Progress of the Optical Replica Synthesizer Experiment

Volker Ziemann, Uppsala University

for the ORS collaboration:

G. Angelova, VZ, Uppsala University
P. Meulen, P. Salén, M. Larsson, M. Hamberg, Stockholm University
H. Schlarb, E. Saldin, E. Schneidmiller, M. Yurkov, F. Löhl, A. Winter, DESY
J. Bödewadt, S. Khan, Universität Hamburg
A. Meseck, BESSY
The Idea

- Problem: measure ultra-short bunches in the 10s of fs range: EOS, TEO, LOLA, ORS
 - too fast for electronics (10 Gsamples/s --> 100 ps)
 - but laser folks know (autocorrelation, FROG)
- Solution: make an optical copy of the electron bunch and analyze that with laser methods.
The Seed Laser

- Er-fiber ring-oscillator (~1550 nm) phase locked to RF (micro-timing)
- Booster amplifier
- 2nd harmonic generation to 772 nm
- CPA 2001 regenerative amplifier on loan from Stockholm
- Pockels cell fire to let the light pulse out (macro-timing)
- 0.7 mJ/pulse, 200 fs
- Safety shutters (ND and other)
- Diagnostics: Frog, virtual waist
Scheme of the ORS synchronization & trigger system
Laser Transfer Line and OS0
The Undulators

- Electromagnets
- Designed and built by Scanditronix, Vislanda
- Period 20 cm
- 5+2 periods
- 4 power supplies per magnet
- Modulator=(V)eronica
- Radiator=(H)ilda

First Field Integral $[Tm]$ over distance $[m]$
Optical Station 1

Essential for timing: Laser + Synchrotron radiation

Pwr meter

Mirror 1, motorized
Mirror 2, motorized

λ/2 mot. rot. stage

Lens (PLCX 50.8-77.3 UV)

Polarizer

10 GHz(Ga-As) 5 GHz(silicon) l”Silver mirror” Silver mirror

Photodiode Photodiode

Basler Camera

080603 V. Ziemann: ORS FLASH-seminar
Optical Station 2

- e\(^{-}\) (C)OTR when hitting the screen
- Synchrotron light from HILDA
- Replica pulse from HILDA
- Power of the light

Grenouille Optical Station 2
8-50USB/8-500USB Fire wire

Iris

GL Polarizer

\(\lambda/2\) plate motor rot. stage

Mirror 1, motorized

Mirror 2, motorized

Mirror 3 motorized

Basler Camera (big objective)

Basler Camera

\(\lambda/2\) plate

Polarizer

BG39 motorized

ND filter 1.5 NOT motorized

ND filter 1.5

Lens (f=150)

Lens (f=100)

Lens (f=200)

Lens (f=50)

Lens (f=100)

Rotation wheel

ND

8-50USB/8-500USB Fire wire

080603
GRENOUILLE

- *Cylindrical lens* makes horizontal strip
- *Fresnel biprism* creates crossing wavefronts in thick *SHG crystal* → auto-correlator
- Effective thickness of SHG crystal varies with viewing angle → Spectrally resolved

- Second double cylindrical lens images onto camera
- Horizontally → time
- Vertically → spectrum
- Possible to reconstruct electric field profile in software from R. Trebino's book on FROG.
Experiments: A day in BKR...

- Start out with e- (preferably compressed nowadays) to beam dump or tuneup dump
- Flatten orbit in 'our section' with undulators off
 - BPMs < 0.1 mm and small steering magnet excitations
Transverse Overlap
Rough temporal Overlap

- Turn on Veronica+Chicane
- Remote 1 GHz scope
- Photo diode on OS1

- Detect signal from
 - attenuated seed laser
 - spontaneous synchrotron radiation from VERONICA

- on photo diode
- good to ≈ 100s ps
- move relative timing with the phase shifter
Problem with Seed laser leakage

- Bunching also causes radiation at higher harmonics
- Insert BG39 filter before camera
With Seed laser filtered

- OTR at 2nd harmonic
- Radiator OFF
- Need signal that identifies overlap
- Use average pixel value in *Region of interest*
After some scanning...
CTR on screen 1SEED while passing a 200 fs laser pulse through an electron bunch
Tune Radiator to 2nd harmonic

- Harmonic Generation
- Tune away from resonance and signal goes down
- Also scanned chicane and found optimum but that varies daily.
Comparison with LOLA

- Simultaneous (almost, 30 min) measurement of bunch profile with transversely deflecting cavity LOLA (blue) and ORS (black).

- Initially the time calibration of LOLA was off by 20 %, now fixed.

- OD2 Neutral density filter before the Basler camera to prevent saturation

- smoothing and sqrt(ORS)

- Very good agreement of the recorded bunch length

- Some saturation of LOLA?
Testing the GRENOUILLE on OS2

- Send seed laser (400 fs) all the way to OS2
- and pass it to the GRENOUILLE
 - observe on spatial camera and on temporal camera
 - and observe autocorrelation and FROG trace
Trying to really make replicas

- Short compressed electron bunch (off-crest)
- Short laser, FWHM=400 fs
- Transverse an longitudinal overlap (works, even when both electrons and laser are short!)
- Put laser on top of electrons
Still trying...

- OS2: HILDA radiation on iris before the GRENOUILLE
- and on the spatial (alignment) camera inside the GRENOUILLE
...and on the FROG camera

- too little signal
- and a glitch in the power grid killed the rest of shift
- that's what we had after the easter shifts, we were close...
...and this is how it went last week

- It started the way it ended: with a power glitch on the friday before the week with our shifts
 - this knocked out a lot of stuff on the optical stations
 - dead power supply
- but we got it fixed up to and during the half-shift on monday (26.5) and the access on tuesday
- so we could start for real on the 12 hrs shift on wednesday.
Setup on Wednesday and ...

- Standard setup with
 - flat orbit and transverse overlap
 - longitudinal overlap (after restarting a DAC of the vector modulator in the timing system)
- Compressed bunches
- HILDA on and a lot of tuning (thanks Dirk)
The first FROG trace

Spend a lot of time improving the signal intensity
Online VideoFROG software

Averaging
TBP too small
Intensity
FROG plus Undulator

- Good transmission through SASE undulators with bumps around OS1 and OS2 and observing FROGs simultaneously.

But very restricted range of SASE tuning knobs available
Current Limitations

- Could find FROG traces during three shifts
 - but with short laser pulse
 - and they were weak
- Need more intensity to permit lengthening the laser pulse to cover larger fraction of the bunch.
- Current GRENOUILLE is for 5 ps and operationally convenient but the pulse is too short
 - replace by 500 fs GRENOUILLE (has only one camera)
- Alignment sensitivity on OS2
Future Plans

- Improve optics on OS2
- Replace GRENOUILLE (is available)
- ORFIR: use ORS to µbunch slice of beam and FIR undulator to radiate 200 fs pulses
 - synchronized 780 nm pulse
 - for pump-probe experiments
 - Simple test once ORS is set up
Conclusions

- We found FROG traces repeatedly 700+900 MeV
 - but with short laser and too weak
 - Have ideas to improve situation

- Comparing with LOLA works well (and found bug)

- New experiment
 - Use ORS in combination with FIR undulator

- Is it crazy to suggest using the HHG laser (much more powerful) to use for sFLASH ORS?
 - HHG would get timing setup for fundamental