

Commissioning of Plane Grating Monochromator beamline

Natalia Guerassimova, Rolf Treusch, Holger Weigelt DESY

Michael Rübhausen, Arne Goos, Ann-Kathrin Pagenkopp, Pelangi Saichu, Andreas Eich, Stephan Binder, Ben Schulz, Andrivo Rusydi Institut für Angewandte Physik, University of Hamburg

N.Guerassimova

F

FLASH seminar

September 23, 2008

Beam at focal plane

F

High resolution experiments

N.Guerassimova

ELMHOLTZ Plane Grating Monochromator Beamline EMEINSCHAFT SX-700 design (in collimated light, slitless): o Free choice of angle of incidence Mirror and angle of diffraction Can be operated in different 0 Grating modes: o High Resolution (high cff value) Fix-focus constant $cff = \cos \beta / \cos \alpha$ o High flux (low cff value) o Use 0-th order beam o Use simultaneously 0-th order beam and dispersed beam Gratings: 200 l/mm and 1200 l/mm 0

	September 2006	February 2008	September 2008
Resolving power (measured at 48 eV in spectrometer mode)	1500	3500	8000 (limited by measurement technique)
PG2 focus size	150 - 250 um	150 - 250 um	50 - 100 um

Resolving power

<u>M. Martins</u>, M. Wellhöfer, J.T. Hoeft, W. Wurth, J. Feldhaus, R. Follath, Rev. Sci. Instrum. 77 (2006) 115108

N.Guerassimova

FLASH seminar

7

PG2 as spectrometer

Vladimir Rybnikov

N.Guerassimova

PG2 as spectrometer

Vladimir Rybnikov

N.Guerassimova

Resolution measurements

N.Guerassimova

Ray-tracing

<u>M. Martins</u>, M. Wellhöfer, J.T. Hoeft, W. Wurth, J. Feldhaus, R. Follath, Rev. Sci. Instrum. 77 (2006) 115108

Aberration effect

Plane Grating Monochromator Beamline GEMEINSCHAFT

Source

LMHOLTZ

Resolution depends on source size

- Different longitudinal • focus position
- Shot-to-shot jitter • affects resolution
- Affects calibration
- Shot-to-shot jitter • affects resolution
- Should be within acceptance of optics
- Aberrations

Focus at PG2

November 2006

• Focus size 50 - 100 μm

FELMHOLTZ GEMEINSCHAFT VUV-Raman Instrument at FLASH (PG1)

<u>M. Rübhausen</u>, B. Schulz, K. Buth, J. Bäckström, J. Kunze, R. Reininger, J. Nordgren, J. Söderström, J.-E. Rubensson, L. Börjesson, P.Abbamonte, S.L. Cooper, M. Martins, A. Föhlisch, W. Wurth, J. Feldhaus, J. Schneider -

High Resolution Double Monochromator at the VUV-FEL, Technical Design Report, 2004

N.Guerassimova

GEMEINSCHAFT VUV-Raman Instrument at FLASH (PG1)

N.Guerassimova

- Vacuum chambers for Raman spectrometer and refocusing optics installed
- Vacuum up to exit slit
- First commissioning with FEL up to exit slit
- SMU vented to make possible beam transport to PG1 July

PG1

- Refocusing optics and optics in spectrometer installed July
- Commissioning with FEL

- August/September

- January

- May

- June

HELMHOLTZ GEMEINSCHAFT VUV-Raman Instrument at FLASH (PG1)

Sample chamber

KB-Pair demangnification: 1:4.7 Current limit on spot size: 25 um Further improvements to below 10 um

LUPI in pinhole behind screen

FLASH on screen (1mm slit)

FLASH on screen on top of LUPI (0.1 mm slit)

N.Guerassimova

Energy: 129 eV, 30 uJ, 30 bunches, doped spin ladder compound

SP1 and SP2 in zeroth order

SP1 in 1'st order, SP2 in 0'th order

SP2 well aligned, SP1 needs improvements

N.Guerassimova

GEMEINSCHAFT VUV-Raman Instrument at FLASH (PG1)

Energy: 79 eV, 20 uJ, 30 bunches, SP1 in zeroth order, SP2 in first order, 500 um Slit 1200 sec. integration time, 1 accumulation, Monday 08.09 0:30

Better signal than in previous studies. Better resolution, no stray light.

want more photons, 90 bunches and more

N.Guerassimova

- Resolution improved significantly
- Refocusing optics PG2 aligned
- Less time needed for fine alignment of beamline for new established lasing
- Beam transported to PG1 branch correctly up to exit slit
- First steps in alignment of Refocusing optics PG1 done
- First spectra taking at PG1 Raman spectrometer

- Look for beamline optics alignment when **no** (less) **fine realignment** for new established lasing **needed** (if possible)
- Measure resolution with better magnification
- Measure resolution after exit slit PG2 (gas cell) for different wavelength.
 Investigate longitudinal focus position for different wavelength
- Look for longitudinal focus position at PG1
- Better alignment of refocusing optics PG1
- Better alignment of Raman spectrometer

- Vladimir Rybnikov, Teresa Nunez
- · HASYLAB @ DESY
- AG Wurth @ University of Hamburg
- Operators

