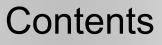


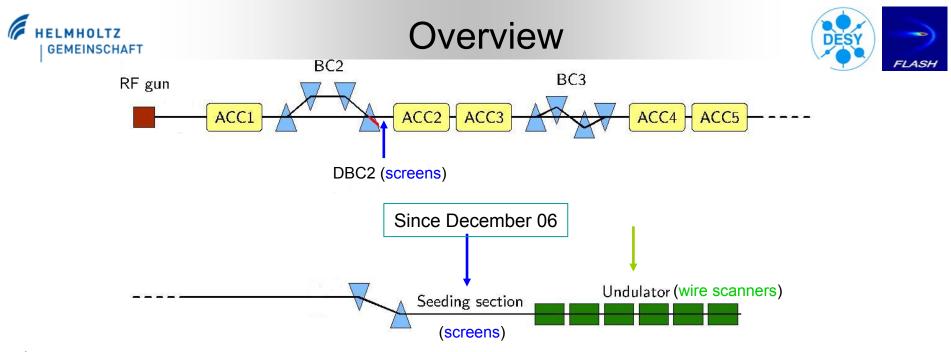
Summary of projected emittance measurements at FLASH

Accelerator & FEL Studies (October 06, December 06 & January 07, February 07)


People involved:

Katja Honkavaara, Florian Loehl, Eduard Prat Pedro Castro, Lars Froehlich, Martin Sachwitz (Wire scanners studies)

FLASH seminar, 17th of April of 2007


FLASH seminar 17-04-2007

- Overview
- Wire scanner measurements in the undulator
- Emittance measurements during the FEL studies on October 2006
- Emittance measurements during the Accelerator Studies on December 2006 & January 2007
- Emittance measurements during the FEL studies on February 2007
- Summary and next steps

When: FEL studies (28-10-06)

Accelerator studies (17-12-06, 20-12-06, 21-01-07)

FEL studies (17-02-07, 21-02-07, 22-02-07)

> Where: DBC2, SEED (for the 1st time) and undulator

Standard conditions: on crest for all accelerator modules, 1nC (22-02-07, SASE conditions)

Presented values correspond to 100% emittances

About the measurements at the SEED section:

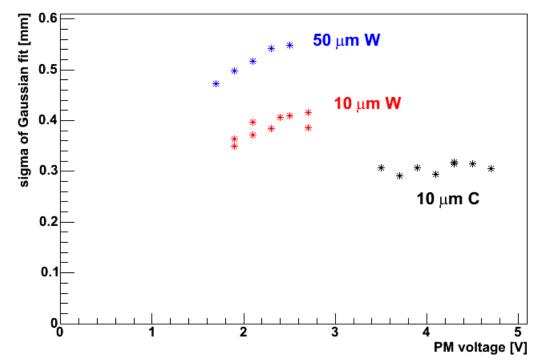
We had to steer the beam when going from one screen to the next one and OTR intensity was low at 2SUND3 & 14SEED. This is probably due to a misalignment of the optical set-up and/or of the OTR screen

About the measurements in the undulator:

3 available wires: 10 μm C, 10 μm W & 50 μm W (the "usual one" before that measurements) In some measurements, the combination of beam sizes, optics and energy gave non real emittances

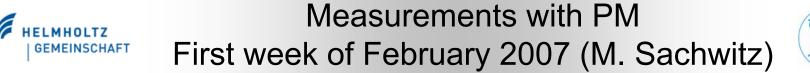
FLASH seminar 17-04-2007

Contents

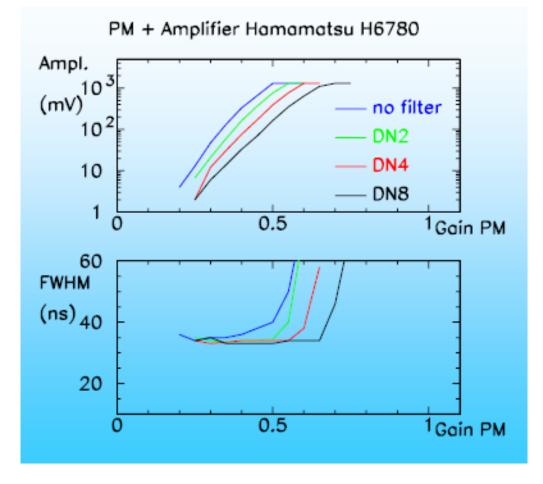


- Overview
- Wire scanner measurements in the undulator
- Emittance measurements during the FEL studies on October 2006
- Emittance measurements during the Accelerator Studies on December 2006 & January 2007
- Emittance measurements during the FEL studies on February 2007
- Summary and next steps

