

Accelerator studies at FLASH 24.7-14.8.2006

Katja Honkavaara, FLASH seminar, 5.9.2006

Accelerator studies in summer 2006

- Requests collected well in advance, beam-time has been allocated according to available beam time and possibilities, supervised by the BAC
- Requests for ~ 120 shifts (63 shifts available)
- Some of studies possible parallel, but still almost by factor of 2 more requests as available beam time
- Some studies shifted to FEL study periods
- Collaborators from different laboratories

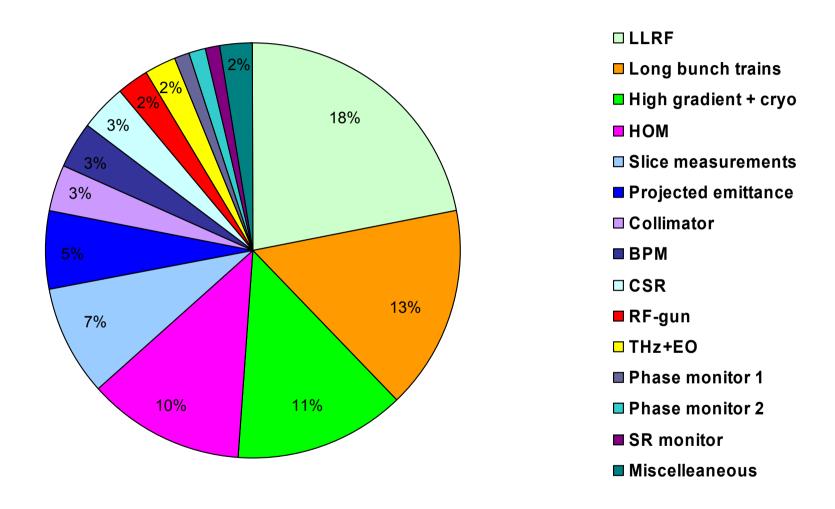
Study subjects

Study	FLASH	XFEL	ILC
High gradient / cryo	(x)	(x)	х
НОМ	х	х	х
Long bunch trains	х	х	
LLRF	х	х	х
Projected emittance	х	Х	(x)
Slice parameters	х	х	
CSR effects		х	
Collimator studies	х		
Electron beam diagnostics (BPM, Phase monitors, THz, EO, SR)	х	х	(x)
RF-gun / QE / Laser	х	(x)	

General statistics

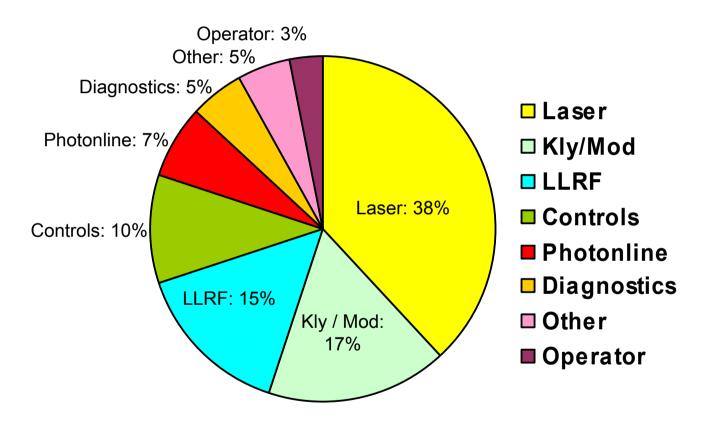
	Done	Planned
Accelerator developments	80%	89%
Tuning	10%	2%
Down	6%	5% (contingency)
Off (Maintenance)	4%	4%

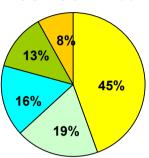
Distribution of beam time

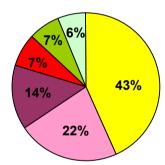


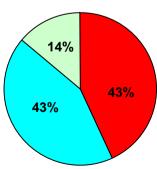
Beam time (including contingency)	Done	Planned	Comments
LLRF developments	18%	17%	Including parallel: 26% (24%)
Long bunch trains	13%	20%	Including tuning: 17%
High gradient + Cryo	11%	13%	
HOM	10%	10%	
Slice measurements	7%	7%	
Projected emittance	5%	6%	
Collimator studies	3%	5%	
ВРМ	3%	5%	
RF-gun / Laser / QE	2%	0%	Including parallel: 6% (6%)
CSR	3%	5%	
THz + EO	2%	3%	Including tuning: 3%
Phase (beam arrival time) monitor	1%	2%	
Phase monitor	1%	1%	
SR monitor	1%	1%	
Miscellaneous	2%	0%	

