported by BMBF under contract 05K13GU4 and 05K13PE3
DFG GrK 1355
Joachim Herz Stiftung
Helmholz Accelerator R&D

Short history of seeding at FLASH

- > 2007 Design of sFLASH (direct seeding with HHG)
- > 2009 Installation of sFLASH infrastructure
- > 2010 Commissioning of sFLASH hardware
- > 2012 First direct seeding at 38nm (HHG)
- > 2013 Switch from direct seeding to HGHG (FLASH2 shutdown)
- > 2014 Commissioning of UV beamline
- > 2015 HGHG at 38nm
- > 2016 HGHG < 38 nm, FEL characterization, Laser upgrade

Seeding Team

TU Dortmund

Jörn Bödewadt | Seeding at FLASH | 20.05.2014 | Page 3

High-Gain Harmonic Generation

Bunching factors:

$$b_{n} = exp\left[-\frac{1}{2} \cdot \frac{(2\pi)^{2} n^{2} R_{56}^{2} \sigma_{E}^{2}}{\lambda_{seed}^{2} E_{0}^{2}}\right] \cdot J_{n}\left(\frac{2\pi n \Delta E R_{56}}{\lambda E_{0}}\right)$$

Seeding at FLASH

Overview of FLASH1 beamline

Temporal diagnostics

- > Transverse deflecting structure (TDS) and electron beam spectrometer is installed downstream of the sFLASH radiator
- > Mapping of longitudinal phase space distribution into transverse coordinates

Outline

- Beam based alignment / Beam optics setup
 - Straight orbit in seed section
- Optics compensation
- Bunch compression studies
 - Simultaneous operation of FLASH2 and sFLASH
 - Microbunch instabilities
- >7th harmonic HGHG operation and characterization
 - LOLA studies
 - THz streaking
- > Outlook

Beam based alignment / Beam optics setup

Beam based alignment

Quad scan tool (by F. Mayet and T. Plath)

Beam based alignment of seed section

Checking the quadrupole position using beam-based alignment we observed significant misalignment of quadrupoles between the modulator and radiator.

Beam based alignment of seed section

Checking the quadrupole position using beam-based alignment we observed significant misalignment of quadrupoles between the modulator and radiator.

- Only quadrupoles in the radiator section are on movers as it was required for HHG seeding experiment.
- To avoid quadrupole kicks we switched off the quads between modulator and in the radiator

Changing beam optics in seed section

Changing beam optics in seed section (undulators open)

FEL gain 38nm (7th harmonic)

> FEL pulse energy

mean pulse energy: $(12.5 \pm 12) \mu J$ maximum pulse energy: $75 \mu J$

FEL gain 38nm (7th harmonic)

FEL gain 38nm (7th harmonic)

> Spectra of HGHG (second run May, 1st 2015)

$$\Delta \lambda/\lambda \sim 5.2 \cdot 10^{-3}$$

Data with special seeding optics

Realignment of quadrupoles Q9ORS and Q12ORS in shutdown 2015

Nominal FLASH1 optics (design vs. measured)

- > Example of optics setup in seeding section
- Optics measurements are done with uncompressed e-beam (minimum e-spread)

Optics setup for seeding

April 2016, Friday, 29/30.04.2016

DBC2

Iteration	Mismatch parameter X / Y	Emittance X / Y [μm rad]
1	2.827 / 3.012	0.59 / 0.59
2	1.204 / 1.574	0.53 / 0.60
3	1.127 / 1.042	0.55 / 0.57

SFUND

Iteration	Mismatch parameter X / Y	Emittance X / Y [μm rad]
1	1.047 / 1.197	2.00 / 1.24
2	1.000 / 1.001	2.12 / 1.92

HGHG at 7th harmonic

> Analysis of FEL spectra

Optics compensation

Compensate effect of vertical undulator focusing for closed variable-gap undulators

Compensate effect of vertical undulator focusing for closed variable-gap undulators

Compensate effect of vertical undulator focusing for closed variable-gap undulators

Simultaneous operation (January 2015)

Parallel operation of sFLASH@24nm SASE and FLASH@9nm SASE

Simultaneous operation (August 2015)

FLASH1 @ 13 nm

sFLASH @ 38 nm

wavelength (nm)