Measurements at WS5UND5.hor 25-01-07 (P. Castro)


Beam size depends heavily on the wire (and for the Tungsten wires it also depends on the PMV)

The problem is that there is too much light for the tungsten wires, which leads to a non-linear behavior of the PM

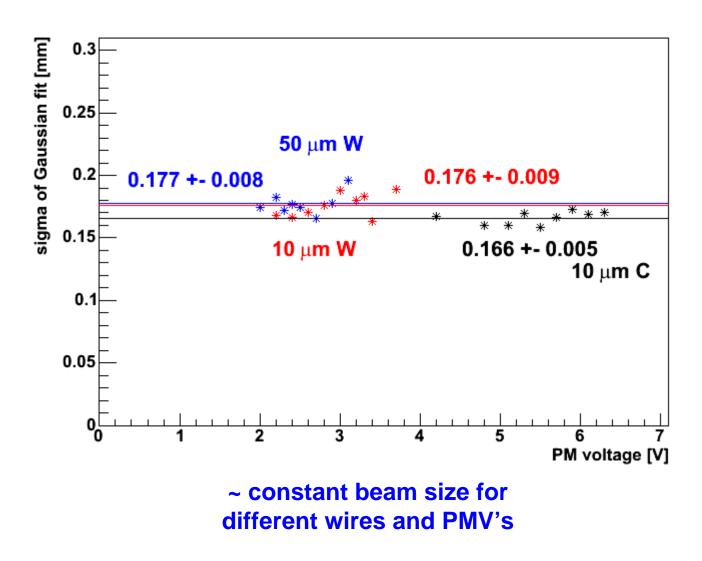

(shower ~ $d^{2}A^{2}$; A(C)=12, A(W)=74)

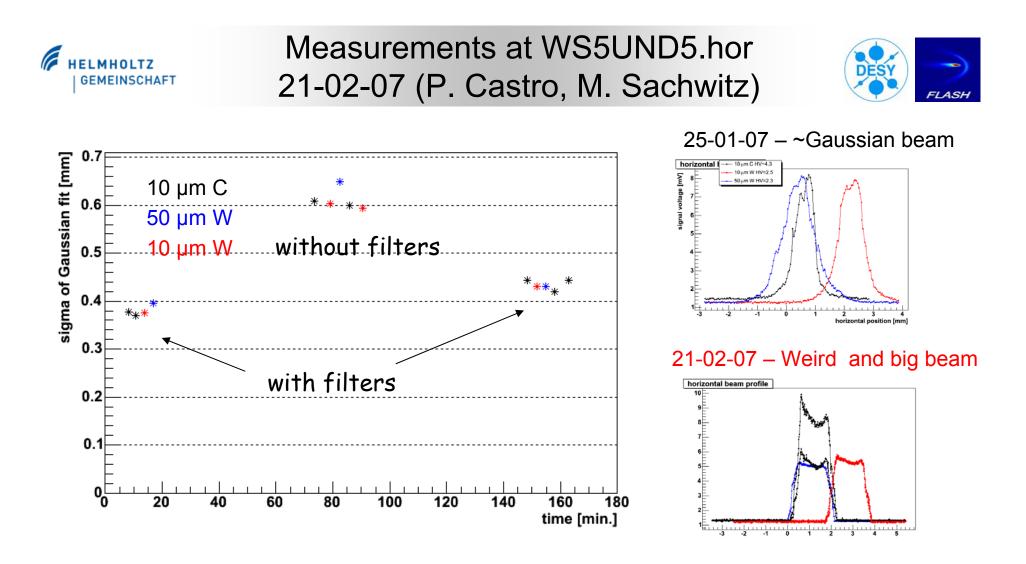
Possibilities: use filters in front of PM, use scintillators in the sides of the undulator, use other PM ... and use the carbon wires for the emittance measurements

FLASH seminar 17-04-2007

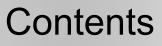
Light source: blue LED, saturates at around 0.5V (equivalent to 5V in the FLASH gui)

