
THE TECHNICAL UNIVERSITY OF ŁÓDŹ
Faculty of Electrical and Electronic Engineering

Master of Engineering Thesis

SOFTWARE IMPLEMENTATION OF MECHANISMS
IMPROVING THE RELIABILITY OF DSP SYSTEMS

IN THE RADIOACTIVE ENVIRONMENT

Marcin Wojtczak

Student’s number: 106133

Supervisor:
Grzegorz Jabłoński, PhD

Auxiliary supervisor:

Dariusz Makowski, MSc

Łódź, 2005

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

1. INTRODUCTION ... 3
2. RADIATION PROTECTION OF THE DSP SYSTEMS .. 5

2.1 RADIATION INFLUENCE ON ELECTRONIC SYSTEMS... 5
2.2 HARDWARE PROTECTION METHODS... 8
2.3 SOFTWARE PROTECTION METHODS .. 10

2.3.1 Parity control.. 10
2.3.2 Two dimensional parity control .. 10
2.3.3 Forward error correction codes ... 12
2.3.4 Reed-Solomon codes ... 19
2.3.5 Voting techniques.. 23

3. DSP-PC COMMUNICATION SYSTEM.. 25
3.1 INTRODUCTION .. 25
3.2 THE TMS320C6713 DSP OVERVIEW .. 25
3.3 HARDWARE PART OF THE COMMUNICATION SYSTEM... 28

3.3.1 DSP module .. 29
3.3.2 PC module... 30

3.4 SOFTWARE PART.. 32
3.4.1 Software for the DSP .. 32
3.4.2 Software for the PC... 38

4. IMPLEMENTATION OF RADIATION PROTECTION METHODS IN SOFTWARE.................. 42
4.1 PARITY CONTROL... 42
4.2 TWO DIMENSIONAL PARITY CONTROL.. 44
4.3 FORWARD ERROR CORRECTION CODES ... 48
4.4 REED-SOLOMON CODES... 51
4.5 VOTING TECHNIQUES... 52

4.5.1 Triple voting.. 52
4.5.2 Parallel calculations... 52

5. EXPERIMENTAL PROCEDURES CARRIED OUT IN DESY.. 55
5.1 OVERVIEW... 55
5.2 ANALYSIS OF INFLUENCE OF RADIATION ON THE DSP ... 56

5.2.1 EIA-485 transmission test ... 56
5.2.2. Internal RAM test... 58
5.2.3. DSP ALU test ... 62

5.3 EXAMPLE APPLICATIONS PROTECTED AGAINST RADIATION ... 64
5.3.1. FFT filtering of a sound signal .. 64
5.3.2. Convolution filter (without DSP/BIOS) ... 68

6. PROJECT RESULTS ... 73
6.1 MEMORY PROTECTION... 73
6.2 PROTECTION AGAINST ERRORS IN CALCULATIONS ... 74
6.3 SERIAL TRANSMISSION .. 76

7. CONCLUSIONS.. 78
REFERENCES .. 80
APPENDIX A: SCHEMATIC OF THE DSP MODULE .. 81
APPENDIX B: SCHEMATIC OF THE PC MODULE... 82
APPENDIX C: MAIN PART OF THE DSP BOOTLOADER CODE... 83
APPENDIX D: HAMMING CODE FUNCTION IN ASSEMBLY .. 85

 2

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

1. Introduction
This master's project is carried out in cooperation with Deutsches Elektronen-Synchrotron

(DESY) in Hamburg, Germany. DESY is a high-energy physics research centre, where

several different accelerators have been built. Also a new linear accelerator is under

construction. The accelerator will be controlled by electronic equipment, which will be

located in the accelerator tunnel, and therefore it will be under influence of high radiation

(mainly gamma radiation and neutrons). It is known that radiation can cause

malfunctioning of the electronics and decrease its reliability. This gives raise to a need for

further, detailed investigation of how radiation influences various types of electronic

devices and how the electronics' reliability can be increased.

Among the different types of electronic devices taken into consideration in development of

the control system for the accelerator are Field Programmable Gate Arrays (FPGA) and

Digital Signal Processors (DSP). This project is focused on analysis of the radiation on

DSP systems. The main aim of the research is to investigate if the reliability of the

irradiated DSP system can be increased by using only software methods. More detailed

explanation of the influence of radiation on electronics and the theory behind all the

software methods implemented in this project are described in Chapter 2.

The DSP system used in this project is based on a commercial off-the-shelf (COTS)

equipment consisting of a DSP Starter Kit (DSK) board from Texas Instruments. The

board includes:

- a Texas Instruments TMS320C6713 DSP operating at 225 MHz,

- an AIC23 stereo codec,

- 8 MB of synchronous Dynamic Random Access Memory (DRAM),

- 512 KB of non-volatile Flash memory.

The DSK6713 board is provided with Code Composer Studio (CCS) software which is an

integrated development environment (IDE) designed specifically to be used with the TI's

digital signal processors. This software package includes a compiler, assembler, linker,

debugger, profiler and many other tools which enable us to fully take advantage of all the

features of the DSP.

 3

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

For the purposes of the research, a communication system between the DSP placed in the

accelerator tunnel (radiation environment) and a PC computer located outside the tunnel

had to be developed. The system consisting of two printed circuit boards (PCB) has been

fabricated in the Department of Microelectronics and Computer Science (DMCS) at the

Technical University of Lodz (TUL). All the hardware and software issues connected with

the design of this communication system are described in Chapter 3.

Among the software radiation protection methods implemented in this project are parity

calculation algorithms, forward error correction codes (FEC) (for example: Hamming and

Reed-Solomon codes) and different voting techniques. The theory behind all these

algorithms is explained in Chapter 2 while the implementation details are described in

Chapter 4.

The developed system with all the implemented software methods have been tested in

DESY in April 2005. The tests were carried out in the Linac II tunnel. Linac II is a linear

accelerator, which is used as a source of positrons for the main DESY accelerator – HERA.

The electron-to-positron converter located in the Linac II tunnel is a source of high gamma

radiation and neutrons. The DSP board was placed approximately 3 m away from the

converter, which ensured high system exposure to radiation. The detailed description of the

tests is presented in Chapter 5, while all the project results are summarized in Chapter 6.

 4

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

2. Radiation protection of the DSP systems
In this chapter, radiation influence on electronic systems is briefly explained in general.

Next, some most popular hardware protection methods are described. In the last part of the

chapter, the theory behind different software methods is explained.

2.1 Radiation influence on electronic systems
In the accelerator tunnel there are two main radiation types that have a substantial

influence on all the electronic devices located in the tunnel. The first one is gamma

radiation and the second one is neutron radiation.

Gamma radiation is a high energy electromagnetic radiation produced by nuclear

transitions. It is a form of ionizing radiation, which means that individual photons that

constitute the gamma radiation have enough energy to ionize atoms or molecules. The

penetrating capabilities of gamma radiation are significant. To shield from the gamma rays,

materials of large atomic number and high density are needed. The effects caused by an

ionizing particle striking an electronic system are described later in this chapter.

Neutron influence. Neutron is a particle which has no net electric charge. Together with

protons neutrons constitute the nuclei. Because of the fact, that neutrons have no charge,

they have very high penetration capabilities. Charged particles and electromagnetic

radiation (such as gamma rays) lose their energy when they pass through the matter by

ionizing the atoms of the material they pass through. This loss of energy slows them down

and eventually stops them. However, neutrons do not take part in the ionization process.

