XUV pulse duration @ FLASH

Stefan Düsterer for the "pulse duration team"

SASE pulse – what we have to deal with?

Overview: pulse durations 2007-2012

Schedule ... what was done

Schedule for the short pulse studies Feb / Mar 2012

				last update: 15.12.2011	
		morning shift (7:00-15:00)		afternoon shift (15:00 -23:00)	night shift (23:00 -7:00)
27.2.12	Мо	maintenance		recover from 9mA startup	Startup 13.5 +- 0.1 nm, 250 kHz, as many pulses as possible
28.2.12	Tu	Startup 13.5 +- 0.1 nm, 250 kHz, (BL2 AC. Parasitic) as many pulses as possible		PREP EXP THz streak BL3 (13.5 nm)	PREP EXP Afterburner (13.5 nm)
29.2.12	We	PREP EXP AC BL2 (Afterb. Parasitic?) (13.5 nm)		PREP EXP PG2 setup (13.5 nm)	PREP EXP PG2 AC (13.5 nm)
1.3.12	Th	PREP EXP Reserve	bu.	setup short pulse 13.5 +- 0.1nm , 250 kHz, as many pulses as possible	setup short pulse 13.5 nm , 250 kHz, as many pulses as possible
2.3.12	Fr	Spectr PG2 / statistics EXP PG2 AC (13.5 nm)	ge meeti	Spectr PG2 / statistics EXP THz streak BL3 (13.5 nm)	EXP Afterburner (13.5 nm)
3.3.12	Sa	Spectr PG2 / statistics EXP BL2 AC (13.5 nm)	shift exchan	Spectr PG2 / statistics EXP PG2 AC (13.5 nm)	EXP Reserve
4.3.12	Su	setup short pulse 24.0 +- 0.2 nm , 250 kHz, as many pulses as possible		setup short pulse 24.0 +- 0.2 nm , 250 kHz, as many pulses as possible	setup short pulse 24.0 +- 0.2 nm , 250 kHz, as many pulses as possible
5.3.12	Мо	Spectr PG2 / statistics EXP PG2 AC (24.0 nm)		Spectr PG2 / statistics EXP THz streak BL3 (24.0 nm)	EXP Afterburner (24.0 nm)
6.3.12	Tu	Spectr PG2 / statistics EXP BL2 AC (24.0 nm)		EXP Reserve	EXP Reserve
7.3.12	We	Maintainance			
8.3.12	Th				

Goals for the short pulse studies

- 1. Calibrate "indirect" methods (fast) against "direct" ones (time consuming)
- 2. How good is the correlation between **electron** diagnostics/pulse length and **photon** diagnostic / pulse length
- 3. Find out advantages / disadvantages of different methods
- 4. Define recipe **how to tune** short pulses

The methods for photon pulse measurements

Indirect methods / Electrons

- Crisp THz spectrometer
- LOLA
- Beam Compression Monitor (BCM)

Indirect methods / Photons

- Spectral characteristics
- Pulse energy fluctuations
- "afterburner"

Direct methods / Photons

- Autocorrelation
- Reflectivity measurements
- THz streaking

Electron Diagnostics: LOLA

PRO:

- very good resolution
- pulse duration and energy spread
 CON:
- only for single bunches so far (work in progress)
- •Not parasitic

Electron Diagnostics: BCM

Setup BCM (Beam Compression Monitor)

Courtesy of S.Wesch

PRO:

- parasitic
- bunch resolving **CON:**
- no info about bunch shape / energy spread

Electron Diagnostics: CRISP

Beamline overview

Spectrometer

E.Hass (University of Hamburg)

PRO:

- reconstructed bunch shape for
- single bunches
- •Easy to use
- works for bhunchtrain

CON:

Needs complicated math to get to bunch shape (no energy spread)Not parasitic

Indirect PHOTON methods: spectral spikes - correlations

Courtesy N. Gerasimova

Indirect PHOTON methods: Statistical fluctuations

PRO:

- rel. easy to use
- Relies on well tested theory **CON:**
- •(strictly)only valid for linear regime
- Only **lower limit for pulse dur.** in saturation
- •remove machine-related fluctuations
- •Spatial and temporal modes are mixed

$$\begin{split} \tau_{fel} &= M \tau_{coh} \\ p(W) &= \frac{M^M}{\Gamma(M)} \left(\frac{W}{\langle W \rangle} \right)^{M-1} \frac{1}{\langle W \rangle} \exp\left(-M \frac{W}{\langle W \rangle} \right) \\ M^{-1} &= \sigma_W^2 = \langle (W - \langle W \rangle)^2 \rangle / \langle W \rangle^2 \end{split}$$

Ackermann et al., Nature Photon.1(2007)336

Courtesy: E. Schneidmiller, M. Yurkov Stefan Düsterer | FLASH seminar | 29.5.2012 | Page 12

Indirect PHOTON methods: "afterburner"

Direct methods

Direct PHOTON methods: XUV reflectivity

X-Ray Reflectivity of Si₃N₄

Direct PHOTON methods: auto correlation

Direct PHOTON methods: auto correlation

Direct PHOTON methods: THz streaking

THz streak camera for femtosecond XUV pulse length measurement

Experimental setup

Courtesy M. Drescher

Direct PHOTON methods: THz streaking

What was measured ???

Machine parameters:

13.5 nm, 150 pC, ~ 50 μJ, 30 bunches, 250 kHz -> goal ~ 50 fs

• 24.0 nm, 130 pC, ~ 50 μJ, 30 bunches, 250 kHz -> goal ~ 50 fs

Collection of data – first look on the logbook data

Results: 13.5 nm – first bunches

Results: 13.5 nm – last bunches

Results: 24.0 nm – first bunches

Results: 24.0 nm – last bunches

Things to consider - slippage

- "Ultra low" charge but still "long" pulses (streaking) 28 nm
- 80pC BUT ~ 80 fs (~ 35µJ)

Slippage @ long wavelength (28 nm)

- Saturation in middle of undulator (~ 500 periods cycles in 2.4 nm); 500 x 28 nm = 14 μ m ~ 40 fs IN ADDITION to electron and e duration detectable in spectrum / statistics, afterburner 2013.5 nm and e duration
- Reason for different scalin

Goals ... what do we have ...

- 1. Calibrate "indirect" methods (filled circles) against "direct" ones (filled stars)
- Reasonable agreement ... Max 25 fs error bars (over several shifts) including machine changes !
- 2. How good is the correlation between electron diagnostics (open squares) and indirect (direct) methods
 - Overall good correlation
 - Different (empirical) scaling for 13 nm and 24 nm (2.4 and 1.7)

•

•

- Slippage ... ?
- Need for more data to compare
- 3. Find out advantages / disadvantages of different methods
 - Direct methods are all complicated
 - Push indirect methods to become "online diagnostic tools"
- 4. Define recipe how to tune short pulses

• ... Siggi and the "machine" ...

Outlook

- Push indirect PHOTON methods to be (more) "operator friendly" operating hopefully soon
- Develop and test (cross-calibrate) electron bunch length diagnostics
- Continue with such campaigns collect data / knowledge
- > Develop direct methods on a medium term scale
 - Laser-based THz streaking as (future) pulse length monitor
 - Keep eyes open for novel techniques

Thanks

to all participants

