

Active Radiation Monitoring Sensors for the High-Energy Physics Experiments of the CERN LHC

Federico Ravotti

CERN, Technical Support Department, Geneva, Switzerland IES - University Montpellier II, Montpellier, France

Maurice Glaser, Michael Moll

CERN, Physics Department, Geneva, Switzerland

On behalf of RADMON Working Group

Outline

CERN, LHC, Accelerator & Experiments Radiation Field;

- \blacktriangleright Radiation Monitoring issues at the LHC;
- \blacktriangleright Active Dosimeters: RadFET and *p-i-n* diode;
- Validation test in "LHC-like" environment;
- Integration issues at the LHC Experiments;

 \succ Conclusions;

Development of OSL-based dosimeters \rightarrow D. Benoit talk

Large Hadron Collider

Number of dipole magnets	1232		
Dipole field at 7 TeV	8.3 T		
Luminosity	10 ³⁴ cm ⁻² ·s ⁻¹		
Protons/bunch	1.1×10^{11}		
bunches/beam	2808		
Nominal bunch spacing	25 ns		
Typical beam size in arcs	200-300 μm		

- proton-proton collider;
- superconducting magnets;
- Starting up for physics in May 2008;
- Commissioning the LHC to full energy in one go.

F.Ravotti

LHC Radiation Field

F.Ravotti

LHC Radiation Field

LHC Experiments

F.Ravotti

Experiments Radiation Field

- Example: CMS radiation field
- MC simulation predictions:
 - gammas, protons, neutrons, pions, ...
 - different energies and intensities;
 - $f(r, \theta, z)$ with respect to IP;

		Dose rate [Gy/s]	Dose [Gy/year]	Ch. Hadrons [cm²/year]	Neutrons [cm²/year]
neutrons, photons $<<$ Ch. particles $+$	Pixel	2x10 ⁻²	1X10 ⁵	2x10 ¹⁴	2x10 ¹³
neutrons ~ photons ~ Ch. particles $-$	HCAL	2x10 ⁻⁶	10	10 ¹²	10 ¹³
neutrons, photons >> Ch. particles $-$	Muon	2x10 ⁻⁹	0.01	108	10 ¹⁰

Radiation Monitoring Purposes

LHC Experiments are designed for 10 years of physics operation Equipment failures due to radiation damage are not expected, <u>but</u>

- Some components might be not well qualified in radiation hardness;
- Some long-term effects in complex radiation field are not predictable;

⇒ Radiation level survey needed for damage and failure analysis

• Radiation field simulations accuracy within factor 2-3;

Verification and improvement of simulations

• Layers of shielding materials are installed to reduce internal/external irradiation;

⇒ Improvement of shielding

Radiation Monitoring at LHC

The complexity of the LHC radiation field make its monitoring **challenging**; **Ideally measure full spectrum** (particle type, energy and intensity at all location); **In reality** the effects of this radiation field on specific materials are measured; To cover the **broad ranges/spectra** expected **several sensors are needed**:

→ Passive Sensors (TLDs, Alanine, RPL, ...);

→ Active Sensors;

- → Fast Beam Condition Monitors (CVD diamond);
- → Specific Monitoring Devices (scintillators, metal foils, ...);

F.Ravotti

DESY - Hamburg - 07 August 2007

ATLAS BCM [A. Gorišek, JSI]

Radiation Monitoring Quantities

What can/should be measured ?

- TID Total Ionizing Dose (energy deposited by ionization)
 - represents the Ionizing Energy Loss (IEL) measured in Gy = 1 J/Kg;
 - causing e.g.- accumulation of charge in SiO₂ ⇒ damage to microelectronic components

- aging of gas detectors, scintillators, optical fibers, ...

- causing e.g. defects in semiconductor crystals ⇒ silicon detector damage, optical devices, CCDs, ..
- damage normalized to the one induced in Si from 1-MeV neutrons measured in cm⁻²;

Radiation Monitoring Sensors

ACTIVE DOSIMETERS ("on-line")

- Radiation-sensing Field Effect Transistors (RadFETs) TID –;
- Forward biased *p-i-n* silicon diodes Φ_{eq} –;

Optically Stimulated Luminescent Materials (OSL) – dose-rate, TID –;

→ See following talk by D. Benoit DESY - Hamburg - 07 August 2007

RadFET Sensors (TID)

- (1) e^{-}/h^{+} pair generation;
- (2) e⁻/h⁺ pair recombination;
- (3) e⁻/h⁺ transport;
- (4) hole trapping;
- (5) Interface states buildup.