Measurements without filters and with filters of factors 2, 4 and 8


A filter helps to reach the linear range and to reduce FWHM next to the saturation point


The decision was to test a filter with an attenuation factor of 32

Measurements at WS5UND5.hor (with filters) 17-02-07 (P. Castro, L. Froehlich, E. Prat)



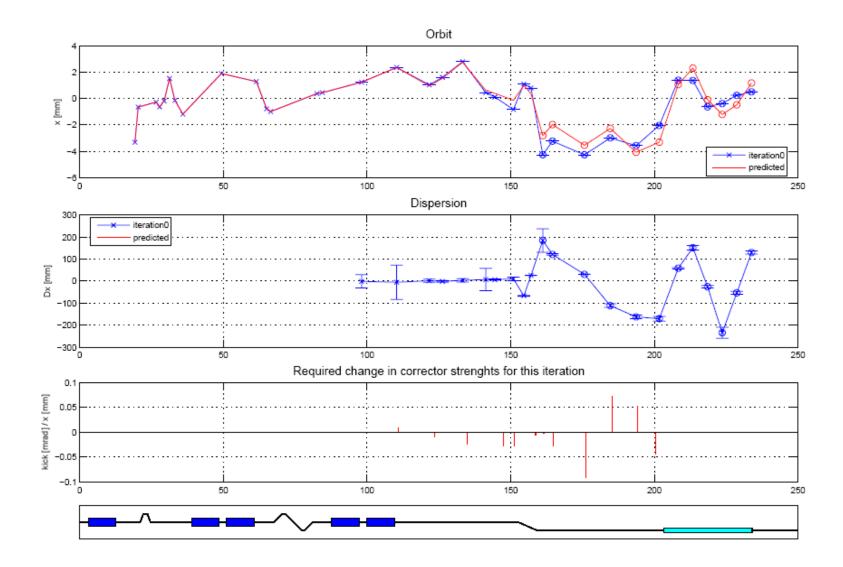
~ constant beam size for the different wires, with and without filters (!) (one would expect size measured with the carbon wire to be independent if filter or not)

Anyway, the decision was to put the filters for all the wires... ... which are already placed

FLASH seminar 17-04-2007

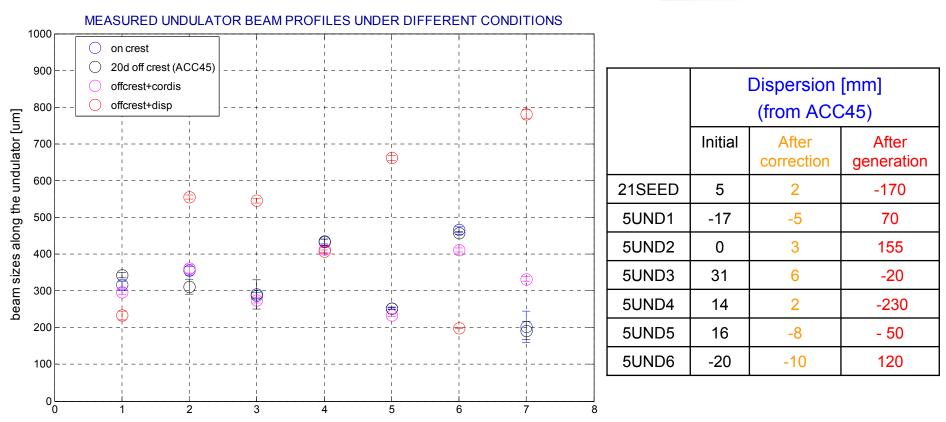
- Overview
- Wire scanner measurements in the undulator
- Emittance measurements during the FEL studies on October 2006
- Emittance measurements during the Accelerator Studies on December 2006 & January 2007
- Emittance measurements during the FEL studies on February 2007
- Summary and next steps