Bunch compression studies

> Typical compression modes

Seeding (0.4 nC)

SDUMP bunch #1 of 1 2016-01-28T214701-image-SDUMP

SASE (e.g. 0.3 nC)

- In view of FLASH2 a compression setting needs to be established which allows SASE operation in FLASH1 and seeded operation in FLASH2
- > Ansatz 1:
 - Setup SASE in FLASH1 and FLASH2 with same bunch compression settings (check TDS)
 - Keep FLASH2 under SASE and decompress for FLASH1 and setup seeding in sFLASH

SASE in FLASH1

Seeding in sFLASH

- In view of FLASH2 a compression setting needs to be established which allows SASE operation in FLASH1 and seeded operation in FLASH2
- > Ansatz 1:
 - Setup SASE in FLASH1 and FLASH2 with same bunch compression settings (check TDS)
 - Keep FLASH2 under SASE and decompress for FLASH1 and setup seeding in sFLASH
- > Ansatz 2 (MD last week 30.04.2016 and 13.05.2016):
 - Setup compression mode for seeding in sFLASH
 - Further compress e-bunch (TDS monitor)
 - Setup SASE in FLASH1 and FLASH2

SASE in FLASH1

Single shot pulse energy $\sim 10 \mu J$

SASE in FLASH2

t (fs)

1000

+90 deg 294fs

-90 deg 293fs

500

reconstruction 292fs

Single shot pulse energy ~ 220 µJ

Impact of bunch compression on Microbunching Instability (MBI)

> Example for a flat-top current profile and low energy chirp

- Very low HGHG signal observed
- Noisy spectrum

Impact of bunch compression on Microbunching Instability (MBI)

> Example for a current profile with low energy chirp

- Good HGHG output
- Clean spectrum

Reality

Bunching at 9th and 11th harmonic

Electron bunch compression unchanged (I_{peak} = 600A)

$$\lambda_{seed} = 267 nm$$

7th harm. HGHG characterization

Effect of seeding on long. phase space distribution

Changes in LPS distribution allow for characterization of photon pulse power profile:

Energy drop method

$$P(t_i) = \Delta E(t_i) \cdot I(t_i) / \epsilon$$

Energy spread method

$$P(t_i) = \Delta E(t_i) \cdot I(t_i)/e \qquad P(t_i) \propto [\sigma_{Eon}^2 - \sigma_{Eoff}^2] \cdot I(t_i)^{2/3}$$

Effect of seeding on long. phase space distribution

	Blue shot	Green shot
Approx. fwhm duration	84 fs	76 fs
Energy	57.6 uJ	48.2 uJ

Comparison: energy drop vs. energy spread method

Scheme of THz streaking camera

Seeding at FLASH

- We established a standard procedure for the machine setup to guarantee reproducible operation conditions:
 - Control of electron beam optics (injector and seeding section)
 - Control of bunch compression
 - Setup and control of laser-electron overlap
 - FEL optimization
- > 7th harm. HGHG operation at 38 nm (saturation)
- Bunching up to 11th harm. verified
- > Temporal XUV characterization ongoing
- Simultaneous operation of sFLASH (seeded) and FLASH2 (SASE)
- > Simultaneous operation of SASE in sFLASH, FLASH1, and FLASH2

Outlook

Upgrade is needed for injection beamline to eliminate...

- > Access restrictions to tripler and critical diagnostics in controlled access area
 - More beamtime, longer operations -> increased probability of issues (e.g. tripler failure on 01.29)
 - Currently FLASH maintenance time is extremely limited: ~4hrs. per every 2 -3 weeks!
- Lack of real-time diagnostics & space constraints in tunnel for further development
 - Having a in-lab tripler does not provide any real-time (non-invasive) measurements
- Inability to meet future double-pulse (EEHG) seeding requirement
 - A single tripler can not provide 10 GW peak power in the interaction regions

Upgrade of UV injection

Degradation of UV source

> UV source currently installed in FLASH tunnel

Seed Laser Lab: Current Layout

New Seed Injection Beamline Design: Phase 01 (2015-2016)

Vacuum Beamline Design

> On behalf of the seeding team

Thank you for your attention