131um

- Devices grounded during exposure ("simple" readout as required for LHC)
- $I_D const. \rightarrow V_{th} \propto \text{TID}.$

p-type source

aluminum

RadFETs for the LHC

 10^{1}

- Thick-Oxide RadFET dies (1.6 μ m):
 - Producer: CNRS-LAAS, France;
 - ~ 500 mV/Gy \div ~ 1 mGy to 10 Gy;
 - Suited for outer-detector regions;

F.Ravotti

 10^{-1}

 10^{0}

Dose (Gy)

10⁻²

ΔV_{th} (Volt)

DESY - Hamburg - 07 August 2007

 10^{2}

Characterization of *p-i-n* diode devices

High-Sensitivity *p-i-n* **diodes** are devices developed mainly for medical and military applications. Extensive characterization done for LHC

(sensitivities, dynamic range, annealing, temperature effects ...);

The High-Sensitivity (10⁷-10⁸ mV/cm²) imply a low dynamic range ($\Phi_{eq} \leq 10^{12}$ cm⁻²)

→ These devices alone cannot satisfy all LHC requirements;

These devices need to be complemented by diodes with higher range $(10^{12} \text{ cm}^{-2} < \Phi_{eq} < 10^{14} \cdot 10^{15} \text{ cm}^{-2});$

→ Study of the Commercial *p-i-n* diodes BPW34F

F.Ravotti

p-i-n diodes for the LHC

High-Sensitivity *p-i-n* diodes:

- Producer: CMRP, Australia;
- S = 5.9 mV/10⁹ cm⁻² \pm 13 %;

 $\Phi_{\rm eq,max} = 2 \times 10^{12} \, {\rm cm}^{-2};$

• Suited for outer-detector regions;

Commercial *p-i-n* diodes:

- BPW34 from OSRAM
- S = 0.1 mV/10⁹ cm⁻² \pm 20 %;

 $\Phi_{\rm eq,max} = 4 \times 10^{14} {\rm ~cm^{-2}};$

• Suited for inner-detector regions;

F.Ravotti

DESY - Hamburg

Validation Test

Validation Test

RadFET Packaging Commercial Packaging (i.e. TO-5, DIL) cannot Development by Development / study satisfy all Experiment External Company in-house at CERN Requirements (dimensions/materials) ~ 10 mm² 36-pin Ceramic carrier REM - high integration level; Simulated model [Geant4 Team, INFN Genova] - modular, customizable; Geant 4 - standard connectivity; AAS – satisfactory radiation transport proprieties.

- validate packaging and calculations;

- optimize packaging lid.

DESY - Hamburg - 07 August 2007

Integration in the ATLAS Experiment

F.Ravotti

Sensors Readout at the LHC experiments

RADMON in LHC tunnel

[C. Pignard, T. Wijnands, CERN] F.Ravotti RADMON Box

Radiation Monitoring at LHC experiments: Overview

	ATLAS	ALICE	CMS	LHCb	ΤΟΤΕΜ
RADMON active sensors on integrated carriers	Yes	Yes	No	Yes	Yes
RADMON box (LHC) in experimental areas	No	No	Yes	Yes	No
Passive Dosimeters	Yes	Yes	Yes	Yes	Yes
BCM fast (bunch by bunch)	Yes	Yes	Yes	Yes	No
Thermal neutron sensors	Yes	No 👔	No	No	No
Relative luminosity monitoring	Yes	?	Yes	?	No
Thin aluminum foil dosimeters	No	?	No	Yes	No
Scintillator panels for halo	Yes	?	Yes	?	No

Conclusions

- RADMON at the LHC Experiments is a challenge for semiconductor sensors to be used for Radiation Monitoring;
- Selection and characterization of ACTIVE sensors brought to recommend a set of two RadFET devices (LAAS 1600 & REM TOT501C) and two *p-i-n* diodes (CMRP & BPW34F) that fulfill the LHC experiments need;
- The devices operation has been validated in condition similar to the ones expected at the LHC (LDR test at CERN-IRRAD6);
- Packaging studies and devices integration have been carried out in function of the experiments need;
- Use of different sensors and measure of different quantities in several locations is the adopted Radiation Monitoring strategy at the LHC Experiments.