Summary table for the 28th of October


Where & when	Comments	ε_χ [mm mrad]	ε _y [mm mrad]
Injector 11.08h	Matched	11.6 ± 0.5	5.5 ± 0.1
Undulator 11.08h	On crest in all the modules – 50 µm W wire – Not matched	-	10.0 ± 0.4
Undulator 13.37h	20 deg off ACC45 - 50µm W wire – Not matched	-	14.0 ± 0.3
Undulator 18.19h	20 deg off ACC45 + dispersion correction - 50µm W wire – Not matched	19.9 ± 0.6	-
Undulator 19.28h	20 deg off ACC45 + dispersion generated - 50 µm W wire - Not matched	-	-
Undulator 21.13h	On crest in all the modules – 50 µm W wire – Not matched	-	10.3 ± 0.5
Undulator 22.16h	20deg off ACC1 – 50 µm W wire – Not matched	-	14.3 ± 0.7

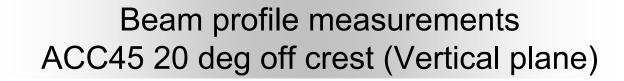
DBC2 sectionBig emittancesUndulatorMuch bigger and/or imaginary emittances

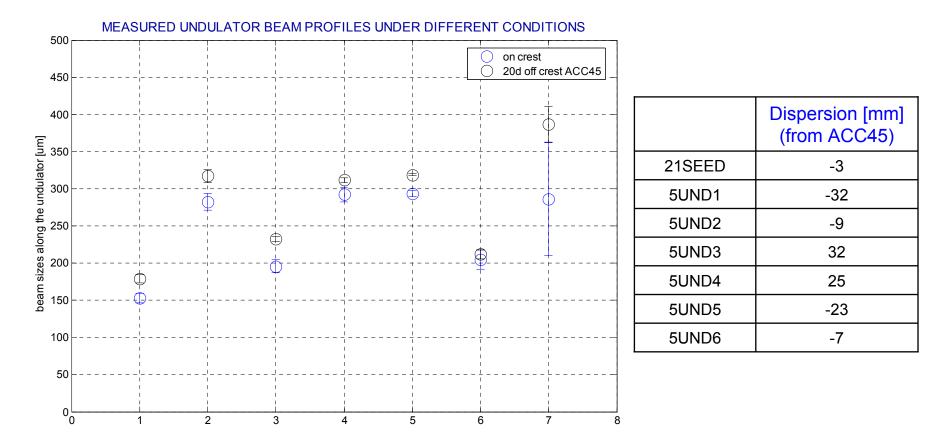
Generation of horizontal dispersion ↓Q3/5ECOL by 10%



FLASH seminar 17-04-2007

Beam profile measurements ACC45 20 deg off crest (Horizontal plane) GEMEINSCHAFT



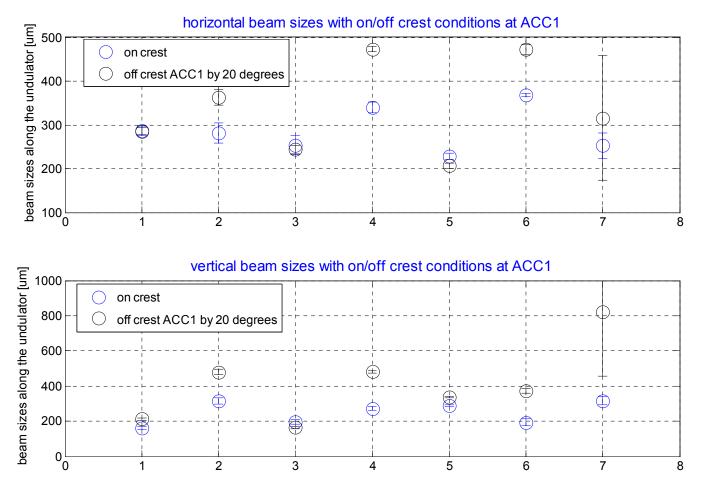

No difference when one goes to 20 degrees of crest Reasonable results with extra dispersion (except for 21SEED and 5UND5)

FLASH seminar 17-04-2007

ELMHOLTZ

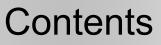
Unlike in the horizontal plane, here the beam size went systematically a little bit up at off crest condition.

Dispersion from ACC45 is similar but can play a bigger role since vertical beam sizes are smaller. Dispersion coming upstream ACC1 can be bigger in the vertical plane.


