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Overview

> I. The International Linear Collider
ILC main specification

The 9mA collaboration

ILC challenges

> II. Simple key-concepts to understand the 9mA studies
Single-klystron multiple-cavities

Vector sum regulation

Pk / Ql control

> III. Flattening cavity gradients
Analytical approach

Accuracy assessment

> IV. Conclusions: 
Summary of the 9mA run last year (Feb. 2011)

Outlook on the next 9mA run (Feb. 2012)
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I. The International Linear Collider

> ILC main accelerating parameters

Accel. Params ILC FLASH Unit

Cavity tech. super conducting super conducting

RF freq. 1.3 1.3 GHz

Rep. rate 5 5-10 Hz

Beam current 9 1-9 mA

Average gradient 31.5 26 MV/m

RF station 10 MW klystron 
for 26 cavities

10 MW klystron 
for 16 cavities

Courtesy: 
J.Cawardine
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I. The International Linear Collider

> The reference design RF unit:       klystron power distribution scheme

> Beam current parameters 

Courtesy: 
J.Cawardine
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I. The ILC 9mA collaboration

> DESY
Nick Walker
Siegfried Scheiber
Bart Faartz
Katja Honkavaara
Holger Schlarb
Valeri Ayvazyan
Mariusz Grecki
Wojciech Jalmuzna
Wojciech Cichalewski
Tim Wilksen
Olaf Hensler
Christian Schmidt
Julien Branlard

… and many others

> ANL
Ned Arnold
John Cawardine

> FNAL
Brian Chase
Gustavo Cancelo
Warren Schappert
Yuriy Pischalnikov

> KEK
Shinichiro  Michizono
Toshihiro Matsumoto

> SLAC
Chris Adolphsen
Shilun Pei
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I. Specific objectives for the 9mA study

> Operation with gradient spread from a single source
operating gradient spread for ACC67 around +/-25%

>  Operation with high beam current
gain experience with beam loading

>   Operate as close as possible to the quench limit
challenges linked to low RF overhead

> Focus on ACC67
highest gradient
piezo
QL motors
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I. Specific objectives for the 9mA study

> Long bunch-trains with high beam loading (9mA)
800μs pulse with 2400 bunches at 3MHz, 3nC per bunch
Vector Sum control of up to 16 cavities, with +/- 20% gradient spread
Beam energy 700-1000MeV with +/- 0.1% energy stability 
Beam-based adjustments/optimization

> Operation (very) close to cavity quench limits (1MV/m or less)
Robust automation of tuning (Ql, piezo, tuners, etc..)
Cavity gradients approaching quench limits
Quench detection/recovery, exception handling

> Characterize operational limits
Low klystron power overhead
Klystron saturation regime
Saturation of control loop
Energy stability limitations and trade-offs
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I. Specific objectives for the 9mA study

> Long-pulse + high-current: achieved parameter space

Courtesy: 
J.Cawardine
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II. Some key concepts to understand the ILC study

> Gradient spread

> Power distribution
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II. Some key concepts to understand the ILC study

> Vector sum control Single-klystron multiple-cavities

Σ

__CTRL++
Set Point

Feed Forward
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II. Some key concepts to understand the ILC study

> Beam loading

> Why do we care about individual flat gradients?
“Effect of Cavity Tilt and RF Fluctuations to Transverse Beam Orbit Change in ILC 
Main Linac” K. Kubo, Jan. 2010

BEAM OFF BEAM ON
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II. Some key concepts to understand the ILC study

> Beam loading tilts scale linearly with beam current
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II. Some key concepts to understand the ILC study

> Single klystron + beam loading = gradient tilts

Klystron driveKlystron drive Klystron drive
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II. Some key concepts to understand the ILC study

> Loaded quality factor: QL

Courtesy: 
W.D. Möller

Fixed Fixed Fixed
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III. Analytical solution: Pk / Ql 

> “Solutions” to flatten cavity gradient with beam
“RF Distribution Optimization in the Main Linacs of the ILC”, Bane, Adolphsen, 
Nantista – PAC07

“Optimal Coupler and Power Settings for Superconductive Linear Accelerators”, 
Branlard, Chase - LINAC08

“Pseudo-Pk/Ql control for ACC6/7 at FLASH”, Michizono, unpublished 2010

“RF Distribution Optimization in the Main Linacs of the ILC”
Bane, Adolphsen, Nantista - WEPMS037.pdf, 2007 

Assumes a square forward power pulse
Assumes adjustable PK’s
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III. Analytical solution: “pseudo Pk” / Ql

> Analytical ‘solution’ for optimal QL

assumes “perfect” tuning

solve for QLi when possible

cavity i loaded Q

cavity i forward power during fill time [W]

DC beam current [A]

fill time (∼ beam arrival time) [s]

fill time to flat top voltage ratio 
(including beam compensation)
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III. Analytical solution:  SIMCAV, cavity simulator
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III. Analytical solution:  SIMCAV, cavity simulator
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1. Load Vcav from DAQ

2. Compute actual QL , 
PK and Δf from DAQ 
data

3. Type in QL, PK and Δf 
into simulator

4. Check agreement 
between simulated 
and FLASH data

5. Adjust QL in simulator 
to flatten tilts

6. Implement QL
corrections in FLASH

7. Check gradient 
flatness

DAQ data: Feb. 07 2011, 22:37

Ib = 4.5 mA

FLASH DAQ data

III. Analytical solution:  procedure
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> QL scan
Keep beam current 

constant but walk QL’s 
around  optimized 
value

> IB scan 
Keep optimized QL’s 

but ramp beam 
up/down
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III. Accuracy assessments
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> QL scan
Keep beam current 

constant but walk QL’s 
around  optimized 
value

> IB scan 
Keep optimized QL

but ramp beam 
up/down

III. Accuracy assessments
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III. Accuracy assessments

Courtesy: 
J.Cawardine

In the ideal case, all cavities 
have zero tilts at the same 
exact beam current

Errors in QL or in detuning 
will cause cavities to have 
zero tilts at different beam 
currents
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Before freq. tuner adjustments After freq. tuner adjustments

AMPLITUDE AMPLITUDE

PHASE PHASE

~ 0.1 MV/m

QL = 1.58x106 QL = 1.58x106

Δf = 70 Hz

III. Accuracy assessments
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III. Accuracy assessments

> QL settings are limited: no solution yet for 9mA !

ILC specs : 9 mA !

QL solutions

out of range
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What went well
> Motorized couplers / tuners
> Analytical approach proved to be useful
> Predicted optimized QL values were accurate   to 0.2e6
> Successfully implemented the tuning plan        tilts  < 0.1MV/m

What we’ve learnt
> Cavity resonance control is crucial for gradient tilts
> Limitations to the analytical approach:

How accurately can we compensate for LFD
How accurately can we measure and set QL’s +/- 2 to 5%

What is still unanswered
> No proposed solution for high beam currents (>6mA) 

implementable at FLASH
> There is not always a solution to flatten all cavities ACC6.C5 and C6

(especially when gradient spread is large) 
> No solution to bring up the machine at its highest gradient

IV. Conclusions: last 9mA run at FLASH (Feb. 2011)
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IV. Conclusions: upcoming 9mA test at FLASH (Feb. 2012)

> Machine automation
Automatic QL settings

Automatic quench detection 

Automatic piezo compensation

> Machine operation scenarios
Tuning strategies

How to ramp up the beam

How to ramp up the gradient

How to recover from a quench

> RF power overhead study
Simulate klystron saturation regime

Field control regulation saturation 

> Further reading:
FLASH 2011 Highlights

Thank You!


