

Optical Replica Synthesizer Experimental Shifts

The ORS Collaboration

prepared by Gergana Angelova, Volker Ziemann

Department of Nuclear and Particle Physics Uppsala University

FLASH Seminar, 27. November 2007

Overview

- Where did all the hours go?
 - things that go bump in the night
 - and making lots of ZZs
- Making transverse overlap
- And longitudinal overlap
- When all components worked simultaneously...
- Plans for next time

Undulators

- Worked almost out-of-the-box
 - did not affect SASE operation
- a little out-of-plane steering
 - just center the beam properly on-axis

Undulator control

- Calculate needed magnetic field for resonance
- Setting cycle or just incremental changes
 - uses the tables from Gergana's field measurements
- Turn them off (Cycle to Zero) → transparent

Chicane

- Chicane only well-closed for small excitations
 - extra windings and longitudinal movement
 - imbalance between steerers when excited >1 A

Optical station alignment

- Spent a lot of time on getting a properly focussed picture of the screens on the cameras both on optical station 1 and on optical station 2.
- Took a lot more time than anticipated
- Three optical stations
 - OS0 with the telescope

- OS1 with seed laser extraction, camera, diodes, power meter
- OS2 with Grenouille, camera, power meter

Alignment of the OTR pots

- The OTR chamber in OS1 and 2 were not aligned on the beam axis (off by up to 8 mm both horizontally and vertically)
 - Found out by driving local bumps and looking at downstream screens until we scraped on the OTR frames.

Laser alignment

Laser is reflected or hits edge of a mirror somewhere on its long way from the laser table to the screen immediately upstream of modulator (23.9)

- The alignment of the entire seed-laser transport system took several iterations after improvements
- Remotely controlled
- Weirdly mounted mirrors
- Got faster in the end

Laserbeam walkabout

- Alignment laser into tunnel and back into laser hut onto table.
- Observe spot on camera
- Initially large amplitude (mm rms) wandering
- Fixed by
 - mechanical support under the telecope
 - windows to 'plug the hole'

0.2 mm after fixing

Alignment laser

CPA 2001

- Focussed beam on laser table in laser hut.
- Alignment laser and CPA beam wander now around 0.2 mm.
- CPA a little worse, we'll investigate
- Should be similar near waist inside modulator.

10

Other stories to tell

- Mode lock of oscillator took a while
- RF lock worked rather quickly (Florian and Axel)
- Broken amplifier diode laser (Thorlabs driver fried the Peltier element)
- Broken optical fiber (Florian and Axel)
- Interlocks
 - personal protection in laser hut
 - machine protection
 - personal protection in experimental hall

; > (Bloopers (<:

- Initially the polarization of the laser and the electron beam in the modulator were orthogonal to each other
- We planned to use the last pole of the radiator as the first part of the three-bump to steer around the replica extraction screen on OS2.
 - but by construction the magnet always had JB dl = 0 because the flux always returns through the other poles.
 - had extra steerer H4SUND3 installed

Start out with flat orbit

- Within 0.1 mm and weak steerers
- Use 3/6MATCH to take out incoming orbit

Transverse Overlap

Rough temporal Overlap

- Remote 1 GHz scope
- Photo diode on OS1

- Signal from
 - attenuated seed laser
 - spontaneous synchrotron
 - radiation
- on photo diode
- good to ≈ 100s ps
- move relative timing with the phase shifter

The Seed Laser

G. Angelova

- Fiber-ring-oscillator is phase locked to RF (micro-timing)
- CPA is a regenerative amplifier
- Pockels cell fire to let the light pulse out (macro-timing)
- 1 mJ/pulse, 200 fs

Scheme of the ORS synchronization & trigger system

Problem with Seed laser leakage

- Bunching also causes radiation at higher harmonics
- Insert 700nm filter

With Seed laser filtered

- OTR at 2nd harmonic
- Radiator OFF
- Need signal that identifies overlap
- Use average pixel value in Region of interest

After some scanning...

CTR on screen 1SEED while passing a 200 fs laser pulse through an electron bunch

Every third frame

with the incoherent spot computer-graphically removed, saturation at center

V. Ziemann: ORS Experiments 23

Position and Width of the 'Spot'

Clear indication of the centroid moving transversely

- Width dubious
 - generation process
 - difficult to measure in noisy saturaed backg.

V. Ziemann: ORS Experiments

Horizontal and vertical

• as I said: dubious

Tune Radiator to 2nd harmonic

- Harmonic Generation
- Tune away from resonance and signal goes down

Scanning the chicane excitation

- There is a maximum bunching
- between 1.7 and 2.0 A

Coherent synchrotron radiation

- Maximum, when max overlap
- Likely from the last chicane magnet
- Only on second night, when the alignment of mirrors on optical station 2 had changed.
- Everything lights up once overlap is achieved, had to choke laser

We're not done yet

- and applied for more shifts in January and March
 - Systematic studies with short (200 fs) laser pulse
 - Scan radiator field through harmonics
 - Decode longitudinal centroid (wake-field tail)
 - Place laser on steep edge of ebeam → timing jitter
 - Recover overlap with short electron bunches and long
 (2 ps) laser beam
 - Make optical replica and observe it in GRENOUILLE
 - Emergence of CTR with increasing modulation

Conclusions

- We were extremely well-treated by all@DESY
- We got 15 shifts and could actually use them
- Made most of the hardware work simultaneously
- Developed the procedure to achieve overlap
 - Femto-slicing, sort of
 - Second harmonic generation
 - Longitudinal centroid bunch shape
- We'll be back (hopefully).
 - Systematic studies
 - Short bunches and long laser pulse
 - Replica pulse on to the Grenouille

Extra Slides

Alignment Laser on Wires

- As backup for 'laseron-screen' we (mostly Holger) tested to get a signal from the alignment laser on the wire scanners
- works

Electron Beam Alignment

Transverse Laser Alignment on Calibration Screens, 1st try

2nd try, focussing and alignment

071127

Electrons, 2nd try, 20:50