ELMHOLTZ

GEMEINSCHAFT

Beam profile measurements ACC1 20 deg off crest



Increasing of beam sizes specially at UND1, UND3 & UND5 Probably due to dispersion... (we could not measure it)

FLASH seminar 17-04-2007

- Overview
- Wire scanner measurements in the undulator
- Emittance measurements during the FEL studies on October 2006
- Emittance measurements during the Accelerator Studies on December 2006 & January 2007
- Emittance measurements during the FEL studies on February 2007
- Summary and next steps

Summary table for the 17th of December

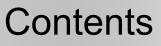
Where & when	Comments	ε _x [mm mrad]	ε _y [mm mrad]
Injector 17.49h	Matched	3.3 ± 0.1	3.4 ± 0.1
Seed 18.22h	Matched	3.9 ± 0.2	2.7 ± 0.1
Seed 21.56h	Sext off – only vertical is matched	6.0 ± 0.2	3.3 ± 0.1
Seed 22.23h	Sext off – only horizontal is matched	5.2 ± 0.1	1.4 ± 0.1
Seed 23.03h	Design optics in seed & und – matched	3.4 ± 0.1	2.8 ± 0.1
Undulator 19.03h	50 µm W wire – Not matched	6.2 ± 1.4	9.9 ± 1.3
Undulator 19.39h	50µm W wire – unsuccessful attempt to match	-	6.9 ± 1.7
Undulator 23.31h	Design optics in seed & und – 50 µm W wire - Not matched	6.3 ± 1.1	12.3 ± 0.5

SEED sectionSimilar emittances as in the injector
Matching worked properly (except when sext were off)UndulatorMuch bigger and/or imaginary emittances
Not possible to match

Summary table for the 20th of December

Where & when	Comments	ε _x [mm mrad]	ε _y [mm mrad]
Injector 8.29h	Matched	2.9 ± 0.1	3.3 ± 0.1
Seed 9.18h	Not matched	4.4 ± 0.1	11.5 ± 0.2
Seed 10.45h	Corrected to orbit from 17-12 – matched	4.4 ± 0.1	2.6 ± 0.1
Seed 17.08h	Orbit from 17-12 + 6mm y bump in ACC23 – matched	4.1 ± 0.1	6.2 ± 0.2
Seed 18.27h	Corrected to orbit from 17-12 – matched	3.8 ± 0.1	2.6 ± 0.1
Und. 18.52h	50 µm W wire	10.4 ± 0.3	-

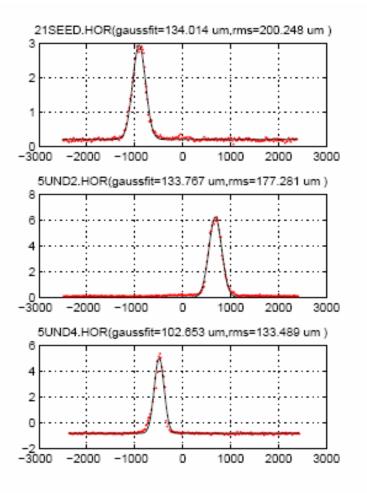
SEED section	Similar emittances as in the injector
	6mm vertical orbit bump in ACC23 caused emittance
	increase by more than a factor of 2
	Matching worked properly
Undulator	Much bigger and/or imaginary emittances
	Not possible to match

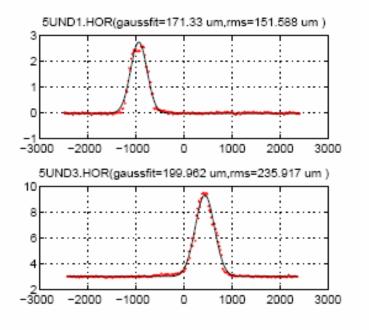


Where & when	Comments	ε _x [mm mrad]	ε_y [mm mrad]
Injector 10.55h	Matched	3.7 ± 0.1	3.2 ± 0.1
Seed 12.30h	Matched	3.7 ± 0.2	4.7 ± 0.2
Undulator 13.38h	10µm C wire – not matched	4.1 ± 0.4	5.6 ± 0.2
Undulator 15.50h	10 µm C wire – not matched	4.4 ± 0.7	4.1 ± 1.3
Undulator 16.51h	10µm C wire – not matched	5.0 ± 0.3	-
Undulator 17.30h	10µm W wire – not matched	9.8 ± 0.2	10.3 ± 2.4
Undulator 18.05	50µm W – not matched	11.5 ± 0.7	-
Undulator 19.47h	10µm C / orbit changed – not matched	3.6 ± 0.6	-

