Neutron and Gamma Radiation Measurement at FLASH Accelerating Modules 4 and 5 running at High Gradients

Bhaskar Mukherjee

FLASH Seminar @ DESY 17 October 2006

Radiation Exposure SUMMARY

1st Day (07-08-06)

RF-Gun Status: OFF Duty Cycle (Rep rate): 10 Hz Start: 16.00 hr Stop: 9.30 hr (08-08-06) Exposure Duration: 17h 30min Gradient (ACC4): ~ 22 MV/m Gradient (ACC5): ~ 22.5 MV/m Cavity Status: All Cavities are in Operation

2nd Day (08-08-06)

RF-Gun Status: OFF Duty Cycle (Rep rate): 10 Hz Start: 11.00 hr Stop: 14.10 hr (09-08-06) Exposure Duration: 26h 10min Gradient (ACC4): ~ 14 MV/m Gradient (ACC5): ~ 30 MV/m Cavity Status: All Cavities are in Operation

GRADIENT HISTORY

G_{AV} ~ 21 MV/m (ACC 5 & ACC4)

Date: 08-08-06 **G**_{AV} ~ 29 MV/m **G**_{AV} ~ 14 MV/m

LOCATION OF DOSIMETERS ALONG THE ACC4 & ACC5

Pairs of TLD Cells (gamma) and Bubble detectors (neutron) were placed atop every 2nd Cavity, indicated as D1, D2, D3 and D4

LOCATION OF DOSIMETERS ON POWER COUPLER

RESULTS (1)

Gamma Dose Rate at selected locations on the Modules ACC 4 and ACC 5

Neutron Dose Rate at selected locations on the Modules ACC 4 and ACC 5

RESULTS (2)

Gamma Dose rate measured at every Power Coupler of the Modules ACC 4 and ACC5 using GAF Chromic Films

RESULTS (3)

The gamma dose rates emanating from each of 16 cavities were unfolded using the readings of 8 gamma dosimeters. It has been assumed that the radiation source was a point source located at the centre of 5th cell of each cavity.

NEUTRON DETECTION (SPECTROMETRY)

We have estimated a 3 bin neutron spectrum near ACC 5 (3m) module using superheated Bubble Dosimeters during routine FLASH operation

Bubble Dosimeter parameters and results summary

Dosimeter Specifications	Filter Type	Bubble Counts	Φ (Thermal-0.1 MeV) [cm ⁻²]	$\Phi(0.1-15)$ MeV) [cm ⁻²]	Φ(> 15 MeV) [cm ⁻²]
BDT1 (Red/Hollow circle)	Nane	NH	1.0711500.00		
BDT2 (Red/Full circle	2mm Cd	Nf2	หม่ามา-พรһา		
BDPMD1(Bbue/Hollow circle)	Nane	พก			
BDPMD2(Bbme/Full circle)	20mm Po	NH2		ы м17-2	ы(нь-м1/ч3

Photoneutrons are produced when the accelerated field emission electrons, also RF-Gun dark current exceed the threshold energy, for Niobium: E_{Thres} ~ 10 MeV

RESULTS (4)

The 3 bin neutron energy spectrum near ACC 5 during routine operation evaluated using superheated emulsion (bubble) dosimeters.

EXPLANATIONS

0.1-15 MeV Bin: Giant Dipole Resonance Neutrons/mainly Displacement Damage/some SEU/moderately thick (<1 m) Concrete or Polyethylene shield needed

> 15 MeV Bin: High-Energy tail (Photo-Pion production)/mainly Displacement damage/SEU via primary knockout atom (PKA) process/Thick (>1m) concrete shield.

Thermal Bin: Produced by room scattering of fast neutrons (above cases)/mainly SEU by (n, alpha) reaction with Boron atoms in BPSG in microchip/few mm thick borated polyethylene shield needed.

RESULTS (5)

Estimation of the mean Gradient of the Accelerator Modules using the Real-Time Neutron Monitor (RADMON) installed at 3m from the ACC5

Number of SEU detected by the neutron monitor is displayed as a function of elapsed time. The beam trimming periods are indicated as "BT". The neutron fluence rate is calculated using the calibration factor: $k = 3.9x10^4$ cm⁻²/SEU

Region	Duration	SEU recorded	∮ 5: n.cm ⁻²	Φ_{B} : n cm ⁻² . h ⁻¹	Gradient
(a)	3h30m	8	3.23 × 10 ^e	9.23 × 10 ⁸	??
(b)	8h	103	4.01×10^{6}	5.01 × 10 ⁵	??
(c)	10h	8	3.46 × 10°	3.46 × 10°	??
(d)	3h30m	64	2.49 × 10 ⁶	7.11×10^{5}	??

The accelerator gradient (Col 6) is directly proportional to neutron fluence rate (Col 5) estimated in real-time using the SRAM based neutron monitor.

SUMMARY AND CONCLUSION

We have explicitly evaluated the gamma and neutron dose rates near the ACC 4 and ACC 5 modules produced by field emission electrons in the cavities.

The gamma dose rates were found to be 2 orders of magnitude higher than the neutron dose rates.

Both gamma and neutron dose rates rise exponentially with the increment of the module gradient.

We also have evaluated the gamma dose rate at every power coupler of modules ACC and ACC 5 using GAF Chromic films.

The radiation field emitted by each of the nine cavities per module was unfolded by using the readings (x 8) gamma detector (inverse calculation).

Pin pointed the radiation pattern (characteristic) of individual cavities. This makes us able to distinguish between the "good" and "bad cavity. The "bad" cavities produce stronger radiation field due to higher field emissions.

We have estimated the neutron energy distribution (3 bin spectrum) near the ACC5 During routine linac operation.

The estimated neutron and gamma doses and energy distribution will be used as the source term (benchmark) for various shielding design related tasks of the future XFEL.

THANK YOU FOR YOUR ATTENTION