

Commissioning of the XUV-Autocorrelator at FLASH – First Experiments

Rolf Mitzner

FLASH-Seminar

12.02.08

XUV-Autocorrelator

Outline

- 1. Introduction
 - Optical concept
 - Mechanical design
 - First laser test (visible)
- 2. Commissioning at FLASH
 - Beamline experimental setup
 - Linear autocorrelation temporal coherence of the FEL-beam
 - Nonlinear autocorrelation determination of pulse length
- 3. Conclusions and acknowledgement

XUV-Autocorrelator – Optical Concept

R. Mitzner et.al., Proc. Of SPIE 59200D-1

XUV-Autocorrelator – Optical Concept

Rolf Mitzner

XUV-Autocorrelator – Mechanical Design

Transparent view of the autocorrelator chamber

Courtesy of Tino Noll

Rolf Mitzner

FLASH-Seminar

12.02.08

XUV-Autocorrelator – Mechanical Design

Autocorrelator - optical bench 1

XUV-Autocorrelator – Mechanical Design

Autocorrelator – optical bench 2

XUV-Autocorrelator – Optical Tests

Adjustment of the beam pathes and tests of principle function with a HeNe- Laser

spatial interference pattern of the spatially overlapping beams

XUV-Autocorrelator – Optical Tests

Diagnostics of the fs-laser experiments

Noncolinear autocorrelation (SHG in BBO) of fs laser pulses (790 nm, ~35 fs FWHM)

Outline

- 1. Introduction
 - Optical concept
 - Mechanical design
 - First laser test (visible)

2. Commissioning at FLASH

- Beamline experimental setup
- Linear autocorrelation temporal coherence of the FEL-beam
- Nonlinear autocorrelation determination of pulse length
- 3. Conclusions and acknowledgement

Rolf Mitzner

Rolf Mitzner

Intensity of the split beams

Total transmission depends on wavelength, pinholes in the beamline and adjustment 13 nm / 3 mm pinholes: 60% 24 nm / 3 mm pinholes: 48% 24 nm / 5 mm pinholes: 37% Splitting ratio Fluctuations of ratio (pointing stability of the beam) Speckles $d=\lambda L/D$ (size $d\sim70-130\mu m$)

Manipulation of the split beams – angle, distance

FLASH-Seminar

16000

Objectives

spatial and
temporal coherence
properties of the FEL
beam
zero delay

Fringe detection

small angle between the beams needed d= λ / sin(α)
single shot detection

Setup of the two-beam-interference experiments

Rolf Mitzner

Two-beam-interference at 13nm

- strong fluctuations
- minor contrast
- only rought determination of zero delay ($\Delta t \sim 6fs$)

Rolf Mitzner

Two-beam-interference at 24nm

Spatial fringes detected at various crossing angles

α =0.18mrad

 α =0.51mrad

 α =0.75mrad

130 µm

<mark>90 µm</mark>

Distance of the fringes = $\sin \alpha / \lambda$

Spatially resolved visibility of the fringes of fully overlapping beams

Rolf Mitzner

Variation of fringe visibility with delay (path difference) for slightly overlapping beams

coherence length

$$l_{coh} = \frac{\lambda^2}{2\Delta\lambda}$$

$$\lambda$$
= 24 nm
 $\Delta\lambda$ =0.12 nm
 I_{coh} = 2.4 µm
 t_{coh} = 8 fs

- structured correlation function
- strong fluctation of coherence
- sporadic fringes even at $\Delta t=100$ fs

Properties of the given FEL beam(beamtime) and its coherence

- SASE not saturated
- several spectral modes
- transversal fluctuations (modes)
- several longitudinal modes can be expected
- chirp?
- bandwidth of spectral modes?

Single shot and averaged (red) spectra of the FEL

Nonlinear detection of the autocorrelation

Result

 Measurement of nonlinear autocorrelation of the FEL pulse at 24 nm
 FWHM of the autocorrelation ~50 fs

- corresponds to a gaussian pulse length (FWHM) of 35 fs

FLASH-Seminar

Virror

Mirror

910

Participants and acknowledgements

P. Juranic K. Tiedtke

R. Treusch

- S. Düsterer
- M. Kuhlmann
- J. Feldhaus

E. Plöntjes

M. Neeb T. Noll F. Siewert W. Eberhardt Optics group S. Eisebitt* C. Günter* B. Pfau*

- R. Mitzner
- S. Roling
- **B. Siemer**
- S. Eppenhoff
- H. Zacharias

M. Richter** A. Sorokin**

Many Thanks to the whole FLASH Team! No FEL – No Party!

* Holography **Nonlinear autocorrelation