They can be stopped only when they hit an atomic nucleus. The probability of such a

collision is very small therefore neutrons can travel a long way deep into the material

before they are stopped. When a collision of a neutron and a nucleus finally takes place,

the atom which was hit is displaced. This causes damage to the silicon lattice of an

integrated circuit. As a result, traps or other defects are created. However, high energy

neutrons can also cause nuclear reactions within the semiconductor. In these reactions

alpha particles are produced. These short range and heavily ionizing products deposit the

energy and charge which can cause a single event upset [1].

Generally, the effects of radiation on electronic circuits can be divided into two main

categories [2]:

- Total Ionizing Dose (TID),

 5

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

- Single Event Effects (SEE).

Total Ionizing Dose is a long-term radiation effect caused mainly by electrons and protons

or other ionizing particles. It involves a permanent degradation of an electronic device

subject to radiation. It is an effect of a cumulative charge deposition in the IC material and

it applies to all kinds of electronic devices (e.g. CMOS and bipolar). The degradation of

performance can be caused by a change in the threshold voltage (CMOS), increase in

current consumption or decrease in transistor gain (bipolar technology).

Single Event Effects are caused by single incidents, when an ionizing particle going

through the IC deposits enough energy to cause a change in device operation. SEE can be

divided into two main groups:

- soft-errors: Single Event Upsets (SEU), Single Event Functional Interrupt (SEFI),

- hard errors: Single Event Latch-up (SEL), Single Event Burnout (SEB) or Single

Event Gate Rupture (SEGR).

Single Event Upsets happen when a given ionizing particle deposits high enough charge in

the electronic device to change its state [3]. This is illustrated in the following figure:

Fig.2.1 An ionization particle in an NMOS transistor

Ionization creates electron-hole pairs in the substrate. This leads to a current spike that can

have an important influence on the electronic system. For example, in a SRAM memory

cell, this can cause a bit-flip. Figure 2.2 shows a typical memory cell schematic [4]. It is

designed in such a way, that there are two possible states of operation. When a '1' is stored,

transistors Q1 and Q4 are 'on' while transistors Q2 and Q3 are 'off'. When a '0' is stored Q1

and Q4 are 'off' while Q2 and Q3 are 'on'. Always two transistors are enabled and two are

disabled. When radiation particle hits one of the disabled transistors, the states of the

transistors change and the memory bit is flipped.

P substrate

N+

Gate Drain

N+

Source
SiO2

+
+

+
+

+
+

 6

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Vdd
Bit

Q1 Q3

Word Word

Q2 Q4

Bit

Fig.2.2 Memory cell schematic
SEUs do not damage the device. They only change its state (bit-flip) and therefore after

memory rewriting the device works correctly. A SEFI is a severe type of error, in which a

SEU in the device's control circuitry puts the device into an undefined state or a halt. This

requires a power reset to recover.

Hard errors can damage the electronic device permanently. The most common hard error

example is the Single Event Latch-up. This phenomenon is connected with the internal

parasitic elements of a CMOS device, which are presented in Figure 2.3 [5].

A p-n-p-n parasitic thyristor can be distinguished. It comprises of two parasitic transistors.

The PMOS source, n-substrate and p-well correspond to the emitter, base and the collector

of the lateral p-n-p transistor, respectively. The NMOS source, p-well and n-substrate are

the emitter, base and collector of the vertical n-p-n bipolar transistor, respectively. The

base of each transistor is driven by the collector of the other one and this forms a positive

feedback loop. When a radiation particle hits the CMOS structure it deposits a charge

which creates a current pulse. If the current gain product of the two parasitic transistors

(αnpn αpnp) is larger than 1, latch-up is induced. This produces a large current flow from the

power supply to the ground contact, which can damage the device (due to excessive

heating) if the power is not turned off immediately.

 7

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Fig.2.3. CMOS inverter with parasitic transistors
Another type of hard error, Single Event Burnout, can be triggered in a power MOSFET

biased in the 'off' state when a heavy ion passing through deposits enough charge to turn

the device on. This causes destruction of the device. A power MOSFET may also be

subject to a Single Event Gate Rupture, which is a formation of a conducting path (a

localized dielectric breakdown) in the gate oxide. This results in a destructive burnout.

2.2 Hardware protection methods
There are several different ways of protecting the electronic equipment against radiation.

The simplest one is to use shielding. Shielding can reduce the particle flux considerably

but it does not eliminate it completely. The main problem is that shielding is not capable of

stopping the neutron radiation. Therefore some additional techniques need to be used.

One of the solutions is to adjust the process technology to produce rad-hard chips. For

example an epitaxial bulk CMOS process can avoid the latch-up problem. Even further

improvement can be achieved by using the Silicon On Insulator (SOI) technology. This

technology process involves building of the transistors on a thin silicon layer, which is

placed on top of an insulator. This reduces the capacitances and enables much higher

speeds of the devices. It also reduces power consumption and what is most important in

terms of radiation tolerance, it eliminates the possibility of a latch-up completely. The thin

layer of silicon on top of the insulator also helps to protect the bulk from charged particles,

reducing the SEU effect. The main drawback of this technology is the cost.

Vout

p+ n+ n+ p+ p+ n+

Vin
Vdd

Vss

p-well

G G
S D D S

n-substrate

 8

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

There are also other possibilities to adjust the device fabrication process to increase

radiation immunity. For example, the gate oxide thickness can be decreased. This will

decrease the probability of creation of radiation induced trapped charges in the oxide layer

and greatly reduce the total ionizing dose effect [6]. Other techniques used in production of

rad-hard integrated circuits include low temperature oxidation, oxygen enrichment [7],

usage of retrograde wells and guard rings.

Other hardware methods include adjustments in the design of the systems to incorporate

protection against radiation. This is usually accomplished by triple modular redundancy

(TMR). In this solution the vulnerable parts of the system (for example memory cells,

registers, or single flip-flops) are triplicated and additional radiation immune circuit is used

to decide which output is the correct one. Figure 2.4 shows an example of a D-type flip-

flop realized using triple modular redundancy.

Fig. 2.4 D-type flip-flop with triple modular redundancy and voting
One of the main drawbacks of the solution is a great increase in the number of transistors

and silicon area used. The voting circuit itself is also not immune to radiation.

This was just a brief review of some of the simplest hardware radiation protection

methods. There exist several other, more sophisticated hardware solutions (for example:

hardened memory cells). However, this project is focused on improving the reliability of

commercial off-the-shelf (COTS) equipment using only software and therefore these

specific, high-cost hardware solutions are not described in detail.

input output

radiation
immune

 9

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

2.3 Software protection methods
The main focus of all the software protection methods is to control the SEUs caused by

radiation. SEUs usually affect the memory or internal registers of a processor. Therefore

most of the presented methods are focused on protection of a given memory block, which

can store either data or code of an application.

2.3.1 Parity control
This is the simplest method and at the same time it is the fastest one. Single parity means

adding 1 additional bit to the information bits. The value of the added bit should be such

that the sum of all 1's in the information bits along with the one added bit should be even.