UndulatorThe different wires give different emittancesEmittances with the 10 µm carbon wire are similar to the
ones measured at the SEED section
Not possible to match

- Overview
- Wire scanner measurements in the undulator
- Emittance measurements during the FEL studies on October 2006
- Emittance measurements during the Accelerator Studies on December 2006 & January 2007
- Emittance measurements during the FEL studies on February 2007
- Summary and next steps

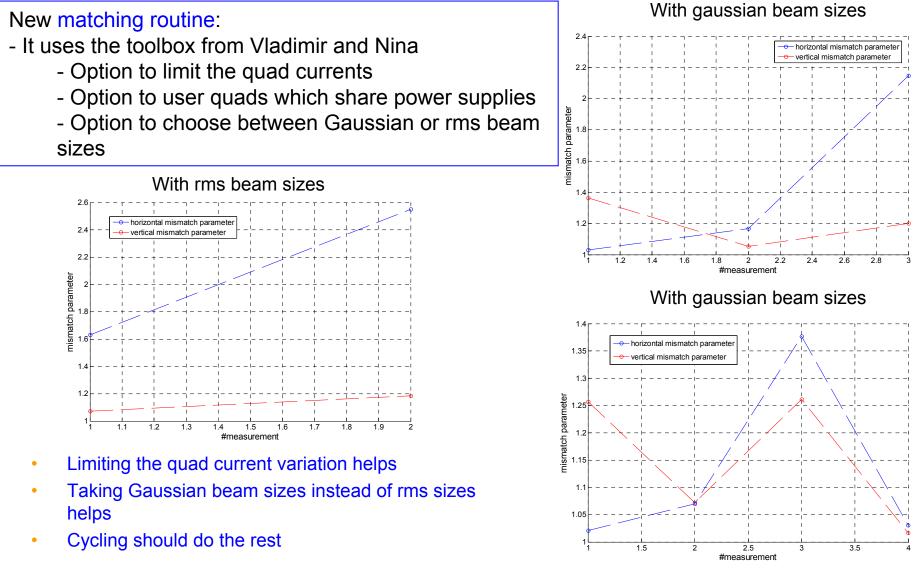

Where & when	Comments	ε _x [mm mrad]	ε _y [mm mrad]
Injector 08.47h	Matched	3.7 ± 0.1	3.8 ± 0.1
Seed 12.30h	Matched	2.7 ± 0.2	3.0 ± 0.1
Undulator 17.01h	10µm C wire, Mx = 1.039, My = 1.145	4.3 ± 0.3	4.4 ± 0.3
Undulator 17.55h	10µm C wire, Mx = 1.025, My = 1.163	5.1 ± 0.3	4.4 ± 0.2
Undulator 18.11h	10µm C wire, Mx = 1.050, My = 1.113	5.1 ± 0.2	5.1 ± 0.2
Undulator 18.45h	10µm C wire, Mx = 1.031, My = 1.052	5.2 ± 0.2	4.9 ± 0.2


SEED sectionSimilar emittances as in the injector
Matching worked properlyUndulatorSimilar emittances as in the injector

Taking rms or gaussian beam sizes: Beam profiles example (17-02-07)

A gaussian fit represents well the beamrms is very sensitive to the beam tails

Where & when	۳, [mm	n mrad]	Mism	atch x	٤ _y [mrr	n mrad]	Misma	atch y
	rms	gauss	rms	gauss	rms	gauss	rms	gauss
Undulator 17.01h	4.3	3.3	1.039	1.167	4.4	3.6	1.145	1.053
Undulator 17.55h	5.1	3.8	1.025	1.021	4.4	3.9	1.163	1.257
Undulator 18.11h	5.1	4.0	1.050	1.070	5.1	4.4	1.113	1.072
Undulator 18.45h	5.2	3.6	1.031	1.053	4.9	4.2	1.052	1.017