Distribution of beam time



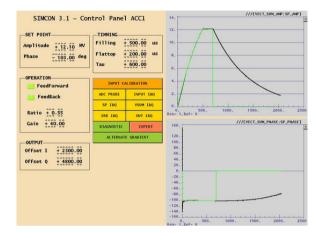

Downtime

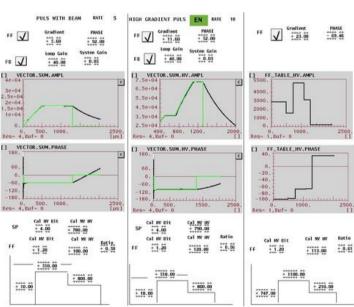

Total downtime 6%


Week 30: 11%

Week 31: 4%

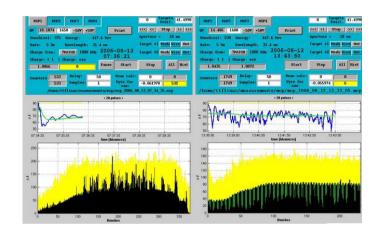
Week 32: 2%

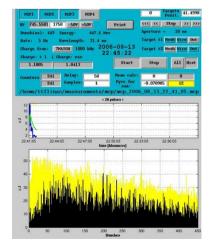


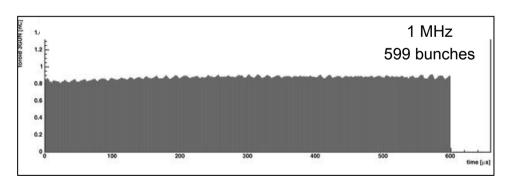


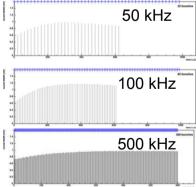
LLRF developments

- Installation of SIMCON 3.1 board to ACC1
 - → ACC1 controlled by FPGA instead of DSP
- Alternating gradient ACC4/5
 - Successful test to run ACC4/5 at 10 Hz with
 - Low gradient pulse (5 Hz) for beam (SASE)
 - High gradient pulse (5 Hz) for max performance of the module or with step gradient
 - SASE not disturbed
 - → can be used as permanent running mode
- Miscellaneous studies
 - Developments of LLRF controls based on SIMCON (FPGA)
 - Beam load compensation of ACC1 with SIMCON
 - Transient measurements
 - Characterization of klystron non-linearities
 - RF and klystron FSM
 - Detuning estimation
 - RF-gun studies (e.g. long RF pulse)
- Collaborators from Poland and TU-Harburg

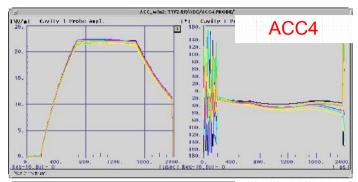


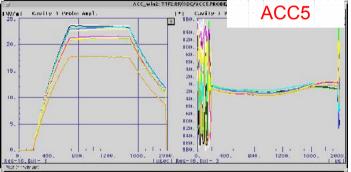


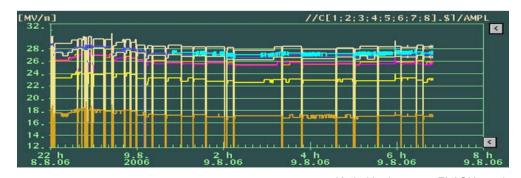

Lasing with long bunch trains

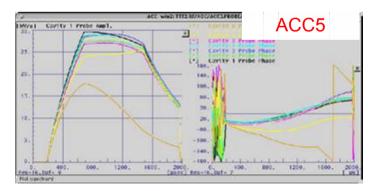


- Up to 600 bunches (1 MHz) through the undulator
 - 500 kHz, 100 kHz, and 50 kHz tested as well
- Lasing with at least 450 bunches (detector limit)
 - Level: tens of uJ
- Problems:
 - Toroid protection system not yet in operation
 - Improvements required for photon diagnostics
 - Beam loading compensation and other LLRF adjustments for 800 us flat top
 - Activation of beam line components due to darkcurrent (mostly from RF gun)

