

Analysis of coherent terahertz synchrotron radiation with a superconducting hot electron bolometer

H.-W. Hübers

Deutsches Zentrum für Luft- und Raumfahrt

Institut für Planetenforschung

Rutherfordstr. 2, 12489 Berlin

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 1 > DESY, 14.11.2006

Outline

- Coherent synchrotron radiation at THz frequencies
- Superconducting hot electron bolometer (HEB)
- Single pulse detection with HEB
- Outlook

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Revolution:

- ➤ 1.25 MHz, 0.8 µs, 240 m
- > InSb hot electron bolometer ($\tau \approx 1 \ \mu s$)

Bunch separation:

- ➤ max. 400 bunches
- ➤ 500 MHz, 2 ns, 60 cm
- superconducting hot electron bolometer

Bunch length

- > >35 ps, >5 mm (normal user optics)
- > <7 ps, <1mm (low alpha optics)</pre>
- ➤ autocorrelation

14.11.2006

Coherent THz Radiation from a Synchrotron

Dedicated machine mode:"low $\alpha^{\text{\tiny "}}$ optics

- Bunch shortening down to and below the mm-range
- Emission in the THz range is drastically enhanced

 $\mathsf{P} = \mathsf{N} \mathsf{P}_1 (\mathsf{1} + \mathsf{N} \mathsf{f}_\lambda)$

hν

 $\sigma_{\tau} > \lambda$

hν

 $\sigma_{z} \leq \lambda$

v ≈ c

 P_1 : power from a single electron

longitudinal bunch length intensity vs. number of electrons

I~N

I~N²

- N: number of electrons
- $f_{\lambda} = exp[-(2\pi\sigma/\lambda)^2]$ (form factor)
- $\boldsymbol{\sigma}$: rms bunch length

normal user optics

σ_z > 5 mm ∆t > 35 ps

 $\alpha = 7.10^{-3}$

 $\sigma_z \le 1 \text{ mm}$ $\Delta t < 7 \text{ ps}$ $\alpha \approx 10^{-4}$

N

low alpha optics

Synchrotron Spectrum

N-times higher intensity (Gaussian bunch assumed)

Cut-off due to shielding effects

Powerful source emitting in the THz and sub-THz range

Incoherent vs. Coherent SR

- Intensity extends to higher wavenumbers than expected for Gaussian bunch shape.
- Power increase of up to 100000 compared to the incoherent SR.

M. Abo-Bakr et al., Phys. Rev. Lett. 90, 094801 (2003)

Applications of CSR

FIG. 4. Near-field THz image of a section of a parthenocissus leaf. Note

U. Schade et al., APL 84, 1422 (2004)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

FIG. 2. (Color) Measured *c*-axis polarized near-normal reflectivity of Bi₂Sr₂CaCu₂O₈ (upper panel) for various representative temperatures at or below the superconducting transition temperature, T_c . A resonance that shifts with temperature and disappears above T_c is clearly observed. The lower panel shows the calculated reflectivity of a superconductor with a shifting Josephson plasma resonance. The inset of the top panel shows the temperature dependence of the unscreened superfluid plasma frequency as determined from fits to the data.

E.J. Singley et al., PRB **69**, 092512 (2004)

FIG. 1 (color online). Calculated equilibrium longitudinal distribution for different currents per bunch using the shielded SR wake. BESSY II case with a natural bunch length of 2.5 ps.

FIG. 2 (color online). CSR gain as a function of the wave number $1/\lambda$. The BESSY II data for two different currents per bunch are compared with the shielded SR calculation and with the curve for a Gaussian distribution of the same length.

F. Sannibale et al., PRL 93, 094801 (2004)

Bolometer

Heat transfer:

$$C \frac{dT}{dt} = P(t) - G (T - T_0)$$

C: heat capacity G: heat conductivity

Temperature modulation:

$$\Delta T = \frac{\Delta P}{G \sqrt{1 + \omega^2 (C/G)^2}}$$

Responsivity:

$$R(\omega) = \frac{\Delta V}{\Delta P} \propto \frac{1}{G \sqrt{1 + \omega^2 (C/G)^2}}$$
$$\omega <<1/\tau : R(\omega) \propto \frac{1}{G}$$
$$\omega >>1/\tau : R(\omega) \propto \frac{1}{\omega C}$$
$$\tau = C/G : bolometer time constant$$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 8 > DESY, 14.11.2006