Therefore, when an error occurs and a single bit is flipped, the total number of 1's becomes

odd. This method is capable of detecting an odd number of bit errors. This is illustrated by

the following table:

Table 2.1 Single parity control examples

 Information bits with
parity bit

Total number
of ones Errors

original signal: 1 0 0 0 1 0 1 0 1 4 (even) no errors

1 error introduced: 1 0 0 1 1 0 1 0 1 5 (odd) detected

2 errors introduced: 1 1 0 1 0 0 1 0 1 4 (even) undetected

As shown in the figure, if there are two errors, then the total number of 1's is still even and

the errors go undetected. To calculate the number of 1's in a given memory block a XOR

operation can be performed. This simple technique is very widely used in

telecommunication and electronics. It is also implemented in this project.

This method is undoubtedly the fastest of all that have been implemented in this project.

Unfortunately, it does not have the ability to correct any errors. Thus it is not well suitable

for protection of data, since even if the errors are detected, there is no way of retrieving the

original data. However, this method can be useful for protection of code, because when the

errors are detected, the code can be copied from the Flash memory.

2.3.2 Two dimensional parity control
The idea of single parity presented in the previous section can be easily extended to

achieve better error protection. An interesting way of modification of the original single

 10

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

parity calculation algorithm is to calculate the parity checksums in two directions: vertical

and horizontal direction. This is explained on the Figure 2.5. The memory bits are arranged

in 32 bit words. The parity bits are calculated for each word (row) and for each column.

32-bit words

horizontal
parity bits

vertical parity bits

Fig.2.5 Two dimensional parity
Now, there is a much greater number of additional parity bits. Beside error detection, there

is also a possibility to correct a one-bit error. Detection of errors that were previously

undetectable is now also possible. For example, if there are 2 bits flipped in 1 column, the

parity bit for this column does not indicate an error, but two horizontal parity bits show

that an error has occurred. This is shown on the figure:

32-bit words

Fig.2.6 2D parity example

The 2D parity method can be implemented in a very fast way, which is explained in

section 4.2. Its main advantages are the speed, small redundancy and the ability to correct

single bit errors.

errors

horizontal
parity bits
indicating errors

vertical parity bits

 11

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

2.3.3 Forward error correction codes
A much more sophisticated method for memory protection is known as Forward Error

Correction (FEC) codes. The main idea behind FEC codes is to add redundant bits to the

available information bits and thus obtain a message word in which some bit errors can be

detected or even corrected. To explain how these codes work, a finite field arithmetic

needs to be introduced [8], [9].

The finite field arithmetic is denoted by GF(q) (Galois Field of order q). A field is an

arithmetic structure in which after performing addition, multiplication and division on the

members of the field, obtained results are also members of that field. Because there are

only finite numbers of elements in a given field, the rules for addition and multiplication

have to be changed. In computer memory binary numbers are used. They have only two

elements: 0 and 1. Therefore the order q of the field is equal to 2 and the used field is

denoted by GF(2). Table 2.2 shows how addition and multiplication is defined in the GF(2)

arithmetic:

Table 2.2 Addition and Multiplication in GF(2) arithmetic

Addition Multiplication

+ 0 1 x 0 1

0 0 1 0 0 0

1 1 0 1 0 1

As it can be seen from Table 2.2 the addition operation is the same as a XOR operation and

multiplication stays the same as ordinary multiplication. Subtraction in this finite field

arithmetic is performed by addition. This can be easily explained. In normal arithmetic,

subtraction from a number is achieved by addition of the additive inverse of the number to

be subtracted. And the additive inverse of a number is defined as a number which, when

added to the number itself, results in zero.

 12

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

For example, to subtract a from b the inverse of a is added:

b – a = b + c

where c is the inverse of a:

a + c = 0 => a = -c

In GF(2) arithmetic both members of the field (0 and 1) are their own inverses as when

added to themselves they result in zero:

1 + 1 = 0

0 + 0 = 0

In case of division, in classic arithmetic to divide a number A by B we multiply A by a

multiplicative inverse of B. The multiplicative inverse of a number is defined as a number

by which multiplication gives a result equal to 1. As it can be seen from the Table 2.2 a

multiplicative inverse of 1 is equal to 1 and the multiplicative inverse of 0 is not defined

(the same as in classic arithmetic).

Similarly, scalar product can be also defined in GF(2) arithmetic. Let there be two vectors

x and y which are two binary n-tuples. The elements of these vectors belong to the GF(2).

The vectors are denoted as follows:

x = [x1, x2,, xn] and y = [y1, y2,, yn]

The scalar product of the two vectors is defined as:

x.y = x1 . y1+ x2 . y2 + + xn . yn

where addition (denoted by "+") is the modulo-2 addition and multiplication (denoted by

".") is performed bit by bit without carry according to the rules from Table 2.2.

There are two important terms that need to be defined before the FEC codes are explained

in detail. The two terms are a weight of a code and a Hamming distance.

Weight of a binary codeword c is defined as the number of 1's in the codeword and is

denoted as w(c). For example, weight of x=100111 is w(x)=4.

Hamming distance is defined as the number of bit positions in which two binary

sequences differ. For example, vectors x1=10010 and x2=00111 have a Hamming distance

of 3.

 13

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Hamming distance between two vectors can also be calculated as a weight of a sum of the

two vectors. In general, for a given FEC code the minimum Hamming distance between

any of the codewords of that code satisfies the following relationships:

12
1

2min

1min

+≥
+≥

td
td

where:

dmin – minimum Hamming distance

t1 – number of errors that can be detected

t2 – number of errors that can be corrected

There exist several different types of FEC codes. The most popular, and the ones used in

this project are the block codes. Block codes are codes where k consecutive information

bits are encoded into blocks of n bits where n>k by adding n-k bits, which are called the

parity bits. If the parity bits are added to the end of the information bits, then the given

code is called a systematic block code. If the parity bits are inserted between the

information bits, such a code is called non-systematic block code.

In this project, the systematic codes are used. This is mainly due to the fact that the

memory region which is protected by the codes may contain an executable code of the

DSP and inserting parity bits in this code would stop the DSP from proper operation.

The ability of FEC codes to correct and detect errors is governed by the following

equation:

!)!(
!),(e wher),(2

0 iin
ninCinC

t

i

kn

⋅−
=≥ ∑

=

−

where:

k – number of information bits in a block

n – total number of bits in a block (information + redundant bits)

t – number of bit errors, that a given code can correct

2t – number of bit errors, that can be detected

The presented inequality is called the Hamming Bound. If the equality is satisfied, the

given code is called a perfect code. One of the most popular FEC codes is the Hamming

code, which is a single error correcting perfect code. Since the Hamming code can correct

 14

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

one error, thus t = 1 and substituting it into the Hamming Bound equation gives the

following relation:

knn −= 2

A given FEC code is usually denoted as an (n, k) code. For example, the most popular

Hamming code is a (7, 4) code, which means that for every 4 bits, there are 3 more parity

bits added which yields codewords of 7 bits. In such a codeword 1 error can be corrected

or 2 errors can be detected.

To explain the idea of FEC codes, let us assume that a given message which is to be

protected from errors is a k-element vector d. The codeword which is created by adding

additional parity bits to the original message is an n-element vector c. In order to obtain

the codeword vector c from the data vector d the following operation must be performed:

Gdc ⋅=

where G is a k by n matrix called the Generator matrix defined as follows:

44444 344444 21
44 344 2143421

44 844 7648476

elements

)(21

3)(2313

2)(2212

elements)(

1)(2111

elements

...1...0000
..................................