> Emittance systematically smaller taking gaussian beams

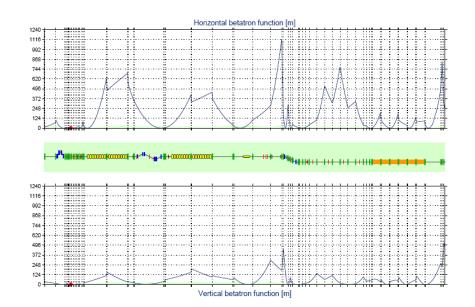
Similar mismatch parameters

Matching in the undulator

FLASH seminar 17-04-2007

Summary table for the 21st of February

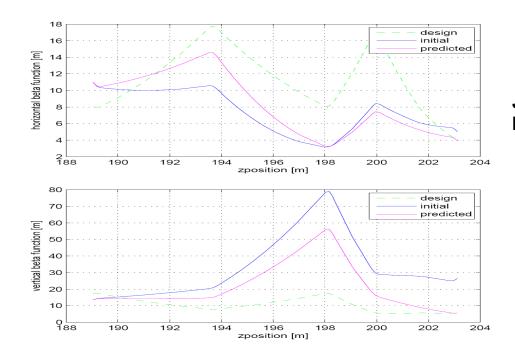
Where & when	Comments	ε _x [mm mrad]	ε _y [mm mrad]	
Injector 18.18h	Matched	4.8 ± 0.2	3.4 ± 0.2	
Seed	Not proper measurement			
Undulator 22.28h	10µm C wire, Mx = 1.256, My = 2.073	4.2 ± 0.5	4.4 ± 0.7	
We started from scrat				
Undulator 00.13h	10µm C wire, Mx = 1.528	5.8 ± 0.6	-	
Undulator 01.31h	10µm C wire, Mx = 1.342, corrected dispersion	4.3 ± 0.4	-	
Undulator 02.18h	10µm C wire, Mx = 1.136, 6 degrees off crest at ACC1	6.3 ± 2.4	-	
Injector 03.03h	Mx = 3.422, My = 1.713	3.7 ± 1.5	3.0 ± 0.2	


DBC2 section	Big initial mismatch in the 2 nd attempt
SEED section	Not proper measurement since strong dependence of the
	beam size on the horizontal position
	Matching did not work
Undulator	Imaginary calculated emittances in the vertical plane
	Not possible to try matching

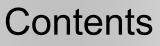
FLASH seminar 17-04-2007

	Beam size at 21SEED		
	σ _x [μm] σ _y [μm]		
Reference	153 ± 14	319 ± 12	
↑Q9ACC5 by 0.5A	69 ± 18	301 ± 13	
↓Q9ACC5 by 0.8A	416 ± 32	329 ± 20	
↓Q10ACC5 by 0.8A	82 ± 20	292 ± 8	

Modifying Q9ACC5 and Q10ACC5 had an effect to the beam only in the horizontal plane


	Design		Calcula DBC2	ted from meas.
	β _x [m]	β _y [m]	β _x [m]	β _y [m]
Q9ACC5	14.4	24.2	452	94
Q10ACC5	13.1	26.9	404	105

Measurements on the 22nd of February SASE conditions


Where & when	Comments	ε _x [mm mrad]	ε _y [mm mrad]
Undulator 20.49h	10µm C wire, Mx = 1.025, My = 3.011	8.2 ± 0.5	6.2 ± 1.3
Undulator 21.44h	10µm C wire , Attempt to match, Mx = 1.163, My = 1.706	8.4 ± 0.4	6.9 ± 0.5

Just 1 measurement and 1 matching attempt No time for more $\boldsymbol{\varpi}$

FLASH seminar 17-04-2007

- Overview
- Wire scanner measurements in the undulator
- Emittance measurements during the FEL studies on October 2006
- Emittance measurements during the Accelerator Studies on December 2006 & January 2007
- Emittance measurements during the FEL studies on February 2007
- Summary and next steps

Summary

- Emittances in the injector between 3 and 4 mm mrad (since December 2006)
- Emittance measurements done at the SEED section for the 1st time: similar emittances as in the injector, matching worked properly most of the times.
- Beam size measurements in the undulator (and therefore emittance) depend strongly on the used wire. This is due to a non-linear behavior of the PM when the input light is too big (for the Tungsten wires). A filter in front of the PM has been placed in order to solve this problem.
- Emittance measurements in the undulator with the carbon wire gave similar values as in the injector and the SEED section.
- Improvement of the matching in the undulator (but still not enough).
- Not proper status of the machine makes measurements very complicated.

Next steps

- Replacement of 4 OTR stations in the SEED section by 4 OTR + WS stations during the shutdown.
- Improve the matching tool.
- Next measurements after the shutdown