Commissioning of the infrared undulator

Part I: Electron beam transport

Oliver Grimm, 30 October 2007

...for the infrared undulator team.

Some results from magnetic tuning

Goal

Reduction and flattening of field integrals over full operation range 0 to 435 A

Means

6 power supplies, 40 variable resistors, 80 switches

Reproducibility 2nd field integral

I _{main} (A)	Left period (A)	Right period (A)	N 1 (A)	N 22 (A)	N 2 (A)	N 21 (A)	Int.1 (G·cm)	Int.2 (kG·cm ²)
0	0	0	0.53	0.7	0	0	23	-6
2	-0.01	-0.45	0.0	0.18	0.12	-0.18	-63	-3.5
5	-0.03	-0.4	-0.05	0.45	0.29	-0.46	-12	-2.7
12	-0.072	-0.45	-0.30	1.08	0.68	-1.1	-88	4.3
20	-0.12	-0.134	-0.27	1.3	1.14	-1.07	-34	-0.5
30	-0.18	-0.2	-0.7	1.65	1.7	-1.6	-47	-1.3
50	-0.3	-0.32	-1.0	1.95	2.4	-2.4	-58	2.9
78	-0.4	-0.43	-1.4	2	3.4	-3.1	-129	-23
90	-0.5	-0.5	-1.6	2.1	4	-3.7	-73	-43
123.2	-0.67	-0.67	-2.6	3.1	5.4	-5.2	-86	-42
170	-0.9	-0.9	-2.7	3.0	6	-5.7	-81	-74
200	-1	-1	-3.2	3.8	6.3	-6	-52	-61
230	-1.1	-1.1	-2.1	3.2	4.6	-4.6	-52	-74
260	-1.2	-1.2	-1.7	3.0	3	-3.1	23	-83
275	-1.2	-1.2	-1.5	3.1	2.1	-2.4	52	-77
300	-1.1	-1.1	-0.5	2.6	0.1	-0.3	-151	-118
332.7	-1	-1	0.55	1.5	-2.5	2.6	-58	-135
340	-1	-1	1.2	1.2	-3.4	3.3	-146	-154
380	-1.5	-1.2	2.7	0	-7	6.8	-49	-127
390	-1.6	-1.2	3.2	-0.6	-8	7.8	94	-126
420	-1.6	-1.2	2.8	0.4	-8.4	7.8	-46	-115
435	-1.6	-1.2	2.5	0.7	-8.4	7.8	10	-107

Long term temperature effects

IR undulator first harmonic wavelength

Layout of EXP area

DDD panels

Effect of IR undulator on orbit

Measurements at 700 MeV, no orbit correction

 $\Delta x = \frac{ec}{E} I_2 \qquad I_2: 2^{\text{nd} \text{ field integral}}$

Required steerer currents to fix orbit

Coil measurements

Same fluctuations as measured at JINR.

Pole pair	1	2	21	22
Combined resistance (Ω) Voltage at 1 A (V)	1.06 1.07	1.05	1.11	1.07 1.06
Resistance top coil (Ω)	0.52	0.55	0.55	0.55
Resistance bottom coil (Ω)	0.55	0.56	0.53	0.52

Total voltage U6P3EXP @ -1 A: -15.22 V U6P12EXP @ -1 A: -20.96 V @ +1 A: +22.12 V

Resistance of 1st corrector coil $\approx 9 \text{ m}\Omega$, 2nd corrector coil $\approx 15 \text{ m}\Omega$, main coils $\approx 30 \text{ m}\Omega$.

Reversing all correctors helps...

Beam displacement studies

Horizontally centred

Horizontally moved by ≈10 mm

... if undulator would be tilted with respect to BPM zero?

Beam moved horizontally to +10 mm on BPM 3EXP and -2.5 mm on BPM 9EXP. All correctors reversed.

Field integrals valid for on-axis beam transport

Temperatures

Sensors at undulator

Reproducibility after reversing current

Conclusions / Outlook

- Electron beam transported without losses to dump at all undulator settings (using orbit feedback, not yet tried in long-pulse mode)
- Discrepancy between expected and measured orbit displacement
 - \rightarrow critical if this would strongly affect the radiation properties not seen (yet?)
- Correct aperture problem and strong beam steering effect
 → Again measure/realign EXP section
- Establish fully parasitic operation and/or final protection system ("laser" safety)
- Study radiation properties and dependence on undulator settings
- Use it as source and beam diagnostics tool