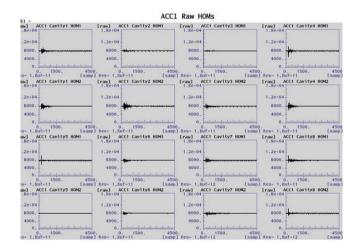


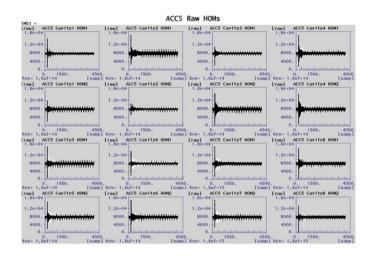


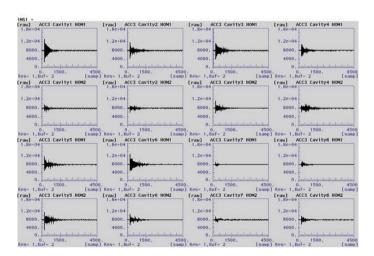

High gradient + cryo measurements



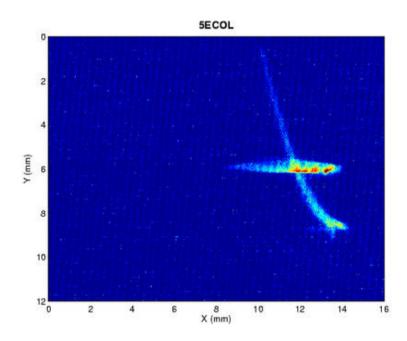
- ACC4/5 running with 10 Hz
- ACC4 ~ 20 MV/m and ACC5 ~ 22.5 MV/m
 - Run ~ 17 h
 - Cryo and radiation measurements (gammas and neutrons)
- Max gradient of ACC5, ACC4 gradient reduced
 - Run ~ 26 h
 - ACC5: ~ 28 MV/m (cavities 8 and 6 slightly detuned to get more power to other cavities)
 - ACC4: ~ 12 MV/m
 - Maximum cryogenic load to test the cryo system
 - Radiation measurements (gammas and neutrons)

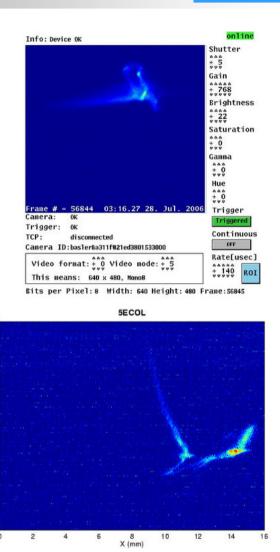





High order mode (HOM) measurements

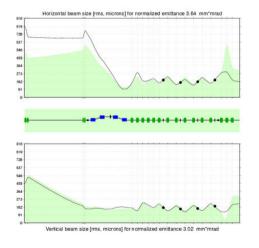
- Development of on-line BPM like display of HOM based beam positions
- Dependence of HOM signal on the module phase
- Several scans done for each module
- Parallel: gather experience of DOOCS based control system
- Collaborators from SLAC, Fermilab, KEK

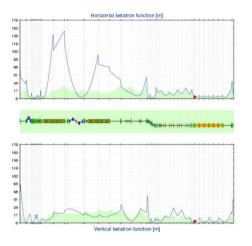


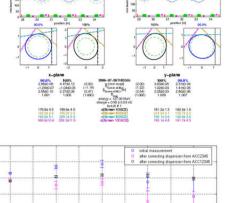


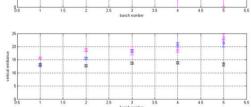
Measurements of slice parameters

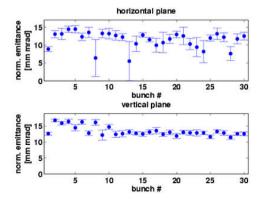
- Measurements of energy-time correlation
- Data taken for slice emittance and spatial tomography under SASE conditions
- Study of the longitudinal tilts of the bunch