...0...0010

...0...0100

...0...1000

n

P

kknkk
I

kn

kn

n-k

kn

k

ppp

ppp
ppp
ppp

G

k
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

−

Fig.2.7 The Generator Matrix
The equation is called the coding equation. This kind of Generator matrix is used in the

systematic codes. It can be partitioned into two matrices: Ik and P:

G = [Ik, P]

where Ik is a (k by k) identity matrix and P is a (k by (n-k)) parity matrix.

The decoding equation is given as follows:

0T =⋅Hc

where HT is the transpose of the parity check matrix H defined as:

 15

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

H = [PT I(n-k)]

To define an FEC code, it is enough to define either G, H or P matrix, as the other two

matrices can be derived from it. There is no systematic way of designing the matrices.

However there are some conditions that have to be met to obtain a working FEC code. For

a 1 error correcting and 2 errors detecting code, the minimum distance dmin of the code

must be equal or greater than 3. Since all the codewords of the code are generated by

multiplying the data bits by the G matrix, each row of G matrix must have at least three 1's.

Therefore the P matrix must have at least two 1's in each row. Furthermore, each row of

the P matrix must be different.

The decoding equation is very important as only the valid codewords (codewords without

any errors) satisfy it. Upon receiving a message which may contain errors, the received

codeword r should be substituted into the equation:

THrs ⋅=

where s is called the syndrome and r is the received codeword which is equal to the

transmitted codeword plus the errors which may have occurred in the transmission

medium:

ecr +=

and substituting this into the syndrome equation gives:

TTT)(HeHcHecs ⋅+⋅=⋅+=

From the decoding equation it is clear that the first term on the right hand side is equal to

zero, thus the syndrome is equal to:

THes ⋅=

Therefore, it is clear that the syndrome depends only on the errors introduced. If the

syndrome calculated on the receiver side is equal to 0, it means that there were no errors in

the message. If the syndrome is not equal to 0, then errors are detected. However, it may

happen that the number of errors was greater than the detectable number of errors for a

given code and the erroneous codeword is the same as one of the valid codewords. Then

the syndrome would be equal to 0 and the errors would be undetected.

 16

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

It is possible to prepare a table, in which for a given error vector, a corresponding

syndrome value is calculated. Then, upon receiving a message, the syndrome is calculated.

Then, there are 4 possible cases:

1) there were no errors in the message => syndrome is equal to zero

2) there were some errors and they can be corrected => syndrome is not equal to zero,

but it can be found in the prepared table and then the corresponding error vector

can be added to the received message; this will correct the errors and yield a valid

codeword

3) there were some errors, too many to be corrected, but they can be detected =>

syndrome is not equal to zero and it cannot be found in the prepared table

4) the number of errors was greater than the number of detectable errors => syndrome

may have any value, the errors are not detected nor corrected

An example (7, 4) Hamming code can be defined by the following P matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

111
011
101
110

P

This yields the following G and H matrices:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
1001011
0101101
0011110

111
011
101
110

1000
0100
0010
0001

HG

And a following table of the syndrome values for given error vectors can be prepared:

 17

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Table 2.3 Error vectors and corresponding syndromes for (7, 4) Hamming code

Error vector Syndrome value

1000000 011

0100000 101

0010000 110

0001000 111

0000100 100

0000010 010

0000001 001

The table contains only 1 bit error vectors, because the (7, 4) code can correct only 1 bit

errors. Now, assuming that a data vector d = [0011] is given, the codeword can be

calculated:

]0110010[=⋅= Gdc

If the same codeword is received, then syndrome is equal to zero. However, if the second

bit in the codeword is flipped, the received vector r=[0111001] and the syndrome is equal

to:

]101[

100
010
001
111
011
101
110

]0111001[T =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅=⋅= Hrs

The calculated syndrome can be easily found in the prepared table, in the second row, and

therefore the error vector is found: e=[0100000]. Adding the error vector to the received

codeword yields the correct (transmitted) codeword:

]0011001[]0111001[]0100000[=+=+ re

From the calculated codeword, the data bits can be extracted (first 4 bits from the left):

0011, which is exactly equal to the data vector d assumed at the beginning.

 18

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

The presented example shows how a Hamming code can be used to correct errors. This

code can correct 1 error and detect 2 errors (see the Hamming Bound equation). However,

it cannot detect and correct errors at the same time. The user has to decide whether the

errors should be corrected or detected.

There exists a solution that enables simultaneous detection of 2 and correction of 1 error.

To achieve this, one additional parity bit must be added to the codeword. Such a code is

called a modified or extended Hamming code. The additional parity bit value is set in such

a way that the total number of 1's in the whole codeword (n bits) is even. Then, when a

message is received, the following possibilities exist:

p = the total number of 1's in the received codeword

s = calculated syndrome

1) if p is even and s is equal to zero => no errors present

2) if p is even and s does not equal to zero => 2 errors are detected

3) if p is odd and s is equal to zero => 2 errors are detected

4) if p is odd and s does not equal to zero => 1 error is detected and can be corrected

The presented FEC codes can be implemented either in hardware or in software. They can

be used for protection of memory or internal registers of a DSP. In this master's project, a

(39, 32) code has been implemented in software, because of the 32bit registers of the DSP.

The implementation details are described in Chapter 4.

2.3.4 Reed-Solomon codes
Reed-Solomon (RS) codes are very popular in telecommunication and electronics. Their

main advantage over other types of error correcting codes is the ability to correct burst

errors. This is mainly due to the fact that a Reed-Solomon code is word oriented rather

than bit oriented. It treats all bit errors within 1 word as a single error. Therefore, if for

example an 8-bit word RS code is used and it is capable of correcting 2 errors, then in the

best case it can correct a total of 16 one-bit errors.

Reed-Solomon codes are a particular case of non-binary BCH codes, which belong to the

family of cyclic FEC codes [10]. In these codes finite field arithmetic is used. Hamming

codes presented in previous section used finite field arithmetic GF(2). In RS codes, Galois

fields of order 2m are used: GF(2m). Usually, a field of order 28 is used.

 19

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

An RS code can be specified by 2 parameters:

m – number of bits in a word

T – number of errors it can correct within 1 block

Usually m=8, therefore each word in a code consists of 8 bits (1 byte). The number of

words in a block is equal to N=28-1 = 255. Out of these 255 words 2T words are used as

parity (or check) words. The rest of the words are used to store data, the number of data

words is denoted by K. Therefore 2T=N-K. A compact notation for a given RS code is

denoted as (N, K, T). For example, a (255, 223, 16) code is an Reed-Solomon code that in

each 255 bytes block has 223 bytes of data and 32 parity bytes. This code can correct 16

errors or 32 erasures. Erasure is an error, which location is known. There exist also

shortened RS codes. These codes are used when 255 byte blocks are too big and are not

needed. Then a code of shorter block size can be defined. In such a situation, the remaining

bytes are filled with zeros. For example, in an (208, 192, 8) code the remaining 255-

208=47 bytes are not used and filled with zeros on the encoder and decoder side.

Reed-Solomon codes are based on Galois field arithmetic for fields of order 2m, denoted as

GF(2m). To create elements of such a field, a primitive polynomial must be chosen. A

primitive polynomial is an irreducible polynomial of degree m which divides x2m–1+1. A

most popular primitive polynomial for m=8 is f(x)=x8+x4+x3+x2+1. Assuming that α is a

root of the primitive polynomial, all non-zero elements of the field can be represented as

2m-1 consecutive powers of α: 1, α, α2, α3, ... , α255.

