Accelerator studies at FLASH
11.-22.12.2006 and 08.-21.01.2007

Katja Honkavaara
Accelerator studies in winter 2006/07

- Requests collected well in advance, beam-time allocated according to available beam time and possibilities, supervised by the BAC
- Requests for ~ 90 shifts (~70 shifts available)
 - Between the two study blocks were Christmas and maintenance period (KW 52 and 1) → shut-down and start-up of the machine needed to be included to accelerator study time
 - Recover SASE during second block of accelerator studies required: only one week reserved for FEL studies before user experiments started
- Collaborators from different laboratories (INFN, SLAC, FNAL, CEA-Saclay, Institutes from Poland)
General statistics

Development
- 83%
- Off: 4%
- Down: 7%
- SASE: <1%
- Tuning: 6%

Total up-time: 90%

Down-time
- 21%
- Machine set-up 4%
- Start-up 39%
- SASE recovery + tuning 57%

- Kly/Mod
- IR-detector
- Controls
- Power glitch
- Laser
- LLRF
- Diagnostics
- Vacuum
- Magnets
- Other

Katja Honkavaara, FLASH Seminar, 03.04.2007
Main study subjects

<table>
<thead>
<tr>
<th>Study</th>
<th>FLASH</th>
<th>XFEL</th>
<th>ILC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLRF</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Optical diffraction radiation (ODR)</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>HOM</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>RF-gun / QE</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Projected emittance</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>BPM</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>EO-TD + LOLA</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Coherent radiation spectroscopy (CRS)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Slice parameters</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of beam time

- LLRF: 36%
- ODR: 8%
- HOM: 7%
- RF-Gun / QE / Laser: 7%
- Projected emittance: 6%
- BPM: 6%
- EO+LOLA: 4%
- Machine set-up: 4%
- Slice measurements: 2%
- Long bunch trains: 2%
- Energy collimator: 4%
- Lasing double pulse: 2%
- Miscellaneous: 7%
LLRF developments: RF-Gun

- RF-gun operated with 800 us flat top (typically 400 us)
- Investigation of phase stability along long macro-pulses (up to 30 bunches, different bunch frequencies)
- Development of mechanism to compensate non-linearities in forward power; Linearization of forward and reflected power
- Test of new IQ detector
LLRF Developments: Modules, klystrons

- Beam load compensation and exception handling
- Beam stability at BC2: Examination of effects of different RF control methods
- Test of influence of temperature in injector racks on LLRF parameters and SASE
- Many tests with ACC1 (SIMCON):
 - Fast adaptive feed forward
 - Transient measurements with different methods
 - MIMO controller optimization
 - Multi-channel complex controller based system parameters identification
 - Test to drive with 9 MHz IF (new IQ detector and digital down converter)
- Test of new vector modulator (ACC1)
- Test of SIMCON at ACC2/3 (16 cavities)
- Klystron linearization (Kly5) and automation of klystron operation

Large contribution from collaborators from Polish institutes
Optical diffraction radiation (ODR)

- Goal: development of non-destructive beam size monitor based on measurement of ODR angular distribution (→ XFEL, ILC)
- Recent results:
 - OTR angular distribution with and without polarizer
 - After optimization beam narrow enough for 1 mm and even for 0.5 mm slit. Series of images of ODR angular distribution collected. Promising results, off-line analysis on-going.
- Measurements at FLASH complicated
 - Beam optics not well-known in by-pass, position of experiment not optimal for a vertical waist → much time spent to optimize beam through the slit
 - Electron beam energy (670 MeV) still too low (sensitivity) → Measurements will continue in autumn with highest possible electron beam energy

Experiment carried out by collaborators from INFN-LNF / Tor Vergata

Katja Honkavaara, FLASH Seminar, 03.04.2007
High order modes (HOM)

- Goal: Development and commissioning of a HOM based beam position monitor system at FLASH
- Resolution and calibration measurements of HOM BPMs
 - Single / multibunch
 - On / off-crest
 - Comparison with “normal” BPMs
- HOM BPMs now available in DOOCS

Collaborators from SLAC and FNAL
RF-gun / QE / Laser

- Measurements of
 - Dark current
 - Beam images with different solenoid settings
 - Beam momentum
- Quantum efficiency and QE map
 - Different RF-gun phases
 - Different cathodes
- Laser set-up for SASE runs

\[p_{\text{mean}} = 4.7809 \]
\[p_{\text{rms}} = 0.03550 \]
Projected emittance

- Commissioning of emittance measurement system in SEED section
- Emittance measured at injector (OTR), SEED (OTR) and undulator (WS)
 - Injector and SEED: similar results; matching works
 - Results in undulator inconsistent; problems with matching, different wires and PM voltages gave different results
- Measurements continued during following FEL studies. Problems with WS extensively studied and (partly) solved
- Summary and results will be given in a FLASH seminar by E.Prat
Beam Position Monitors

- Re-entrant cavity BPM prototype (XFEL)
 - CEA-Saclay
 - Electronics re-adjusted, calibration and resolution measured
- Studies on BPM calibration procedure
- Studies on stripline BPM with improved electronics
- Studies on XFEL button BPM prototype
• EO (Electro-optical) – TD (Temporal detection) measurements parallel to LOLA measurements
• Measurements of slice emittance and slice energy spread + studies of bunch tilt
• Coherent radiation spectroscopy (CRS)
 – Spectra taken for different bunches in the bunch train, with different detectors, and different phases of RF-gun and accelerator modules
• Long bunch train operation
 – Commissioning of toroid protection system
• Test of double pulse lasing
 – New set-up of photo-cathode laser pulse doubler; second pulse delayed by 9.23 ns
• Test to drive ACC2/3 by klystron 6 instead of klystron 5
• Tilt studies at BC2
• Test of SR cameras at BC2
• Energy stability measurements
• Collimator studies (ECOL)
• Test of LOLA kicker
• CSR studies at different charges
• Pyro phase scans
• ….
Summary

• Many different studies and developments especially in LLRF, beam dynamics, and electron beam diagnostics
• Collaborators out-side DESY; Students preparing Theses
• Many of studies continued in the following FEL study blocks
• Next Accelerator / FEL study periods after the FLASH shutdown (Aug/Sep 2007)
 – Requests of beam time will be asked soon (April)
 – Procedure to request beam time changed: a common form for both accelerator and FEL study periods in FLASH e-logbook
 – More details in FLASH seminar 17.4.2007