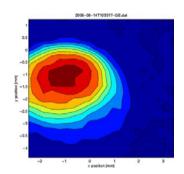


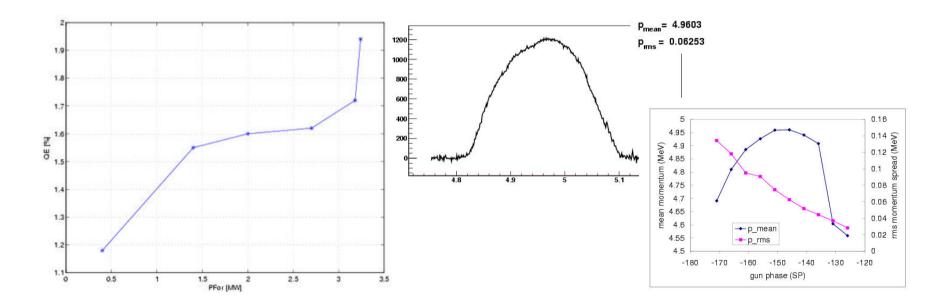



Projected emittance

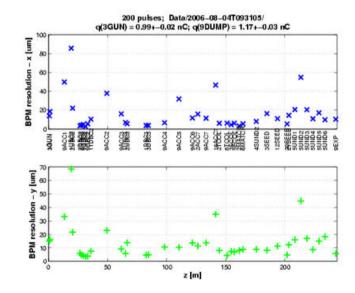


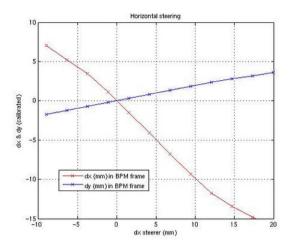

- Emittance measurement program integrated with optical tool box by V.Baldin and N.Golubeva
- Measurements of projected emittance at DBC2 and undulator (on-crest and off-crest) + dispersion corrections
- Comparison with predictions from linear optics
- Discrepancies
 - Emittance growth by factor of ~ 2
 - Disagreements with linear optics
 - → More studies required

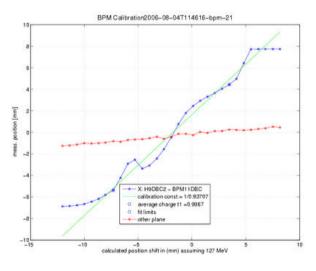

Katja Honkavaara, FLASH seminar, 5.9.2006


RF-gun / QE studies

- QE measured as a function of gun power
- Software from PITZ to measure gun momentum distribution integrated to FLASH
- Gun momentum and momentum spread measured as function of gun phase






BPM

- Cold reentrant BPM prototype (Saclay)
 - Adjustments, noise studies, calibration
- Study on the dependency of BPM resolution on the charge (0.05 - 1.2 nC)
- Study on non-linearity of stripline BPMelectronics
- Timing and calibration checks

Miscellaneous studies

- Coherent synchrotron radiation (CSR)
 - CSR induced centroid shifts measured by LOLA for two different optics in BC2
 - Problems: bunch tilt, matching to DBC2
- Synchrotron radiation monitor BC2
 - Calibration of energy axis, SR images taken for several ACC1 phases
- Collimator studies
 - Acceptance of collimator 2TCOL measured in FEL mode and in BYPASS mode
- THz + EO measurements
 - THz: Spectra with old and new pyrodetectors. Shortest ever wavelengths (1.3 to 2.3 um) of coherent transition radiation measured.
 - EO: EO signal dependence on beam position. Calibrations for EO laser polarisation. EO timing measured in parallel with phase monitor timing.
- Phase (beam arrival time) monitor (ACC7)
 - Studies on orbit dependence
- Phase monitor
 - Test of phase monitor 4DBC3

Summary

- Important goals achieved:
 - Lasing with long bunch trains
 - ACC1 controlled by SIMCON 3.1 (FPGA)
 - Successful test to run ACC4/5 with 10 Hz with alternating gradient
 - High gradient + cryo test ACC4/5
 - HOM measurements (involved a large collaboration)
 - Studies on slice parameters and projected emittance (linear optics)
 - Several studies and developments on LLRF, electron beam diagnostics, RF-gun, CSR, ...
- Results will be presented in FLASH seminars during autumn 2006
- Accelerator study blocks before shutdown in spring 2007
 - KW 50-51: 11.-22.12.2006
 - KW 2-3: 8.-21.1.2007
 - Partly used for start-up and machine set-up for SASE
 - Requests of beam time for both blocks will asked soon