Addition in GF(28) is carried out by a XOR operation. However, multiplication involves

much more computations. To multiply two element of GF(28), Log and Antilog tables need

to be used, because a product of two values is the exponent of the mod (GF-1) sum of their

logarithms.

To encode a given data sequence using Reed-Solomon code, the k data bits are treated as a

data polynomial of order k-1 with its coefficients equal to 1 or 0. For example, data bits

10011 can be expressed as a polynomial d(x) = x4+x+1. A codeword is equal to the data

polynomial multiplied by the generator polynomial, which order is equal to n-k. However,

this kind of encoding produces a non-systematic code. To achieve a systematic encoding,

the data polynomial must be multiplied by xn-k and then the remainder of a division of the

data polynomial raised to the xn-k power by the generator polynomial must be added:

 20

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

c(x) = d(x)xn-k+(d(x)xn-k mod g(x))

c(x) – codeword polynomial

d(x) – data polynomial

g(x) – generator polynomial

Therefore every valid codeword is divisible by the generator polynomial.

The Reed-Solomon decoding process is quite complicated and comprises of the following

steps:

1) Syndrome calculation

A Reed-Solomon codeword has 2T syndromes that depend only on errors (not on the

transmitted code word). The syndromes can be calculated by substituting the 2T roots

of the generator polynomial g(x) into the received polynomial r(x).

If all the syndromes are equal to zero, then no errors are present in the received

message and the decoding is finished. If any of the syndromes is not equal to zero, then

the next steps need to be processed.

2) Finding the locations of the errors

This procedure involves solving simultaneous equations with T unknowns. This

process can be divided into two sub-steps:

a) Finding an error locator polynomial λ(x)

The most efficient way of doing this is to use the Berlekamp-Massey algorithm.

Another approach is to use the Euclid’s algorithm, which is easier to implement, but

less efficient. The Berlekamp-Massey algorithm for finding the error locator

polynomial λ(x) consists of the following steps:

1. Let the syndromes be denoted S1, S2, S3, ..., S2T

2. Initialize the algorithm variables: k=0, λ(0)(x) = 1, L = 0, and T(x) = x, where k is

the degree of λ(x) at this iteration.

3. Set k = k+1, Compute the discrepancy ∆k(x) as follows:

∑
=

−
−−=∆

L

i
k

k
ik

k SS
1

1
1λ

 21

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

4. If ∆k = 0, then go to step 8

5. Modify λ polynomial as follows: λk (x) = λ(k–1) – ∆kT(x)

6. If (2L >= k) then go to step 8

7. Set L = k and T(x) = λ(k–1) (x)/∆k

8. Set T(x) = x.T(x)

9. If present iteration k is < 2T then go to step 3

b) Finding the roots of the λ polynomial

The roots of the error locator polynomial are in fact the reciprocals of the error

locations. Finding these roots is done using the Chien search algorithm. This algorithm

simply substitutes each of the elements of the field into the error locator polynomial

until all the roots are found.

3) Finding the values of errors

In this step, a Forney algorithm is usually used. In this algorithm, an error magnitude

polynomial is defined:

)(λ)](1[)(xxSx +=Ω

where:

Ω(x) – error magnitude polynomial

λ(x) – error locator polynomial

S(x) – syndrome polynomial defined as: S(x) = S1x+S2x2+...+S2tx2t+S2t+1x2t+1+...

And the error magnitudes are given by the following equation:

)('λ
)(

1

1

−

−Ω−
=

k

kk
ik X

XX
e

where:

λ'(x) – first derivative of the error locator polynomial

Ω(x) – error magnitude polynomial

X – error locations

Conceptually, the Reed-Solomon code encodes the message as points in a polynomial

plotted over a finite field. The coefficients of this polynomial are the data symbols of the

block. The plot overdetermines the coefficients, which can be recovered from subsets of

the plotted points. In the same sense as the eye can recognize and correct a couple of "bad"

 22

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

points in a smooth curve, Reed-Solomon code can correct errors in a block of data and

recover the coefficients of the originally plotted polynomial.

2.3.5 Voting techniques
Another method of protection of a DSP from the effects of radiation is voting. This method

can be used either for protection of memory or to ensure proper result of calculations. The

idea behind this method is very simple. The data or calculations to be protected need to be

repeated and then the final result is obtained by voting.

The most commonly used configuration of voting is the triple modular redundancy. In this

case the calculations are repeated 3 times. Another possible approach is to repeat

everything 5 times. Increasing the number of repetitions even further is possible but rather

inefficient. Another approach is to repeat the calculations only once, and if the two results

are different, then repeat the procedure once again. Figure 2.8 shows a schematic diagram

of the triple voting and double calculations:

Fig.2.8 Triple voting and double calculations schematic diagrams
The main drawback of these methods is that if an error is introduced in the voter or during

the results comparison, an incorrect result can be obtained even if all the calculations were

correct. Therefore, the voter should be immune to radiation. However, total radiation

immunity cannot be achieved in software.

In the case of triple voting, two different techniques can be used. One approach is to

compare the 3 values treating each of them as a whole entity. In this case, if all three of

them are different, then voting cannot be performed and this technique fails. Another

Calculate

Majority
Voter

Result

Calculations Calculations

Both results
the same?

Calculate Calculate

No

Yes

Result

 23

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

solution is to compare the three values bit by bit. There are only two possible values for a

bit: 0 or 1. Therefore on each bit position, there will be always a situation where two of the

three bits are the same. This technique will always produce a result and never will the

result be undecided.

An example comparing the two approaches:

Assume that the three calculation results are as follows:

A = 19 (binary: 00011001), B = 91 (binary: 10010001), C = 18 (binary: 00011000).

In this case voting method comparing the whole values will not yield a result, as all three

values are different. However, the bit-by-bit approach will produce a result equal to 25

(binary: 00011001).

Some implementation issues concerning the voting techniques are described in section 4.5,

while example programs that used these techniques and were tested in the radioactive

environment are presented in section 5.3

 24

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

3. DSP-PC communication system

3.1 Introduction
Analysis of the radiation influence on the digital signal processor requires that the

processor itself should be put inside the accelerator tunnel, where the radiation is present.

Because of this, a system that would enable remote control of the DSP was needed. This is

depicted in Figure 3.1.

Gamma radiation
and neutrons

communication

DSP

Inside the accelerator tunnel Outside the tunnel

Fig.3.1 DSP-PC communication system
The main requirements for the communication system between the DSP and a PC

computer are as follows:

- remote control of the DSP (turning it on and off),

- remote reset of the DSP,

- execution of any given program on the DSP,

- implementation of a watchdog,

- gathering information about the performance of the DSP in the radioactive

environment,

- the communication distance of about 50 m.

This chapter describes all the details about the developed system (hardware and software).

3.2 The TMS320C6713 DSP overview
The DSP used in this master's project is a C6713 processor, which is one of the most

powerful floating-point digital signal processors produced by Texas Instruments. It has a

very interesting architecture consisting of a total of 8 independent functional units:

 25

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

• Two ALUs (Fixed-Point),

• Four ALUs (Floating- and Fixed-Point),

• Two Multipliers (Floating- and Fixed-Point).

