

Measurements of projected emittance at FLASH

Accelerator and FEL Studies (September and October 07) People involved:

Katja Honkavaara, Florian Loehl, Eduard Prat Pedro Castro, Martin Sachwitz (WS studies in the undulator) FLASH seminar, 13th of November of 2007

FLASH seminar - 13/11/07

When: Accelerator studies (6th, 8th and 26th of September 2007), FEL studies (14th of October 2007)

Goals:

- Check functionality of filters in the undulator WS (done)
- Study emittance transport (done)
- Commissioning OTR/WS stations in the seed section (started)
- Study impact of orbit through the modules on emittance (~done)
- Continue studies on optics matching in the undulator (not done)

>Difficulties:

- Problems with calibration constant of cold BPMs
- \succ Dark current loses \rightarrow not possible to measure systematically in the undulator

3 wires are available in the undulator: 50 μm T, 10 μm T and 10 μm C

#photons $\propto d^2 \cdot A^2 \longrightarrow$ # photons $_{50\mu mT} = 25 \cdot \#$ photons $_{10\mu mT} = \sim 4000 \cdot \#$ photons $_{10\mu mC}$

Before the shutdown					
Tungsten \longrightarrow Non-linear behavior of PM \longrightarrow \uparrow beam sizes \rightarrow \uparrow calculated emittances					
During the shutdown					
Placement of filters with attenuation factor of 32 in front of each PM					
After the shutdown	Check functionality of the filters				
(08-09-2007)	Measure different wires with filters				
	Remove filters and repeat measurement				
	Place again filters and repeat measurement				
	Measurements done at WS5UND4				
	(by P. Castro, M. Sachwitz and E. Prat)				

F

WS measurements at 5UND4 – 08.09.07 Horizontal plane

Eduard Prat, DESY

FLASH seminar - 13/11/07

FLASH seminar - 13/11/07

Emittance transport

Presented values correspond to 100% of the beam (in brackets 90% values).

Injector and SEED section: OTR were used, beam was properly matched for all the cases.

Errors show only contribution of beam size uncertainties Conditions: 1nC / On crest through all accelerator modules

06-09-07	ε _x [µm]	ε _y [µm]	
Injector 8.10h	3.6 ± 0.2	2.9 ± 0.1	
	(2.1 ± 0.1)	(1.5 ± 0.1)	
Seed 12.33h	2.2 ± 0.1	3.2 ± 0.2	
	(1.2 ± 0.1)	(1.9 ± 0.1)	
Seed 12.45h	2.6 ± 0.2	3.4 ± 0.1	
	(1.4 ± 0.1)	(1.9 ± 0.1)	
Seed 13.53h	3.0 ± 0.2	3.4 ± 0.1	
	(2.0 ± 0.2)	(2.0 ± 0.1)	

08-09-07	ε _x [μm]	ε _y [μm]	
Injector 17.21h	3.7 ± 0.1	3.6 ± 0.3	
	(2.2 ± 0.1)	(2.1 ± 0.1)	
Seed 19.35h	2.9 ± 0.1	3.9 ± 0.1	
	(1.8 ± 0.04)	(2.3 ± 0.1)	
Seed 19.44h	2.9 ± 0.1	3.8 ± 0.1	
	(1.8 ± 0.1)	(2.3 ± 0.1)	
Und. 15.45h	4.2 ± 0.3	2.0 ± 1.3	
Und. 16.03h	4.1 ± 0.2	2.2 ± 0.5	
Und. 16.28h	4.5 ± 0.3	2.8 ± 0.1	
Und. 16.42h	4.3 ± 0.3	2.8 ± 0.2	

SEED section	Similar emittances as in the injector
	Bad reproducibility of emittance the 6 th of September, beam size unstable
	(maybe due to unstable LLRF)
Undulator	Not possible to measure the 6 th of September due to dark current loses
	Similar emittances as in the injector and SEED section
	Good reproducibility of emittance and mismatch parameters in the
	horizontal plane but not in the vertical one

Commissioning OTR / WS stations in the SEED section

- Shutdown 2007: replacement of 4 OTR stations by 4 new OTR / WS stations
- > Alignment of OTR has been improved:
 - $\mathop{\downarrow}\nolimits$ steering to center the beam in the screen
 - $\downarrow\,\text{OTR}$ intensity dependence on beam position
- > 1st preliminary measurements of comparison between OTR and WS:
 - Profiles given by OTR and WS agree well
 - WS profile is much noisier (1 profile vs 20 images) \rightarrow different rms beam size
- Some problems with WS:
 - From time to time one scan didn't start
 - For every measurement day, scan positions and PMV range have to be determined

Impact of orbit bumps through accelerator modules - Motivation

20-12-06: A **-6mm** vertical bump at BPM9ACC2 caused an emittance increase from 2.6 to 6.2 μ m Beam was matched for all cases