Superconducting Nanobridge

Dimensions:

- L: 0.2 1.0 µm
- w: 1 4 µm
- d: 3.5 nm

Superconducting Hot-Electron Bolometer

Response Time

Time constants:

$$\tau \approx \tau_{e-ph} + c_{ph}/c_e \tau_{esc}$$

$$\tau_{e-ph} \approx 10 \text{ ps for NbN (T_c = 9 \text{ K})}$$

$$\tau_{esc} = 4d/\alpha u \approx 38 \text{ ps (d = 3.5 nm)}$$

Fast device:

- material with small $\tau_{\text{e-ph},}$ large u
- thin films, small d
- large phonon transmissivity $\boldsymbol{\alpha}$

Velocity of domain walls controls the bandwidth.

Measurements of time constants

- electro-optic sampling
- λ = 386 nm
- analysis with 2T model

FIG. 1. Experimental (dots) and simulated (solid, dotted, and dotted–dashed lines) responses of a 3.5-nm-thick NbN HEP to a 100 fs excitation pulse. The main plot time resolution is 25 ps; the time-resolved rising part of the signal is shown in inset. Ambient temperature was 2.15 K.

FIG. 2. Time-resolved experimental (solid line) and simulated (dotted and dotted-dashed lines) responses of a 3.5-nm-thick NbN HEP to a 100 fs excitation pulse. Ambient temperature was 10.5 K.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft K. Ilin et al., Appl. Phys. Lett. 76, 2752 (2000)

Design

- NbN film: 3.5 nm thick (dc reactive magnetron sputtering)
- Transition temperature: 9 K, width: ≈ 0.5 K
- Si substrate: > 10 k Ω cm
- Two arm log-spiral antenna terminated by 50 Ω coplanar line

J. Appl. Phys. 88, 6758 (2000)

6 or 12 mm diameter extended hemispherical Si lens with Parylene AR coating.

Antenna Pattern

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 16 > DESY, 14.11.2006

Frequency [THz]

Spectral Response

DLR

Spectroscopy: Experimental Setup

Martin-Puplett Spectrometer at IRIS Beamline

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 18 > DESY, 14.11.2006

Experimental Setup

- about 9 m from source point to detector
- Bias-T: 0.1 -18 GHz
- Amplifier: 0.1-12 GHz
- Sampling oscilloscope: 50 GHz

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Folie 19 > DESY, 14.11.2006

Measurement with InSb Detector

InSb detector ($\tau_{rise} \approx 200$ ns, $\tau_{decay} \approx 400$ ns)

M. Abo-Bakr et al., Phys. Rev. Lett. 88, 25481, 2002

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 20 > DESY, 14.11.2006

H.-W. Hübers et al., Appl. Phys. Lett. 87, 184103 (2005)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 21 > DESY, 14.11.2006

Single Pulses Detected with a Superconducting HEB

Single Pulse: Rise Time

Single Pulse

R = 0.9, D = 170mm, L = 9.1m

H.-W. Hübers et al., Appl. Phys. Lett. 87, 184103 (2005)

Stable and Bursting Pulses

Interferograms measured with different detectors

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 26 > DESY, 14.11.2006

Spectrum of stable CSR

Spectrum of CSR in bursting mode

1) Synchronization of UV/Vis and THz radiation

all dimensions in mm

2) Single pulse spectroscopy

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 29 > DESY, 14.11.2006

3) Faster detector with YBCO

Fast non-bolometric response (<2 ps) but slow bolometric response (>2 ns).

FIG. 1. Measured voltage transient (dots) and the fitted nonequilibrium electron temperature (solid line), when the bridge was biased in the resistive hot-spot state. The inset shows the bolometric part of the photoresponse, registered with the help of the 14 GHz-bandwidth oscilloscope.

M. Lindgren et al., APL 74, 853 (1999)

4) Faster detector with electrothermal feedback

Thanks to

M. Greiner-Bär, S. Pavlov, H. Richter, A. D. Semenov

M. Abo-Bakr, J. Feikes, K. Holldack, U. Schade, G. Wüstefeld

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Folie 31 > DESY, 14.11.2006

Photoconductive Detectors

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 32 > DESY, 14.11.2006

InSb-Detector: Basics

Folie 33 > DESY, 14.11.2006

6 8 10

4

2

Photoionization Spectroscopy

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 34 > DESY, 14.11.2006