It also has 2 sets of 16 32-bit registers. This is illustrated in Figure 3.2. [11]

The main benefit of such architecture is the fact that this processor can carry out up to 8

different instructions in parallel in 1 CPU cycle. This can be achieved if each of the 8

instructions utilizes a different functional unit. The following is an example of an assembly

code illustrating this:

 ADD.L1 A0,A1,A2 ; A2 = A0+A1 – addition using L1 unit
|| ADD.L2 B0,B1,B2 ; B2 = B0+B1 – addition using L2 unit
|| SUB.S1 A3,A4,A5 ; A5 = A3-A4 – subtraction using S1 unit
|| SUB.S2 B3,B4,B5 ; B5 = B3-B4 – subtraction using S2 unit
|| LDW.D1 *A6,A7 ; load a 32-bit word from address A6 into A7 – unit D1
|| LDW.D2 *B6,B7 ; load a 32-bit word from address B6 into B7 – unit D2
|| MPY.M1 A8,A9,A10 ; A10 = A8*A9 – multiplication using M1 unit
|| MPY.M2 B8,B9,B10 ; B10 = B8*B9 – multiplication using M2 unit

To perform instructions in parallel the "||" characters have to be placed at the beginning of

the line. If the functional unit is not specified, the assembler will allocate a proper unit

automatically.

Another feature worth explaining is the possibility to write conditional assembly

instructions. This is realized by putting a register in square brackets before the instruction:

[A0] MVK.S1 A0,B0 ; this operation will be performed if A0 is different from 0
[!B0] ADD.S2 B1,B2,B3 ; this is executed if B0 is equal to 0

In such conditional statements only A1, A2, B0, B1 and B2 registers can be used. In a

group of instructions performed in parallel, each instruction can have a different condition.

 26

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Figure 3.2 C6713 functional block and CPU (DSP core) diagram

Another issue that should be explained is the fact that some instructions take more than

1 cycle to execute. In such cases the result of an instruction is available a few cycles later.

These are called "delay slots". For example, a branch instruction has 5 delay slots, which

means that the jump in the program is made 5 cycles after the command has been

processed:

 MVK 0xFF,A2
 B LABEL1 ; branch to LABEL1
 MVK 0x0,A0 ;
 MVK 0x20,A1 ;
 ADD A0,A1,A1 ;
 SUB A1,A5,A2 ;
 NOP ; branch takes place here
 MV 0x0,A2 ; this instruction is not processed

In the above code all 5 instructions (MVK, MVK, ADD, SUB, NOP) are executed and

then the program counter jumps to the LABEL1 label. Numbers of delay slots required by

the most frequently used instructions are listed in Table 1.1.

 27

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Table 3.1 Delay slots for some example instructions

Instruction Description Delay slots
LDW load from memory 4

B branch 5
MPY integer multiplication 1

ADDSP single-precision
floating-point addition 3

MPYSP single-precision
floating-point multiplication 3

ADDDP double-precision
floating-point addition 6

MPYDP double-precision
floating-point multiplication 9

3.3 Hardware part of the communication system
To fulfill all the requirements of the communication system, both serial and parallel ports

of a PC computer had to be used. To meet the 50 m distance requirement it was necessary

to use the EIA485/422 serial transmission standard instead of the EIA232 standard which

is commonly used in all PC serial ports, but can work only over a limited distance.

The system consists of two PCB boards. The first one is located in the accelerator together

with the DSP, while the second one is located near the PC outside the accelerator. The two

boards are connected using a 20-wire ribbon twisted cable. The PC-DSP communication

system block-diagram is presented in Figure 3.3.

C6713 DSP PC

Figure 3.3 Communication system block diagram

DSP-side
PCB

PC-side
PCB

EIA485 serial transm.
serial port serial port

bit4
bit5
bit6
bit7

general
purpose

I/O

reset

parallel transmission parallel port

data bit0
data bit1
data bit2
data bit3
data bit4
data bit5

power on/off

 28

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

The parallel communication is used for:

- turning the DSP on and off (parallel port data bit 5),

- remotely resetting the DSP (parallel port data bit 4),

- additional control signals (parallel port data bits 0-3).

While the serial transmission is used for:

- uploading new programs to the DSP,

- watchdog implementation,

- exchange of additional information (e.g.: about performance of the DSP under

radiation, number of detected & corrected errors, etc.).

3.3.1 DSP module
The schematic of the circuit on the DSP side of the system (placed in the accelerator) is

presented in Appendix A. Figure 3.4 presents a block diagram of that circuit and a picture

of the fabricated printed circuit board connected to the DSK board is presented in Fig.3.5.

The circuit connects to the DSK6713 board via two 80-pin connectors.

The first one - peripheral expansion connector – is used for the 4 parallel signals and the

serial signals. The 5 V parallel signals are clipped to 3.3 V using the 3.3 V Zener diodes.

The EIA422 signals are converted to TTL levels using MAX3485 ICs. The 3.3 V supply

voltage for the ICs is taken from the DSK board via the peripheral expansion connector.

The second connector – HPI expansion connector - is used only for the active-low RESET

signal.

Additionally, the circuit consists of a DC-DC converter, which has an input range of

9-18 V and output of 5 V (3 A). The converter is needed, because the DSK board has quite

high supply current demand (up to 3 A) and therefore the losses would be too big if the 5 V

supply voltage were sent to the DSK over the 50 m cable. Therefore, a higher voltage is

sent over the cable reducing the current and then it is converted to 5 V using the DC-DC

converter.

 29

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Fig.3.4 Block diagram of the DSP-module

Fig.3.5 DSP-module connected to the DSK board

3.3.2 PC module
The circuit near the PC consists of a 74HC244 octal buffer, a relay, an NPN transistor and

several transceivers. Its schematic is presented in Appendix B, while the block diagram is

shown in Figure 3.6 and the photo of the fabricated board is presented in Figure 3.7.

MAX485
transceiver

MAX485
transceiver

DC-DC
converter

20-wire
 cable

3.3 V Zener
diodes

DSP

Peripheral
Expansion
Connector

Host Port
Interface

Power
supply

connector

5 V 18 V

serial signal

serial signal

parallel
signals

reset

 30

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Fig.3.6 Block diagram of the PC-module

Fig.3.7 PC-module photo

The buffer is connected to the parallel port of the PC and drives the parallel signals to the

DSP. Data bits 0-3 of PC's parallel port are used for communication with the DSP, while

data bit 4 is used for the DSP's active-low RESET signal. Data bit 5 is used for remote

switching of the DSK board on and off. This is accomplished by a relay that switches the

supply voltage for the DSK on/off. The relay is controlled by a BC547 NPN transistor

connected to one of the outputs of the buffer.

PC

serial port

parallel port

MAX232
transceiver

MAX485
transceiver

MAX485
transceiver

Relay

Buffer
74HC244

18 V
power supply

20-wire
cable

parallel signals

serial signal

serial signal

18 V

 31

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

The serial port of the PC is connected to the MAX232 IC which converts the EIA232

signals to TTL levels. Then the signals are converted to EIA485 using the MAX485

integrated circuits. There is a separate pair of wires (and a separate transceiver) for each

direction of the signals.

3.4 Software part
The software part also needs to be split between the DSP and the PC. The DSP part of the

software is written in C and Assembler using the Code Composer Studio (CCS), while the

PC part of the software was written in C++ Builder 6. The PC software works under

Windows operating system, because the CCS programming environment also uses

Windows.

