Passive Time-Of-Flight Measurements at FLASH

Martin Kollewe

MVP/DESY FLASH Meeting 24.Oct.2006

- 1) Motivation and Principle 2) Error Sources 3) Measurements and Results
- 4) Conclusions

Figure 4: Comparison of the charge density profiles, downstream of the bunch compressor, when the 3^{rd} harmonic section is or not operated.

Proposed Measurement Strategy

Acceleration (ACC1 + ACC39):

$$z_{m} = z_{i}$$
$$p_{m} = p_{i} + \kappa z_{i} + \mu z_{i}^{2}$$

Compression (BC2):

$$\begin{array}{c} p_{\rm f} = p_{\rm m} \\ z_{\rm f} = z_{\rm m} + R_{56} \, \delta_{\rm m} + T_{566} \, \delta_{\rm m}^{-2} \end{array} \qquad \delta = (p - p_{\rm 0}) \, \textit{/} \, (p_{\rm 0} + p_{\rm Gun}) \end{array}$$

To measure: κ , μ , $R_{_{56}}$ and $T_{_{566}}$:

- 1. Measure R₅₆ and T₅₆₆ for different BC2 currents, ACC39 off, by ACC1 RF-phase scans
- 2. Measure κ and μ for given BC2 current, ACC39 on, by (ACC1+ACC39) RF-phase scan

Instrumentation and Signal Flow

Monitor Layout

Motivation and Principle Summary

O Four Time-Of-Flight monitors are installed at FLASH

- -> To control and optimize operation of third harmonic cavity -> To control and optimize bunch charge distribution
- -> To determine ACC RF on-crest angles of dark current and beam
- -> To measure gun RF phase with respect to laser phase (?)
- O Principle of Measurement
 - FLASH standard signal processing, averaging over macropulses
 - Measure Longitudinal Transfer Map of Bunch Compressors
 Measure RF field signature of ACC1+ACC39

Steering effects during RF phase scans

ACC23 RF phase scan (90° around on-crest phase):

Distance BPM – Module: 23m

(Measurements at late shift 03.Aug.2006)

Dependence on transversal beam position of TOF monitor '1UBC2'

Independent measurements by K. Hacker & Fl. Loehl:

2.8 ps/mm - 4.4 ps/mm

Model calculations by K. Hacker:

3.8 ps/mm – 5.5 ps/mm

Error Sources Summary

O Temperature effects

are long term – but measurements are short term

O Charge per bunch sensitivity

eliminated by differential measurements

O Beam horizontal position influence

compensation by 'cold-combiner' under development

Passive TOF-measurements at FLASH/FLASH Seminar 24.Oct.2006/Kollewe

12.May.05 16:45.25

On crest phase determination - 1. Dark current -

Passive TOF-measurements at FLASH/FLASH Seminar 24.Oct.2006/Kollewe

On crest phase determination - 2. Beam -

- On-crest phase by eye

(minimum energy spread on screen 3DBC2): **31.5** $^{\circ}$

- Pyro-detector maximum signal ('maximum compression') at 42.5°

RF On-Crest Phase Measurements Summary

O RF On-Crest Phase Determination Operative

- for dark current
- for beam
- averages over macropulses

O Tested and used for ACC1 and ACC23

O To be tested for ACC45

Longitudinal Transfer Map Coefficients

Longitudinal Transfer Map Measurements Summary

O First measurements of R_{56} and T_{566} done for BC2 and BC3

beam steering effects during module RF scans improvement of measurement accuracy required

 \bigcirc R₅₆ and T₅₆₆ measurements to be done for collimator section

Conclusion

- A TOF Monitor System is installed at Flash to optimize the operation of the coming 3rd harmonic cavity
- In addition it is used/can be used to measure dark current and beam on-crest phases of all module(-groups)
- First measurements of R_{56} and T_{566} of BC2 and BC3 have been done as part of the development of the 3rd harmonic cavity operation procedure

Detailed information in TTF logbook directory doc/SubSystems/Time-Of-Flight