Where & when	Comments	ε _x [µm]	ε _y [µm]
Seed 10.45h	No bump	4.4 ± 0.4	2.6 ± 0.4
Seed 17.08h	-6mm y bump	4.1 ± 0.4	6.2 ± 0.8
Seed 18.27h	No bump	3.8 ± 0.4	2.6 ± 0.4

Simulations predict much weaker effect

Goal of these studies: Try to reproduce above measurement Make a more general study of the impact of orbit through the modules: • for both planes • with different amplitudes • for different modules

Impact of orbit bumps through accelerator modules - Overview

Day1 (1nC)

horizontal and vertical bumps at BPM9ACC2 Used correctors: H/V11DBC2, H/V10ACC2/3, H/V2UBC3 Coupled orbit not corrected

Day2 (0.9nC)

problems with calibration constant signs of cold BPMs → only horizontal bumps at BPM9ACC2 Used correctors:H11DBC2, H10ACC2, H10ACC3, H2UBC3

Day3 (0.6nC)

problems with calibration values of cold BPMs → horizontal and vertical bumps at 11DBC2 & 3DBC3 Used correctors: 11DBC2 → H9/V8DBC2, H11/V10DBC2, H/V10ACC2, H/V10ACC3, H/V2UBC3 3DBC3 → H/V1DBC3, H/V3DBC3, H/V10ACC6, H/V10ACC7

After each bump, emittance was measured at the SEED section

Simulations (elegant) Steerer currents of the measurement (& bump artificially closed) Initial distribution: 10⁴ particles after ACC1, design optics, emittance=2µm On crest through all accelerator modules, wakefields included (structure and coupler)

Bumps at BPM9ACC2 Measurements vs simulations

Horizontal plane (Day 1) horizontal plane (simulations) vertical plane (simulations) horizontal plane (measurements) vertical plane (measurements)

FLASH seminar - 13/11/07

HELMHOLTZ

GEMEINSCHAFT

20

70 horizontal plane (simulations) 60 vertical plane (simulations) horizontal plane (measurements) vertical plane (measurements) 50 emittance increase [%] 40 30 20 0 -10 L -8 -6 -4 -2 0 2 6 ۶ amplitude vertical bump at BPM9ACC2 [mm]

~ good agreement between measurements and simulations (without considering measurements with mismatch parameter bigger than 1.5)

Vertical plane (Day 1)

Bumps at BPM11DBC2 Measurements

 Horizontal plane: emittance increase only for positive bumps (maybe because the zero of this BPM is shifted)

 Vertical plane: no emittance increase (but smaller bump amplitudes)

Bumps at BPM11DBC2 Measurements vs simulations

Horizontal plane Vertical plane 120 30 \cap horizontal plane (simulations) 100 20 vertical plane (simulations) horizontal plane (measurements) 80 vertical plane (measurements) emittance increase [%] emittance increase 60 40 -10 20 horizontal plane (simulations) vertical plane (simulations) -20 horizontal plane (measurements) * vertical plane (measurements) -30 -20 -40 ∟ -3 -40 L -6 -2 10 12 -2 -1 0 2 2 6 1 3 0 4 8 amplitude horizontal bump at BPM11DBC2 [mm] amplitude vertical bump at BPM11DBC2 [mm]

• Horizontal plane: if zero of the BPM is shifted \rightarrow qualitative agreement

Vertical plane: good agreement

Bumps at BPM3DBC3 Measurements

- Horizontal plane: emittance increase for negative bumps bigger than 3mm
- Vertical plane: no emittance increase

Bumps at BPM3DBC3 Measurements vs simulations

Horizontal plane Vertical plane 80 30 horizontal plane (simulations) Ο 70 horizontal plane (simulations) \odot vertical plane (simulations) vertical plane (simulations) 20 horizontal plane (measurements) 60 horizontal plane (measurements) vertical plane (measurements) vertical plane (measurements) emittance increase [%] emittance increase [%] 50 10 40 30 0 20 -10 10 0 -20 -10 -30 ∟ -5 -20 L -5 -3 -2 -2 0 0 3 -3 -1 -4 -1 1 2 -4 1 2 3 4 5 amplitude horizontal bump at BPM3DBC3 [mm] amplitude vertical bump at BPM3DBC3 [mm]

• Horizontal plane: if zero of the BPM is shifted \rightarrow qualitative agreement

Vertical plane: good agreement

SUMMARY

- Attenuation filters of the WS stations in the undulator work as expected
- 1st emittance measurements after the shutdown show similar emittances along the machine:
 - 100% emittances: between 3 and 4µm
 - 90% emittances: around 2 µm (design value)
- Started commissioning of OTR/WS stations in the SEED section :
 - 1st results show a good agreement of profiles given by OTR and WS
- Studies on the impact of orbit through modules on emittance have been done:
 - Big effect measured on December 2006 not observed this time
 - Impact can be different from day to day due to various reasons: different optics, different orbit through the bunch compressors, etc.

NEXT STEPS

- Continue the commissioning of OTR/WS stations in the SEED section
- If next bump measurements → better characterization of the machine (measure beam sizes everywhere, dispersion measurement for each bump, ...)