3.4.1 Software for the DSP
One of the most important requirements for this DSP-PC communication system was to be

able to execute any given program on the DSP. This should be achieved by uploading the

program code through the serial port. To meet this requirement the Flash memory located

on the DSK6713 board had to be used.

Flash was the best choice because it is a non-volatile memory, which means that a given

program needs to be uploaded only once and it stays in the Flash until it is overwritten by a

different program. The second very important advantage of the Flash is that it is highly

resistant to the influence of radiation. The time after which the radiation can damage the

contents of the Flash memory is much longer than the time of the tests carried out in this

project. Therefore one can be sure that the code executed from flash is not altered by

radiation. However, Flash has also some disadvantages. The main drawback is that in order

to write some data into the Flash, it has to be erased first. The erasure cannot be performed

on a single byte or word. A whole block of Flash must be erased. The Flash memory used

in the DSK6713 board consists of 32KB blocks. Another disadvantage is that Flash

memory is much slower compared to RAM. Therefore, the time-critical parts of the

programs need to be copied to RAM for their execution.

The first 32KB block of the Flash is used for storing the code of a bootloader and the

remaining part of the Flash is used to store the code and data of the programs that will be

executed on the DSP. This solution perfectly fits with the default boot mode of the C6713

DSP. In this boot mode, right after reset, DSP copies 1KB of memory from the beginning

 32

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

of the Flash to the beginning of the internal RAM (address 0x0) and then branches to that

0x0 address and begins execution of the code. Figure 3.8 presents the Flash memory

divided into the 32KB blocks.

0x90000000

Figure 3.8 Flash memory organization

The first 1KB of Flash holds a simple code written in assembly. This code configures the

external memory interface, which is used to communicate with SDRAM and FLASH, and

configures the general purpose input/output (GPIO) port. Then it reads the fourth bit of the

GPIO port. The input pin associated with that bit is connected through the communication

system with bit 0 of the PC's parallel port. If the bit is set, then DSP branches to the

bootloader code. If the bit is cleared, DSP branches to the address stored at 0x90008000.

Therefore, if a user wants to upload a new program to the DSP, he simply needs to turn it

on with the bit0 of the parallel port set to 1. Then the bootloader is executed. If the user

wants to run a program that has already been uploaded, then the DSP needs to be started

with parallel port's bit0 cleared. Then DSP loads the programs entry point from the

0x90008000 address and jumps to the entry point. If the flash is erased and no program is

uploaded then the value at 0x90008000 is equal to 0xFFFFFFFF and the DSP enters an

infinite loop. This is the most important part of the discussed code (without the EMIF

configuration):

; GPIO configuration
 MVKL 0x0,A0 ;
 MVKH 0x01B00000,A0 ; A0 = GPIO address
 ZERO A3
 MVK 0x00FF,A3
 STW .D1T1 A3,*A0++ ; GPEN = 0xFF
 MVK 0x0,A3 ; clear all the other GPIO registers:
 STW .D1T1 A3,*A0++ ; GPDIR
 STW .D1T1 A3,*A0++ ; GPVAL
 STW .D1T1 A3,*A0++ ; GPDH
 STW .D1T1 A3,*A0++ ; GPHM
 STW .D1T1 A3,*A0++ ; GPDL
 STW .D1T1 A3,*A0++ ; GPLM

1 KByte

31 KBytes

.............

32 KBytes

32 KBytes

32 KBytes

On startup, this 1 KB
is copied into RAM
and executed

0x90040000

0x90000400 Bootloader code
(never erased)

0x90008000

0x90010000
The rest of the Flash is

used for storing the
code of the uploaded

program

 33

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

 STW .D1T1 A3,*A0++ ; GPGC
 STW .D1T1 A3,*A0++ ; GPPOL

 ; read GPIO bit 4
 MVK .S1 0x08,A0 ;
 MVKH .S1 0x01B0000 ; A0,A0 0 = GPVAL address

DW
f,

infinite loop

these two are not equal, it does not write the block into flash and does not send the

 LDW .D1T1 *A0++,A3 ; load GPVAL value
L NOP 4 ; 4 delay slots for

A3,0x1 0x1 EXTU .S1 b, A1 ; extract bit0

 [A1] mvkl _c_int00,A0 ;
 [A1] mvkh _c_int00,A0 ; if (bit0 != 0)
 [A1] b A0 ; branch to the bootloader
 [!A1] mvkl PROG TR R, ; if (bit0 == 0) _EN Y_ADD A3
 [!A1] mvkh PROG_ENTRY_ADDR, A3 ; load program's entry point address
 nop 3
 ldw *A3, A2 ; Load entry point
 nop 4
 xor A2,0xffffffff,A1 ; check if it equals 0xffffffff
 [A1] b A2 ; jump to the program in flash
 nop 5

it: b wait ; wa
 NOP 5

The main part of the source code of the bootloader is presented on the following page. The

whole code is placed in the Flash. However, the Flash memory is very slow compared to

internal random access memory (IRAM) of the processor; therefore some of the time-

critical functions are copied into IRAM during run-time and executed from there. All the

parts of the code that need to be run from IRAM are marked as the "fast" section. Then,

during linking, this section is linked as if it was placed in IRAM; however it is actually

placed in Flash. It is the program's responsibility to copy that section into an appropriate

address in RAM. This is simply achieved by the following function call:

memcpy((void *)&run_fast, (void *)&load_fast, (int)&size_fast);

where:

run_fast – pointer to the "run address" in IRAM,

load_fast – pointer to the "load address" in Flash,

size_fast – size of the "fast" section.

All these 3 variables are declared and defined automatically by the CCS linker. In the

bootloader all the functions responsible for the serial communication, erasing and writing

to Flash are placed in the "fast" section.

The main loop of the bootloader consists of copying the "fast" section code from Flash to

IRAM, reading data on the serial port and writing that data into Flash. The data is sent

from the PC to the DSP in blocks. After each block, a crc32 checksum of the block is sent.

DSP calculates the crc32 of the received block and compares it to the received crc32. If

 34

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

acknowledgement (ACK) and waits for a retransmission of the block from the PC. If the

crc32's are the same, the data block is written into Flash. Then, crc32 of the data in Flash is

calculated again and compared with the received crc32 to make sure that Flash has been

programmed correctly. When all the blocks have been correctly received, PC clears the

parallel port data bit0 and the DSP goes into an infinite loop. Then the DSK board can be

reset and the newly uploaded program can be started. Crucial variables used in the

bootloader, such as serial_speed and flash_dest_addr are stored in 3 copies and always

triple voting is carried out on them before they are used. If the triple voting fails (all 3

copies are different) then an appropriate message is sent to the PC over the serial port and

the program upload process is stopped. All the messages sent over the serial port are also

repeated 3 times to make sure that the correct message reaches the PC. The most important

part of the bootloader code is presented in Appendix C.

The DSP program from Appendix C uses the following three functions responsible for the

// initialization and detection of transmission speed
char SoftUartInchar(unsigned int serial_speed); // reading the serial port

rst 's

The first transition oc at the end of the first

obtained from the SoftUartSpeedDetect() function. All three functions are written in

communication over the serial port:

unsigned int SoftUartSpeedDetect();

SoftUartOutchar(unsigned int serial_speed, char out); // writing to the serial port

The SoftUartSpeedDetect() function must be called fi in order to configure the DSP

multichannel buffered serial port (MCBSP) correctly and to detect the speed of the serial

transmission. In order for this function to work correctly, the PC must first send one byte

that begins with a "1" bit followed by a "0" bit. This is because the function measures the

time between two consecutive high-to-low transitions in the serial transmission line. This

is illustrated on the following figure:

Figure 3.9 Serial transmission speed detection

Start D0
DR

T

curs at the beginning of the start bit, the second

data bit. Therefore T is equal to a time for transmission of 2 bits and dividing it by 2 the

necessary delay needed to read and write bits over the serial connection is obtained.

The other two functions are used for reading and writing to the serial port with the speed

 35

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

assembler and use the MCBSP port in general purpose I/O mode. They are taken from the

Texas Instruments (TI) Application Report [12]. An important fact is that the original

function SoftUartSpeedDetect() from [12] had an error in it. This error made the function

completely useless, as it was always returning 0. The error has been located and repaired. It

involved changing two assembly instructions. The following is the code of the corrected

SoftUartSpeedDetect() function with the location of the error marked in comments:

_SoftUartSpeedDetect:
;** ----------------- function prolog ---------------------------------------*
;** preserve ”save-on-call” registers
 SUB B15, 4, A0

15--[2] ; f

global interrupts
-- ---*

to SPCR register
s McBSP0 port address

gister
es McBSP0 port address
register

de

h
-----------------------*

it measurement
-- --*

B .S2 L3 <- error
t was:|| [A1] LDW .D1T1 *A0,A3 <- error

is low
--*

 STW .D2 A10, *B
|| STW .D1 B10, *A0--[2] ; f
 STW .D2 A11, *B15--[2] ; f
| 0--[2] ; f | STW .D1 B11, *A

 STW .D2 A12, *B15--[2] ; f
|| STW .D1 B12, *A0--[2] ; f
 STW .D2 A13, *B15--[2] ; f
|| STW .D1 B13, *A0--[2] ; f
| | MVC .S2 CSR,B13 ; f

 STW .D2 A14, *B15--[2] ; f
| | STW .D1 B14, *A0--[2] ; f

|| AND .L2 -2,B13,B13 ; f
2] ; f STW .D2 A15, *B15--[

| | STW .D1 B3, *A0--[2] ; f
e || MVC .S2 B13,CSR ; f disabl

---;** - ------------------------
 MVK .S1 0x8,A0 ; set offset

ake MVKH .S1 0x18c0000,A0 ; t
 LDW .D1T1 *A0,A3 ; load SPCR register
 NOP 4
 CLR .S1 A3,0x10,0x10,A3 ;
 AND .L1 0xfffffffe,A3,A3 ;

ig value STW .D1T1 A3,*A0 ; store new SPCR conf
A0 ; set offset for PCR re|| MVK .S1 0x24,

 MVKH .S1 0x18c0000,A0 ; tak
 LDW .D1T1 *A0,A3 ; load PCR
 NOP 4

mo SET .S1 A3,0xc,0xd,A3 ; set bit 12&13 for I/O
 STW .D1T1 A3,*A0 ; store new PCR config value
 NOP 5

,A3 ; LDW .D1T1 *A0
 NOP 4

is hig EXTU .S1 A3,0x1b,0x1f,A1 ; wait while DEIATAT
----------------------------------;** ----------------

 .align 32
1 ; L1: [A1] B .S2 L

| | [A1] LDW .D1T1 *A0,A3 ;
|| EXTU .S1 A3,0x1b,0x1f,A1 ; wait while DEIATAT is high

 ; initialize counter || [!A1] ZERO .L2 B4
 NOP 5 ; for StartB
;** - --------------------------
 .align 32

t was:L3:[A1] L3: [!A1] B .S2 L3 ; originally i
| lly i| [!A1] LDW .D1T1 *A0,A3 ; origina

|| EXTU .S1 A3,0x1b,0x1f,A1 ;
4 ; increment counter while || [!A1] ADD .L2 0x1,B4,B

 NOP 5 ; DEIATAT bit is low
;** ---*
 .align 32
L31B: [A1] B .S2 L31B ;
| | [A1] LDW .D1T1 *A0,A3 ;

|| EXTU .S1 A3,0x1b,0x1f,A1 ;
,B4,B4 ; increment counter while || [A1] ADD .L2 0x1

 NOP 5 ; DEIATAT bit
---;** --------------------------

 .align 32
 SHRU .S2 B4,0x1,B4 ;

 36

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

 MVK .S2 0x0b,B0 ;
 SET .S1 A3,0x5,0x5,A3 ; set DXSTAT bit to 1
|| MV .L1X B0,A4 ;

; MPYLHU .M1X A4,B4

,A3
|| STW .D1T1 A3,*A0 ; sto

re new PCR config value

--- --*

itcnt ;
 0 ;

---------------------------------------*

global interrupts

-- --*

imilar. All the three functions are used repeatedly in all

correct,

rc;

function:

56];

 MPYU .M2 B0,B4,B0 ;
 SHL .S1 A3,0x10,A3 ;

 ; ADD .L2X B0,A3,B0
* ;* ------------------------

 .align 32
waitcnt: [B0] B .S1 wa
|| [B0] SUB .L2 B0,0x1,B
|| [B0] LDW .D1T1 *A0,A 3 ; Dummy load
 NOP 5
; BRANCH OCCUEIA ;
;** ------- ------- function epilog

es

;** r tore preserved by call registers
 SUB B15, 4, A0

[2], B3 ; f LDW .D1 *++A0
|| LDW .D2 *++B15[2], A15 ; f
|| MVC .S2 CSR, B13 ; f
 LDW .D1 *++A0[2], B14 ; f

], A14 ; f || LDW .D2 *++B15[2
|| OR .L2 B13, 1, B13 ; f
 LDW .D1 *++A0[2], B13 ; f
|| LDW .D2 *++B15[2], A13 ; f
|| MVC .S2 B13,CSR ; f enable
 LDW .D1 *++A0[2], B12 ; f
|| LDW .D2 *++B15[2], A12 ; f
 LDW .D1 *++A0[2], B11 ; f
|| LDW .D2 *++B15[2], A11 ; f
|| B .S2 B3 ; f return();
|| MV .L1X B4,A4 ;
 LDW .D2 *++B15[2], A10 ; f
|| LDW .D1 *++A0[2], B10 ; f
 NOP 4 ; f

----;** - ------------------------

The other two functions are very s

o SP programther D s that involve communication with the PC using the serial port.

Another important aspect of the presented DSP application for uploading programs into

Flash is the crc32 calculation. This ensures that the received blocks of data are

which is very important, as the EIA485 transmission may not be totally radiation immune.

In case of large numbers of errors reported during transmission, the speed of transmission

can be decreased or some additional protection like Hamming codes or triple redundancy

can be introduced to ensure correct transmission. The crc32 calculation function used in

the program is as follows:

unsigned int crc32_calc(char *fp,int length) /* calculate the crc value */
{
 register unsigned int c

 crc = 0xFFFFFFFF;
 while (length--)

ble[(crc^*fp++) & 0xFF]; crc = (crc>>8) ^ crc_ta

FFFF); return(crc^0xFFFF
}

It uses a lookup table which is generated by the following

st

atic unsigned int crc_table[2

 37

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

void crc32_gen_table(void) /* build the crc table */
{
 unsigned int crc, poly;
 int i, j;

 poly = 0xEDB88320;

) for (i = 0; i < 256; i++
 {

i; crc =
 for (j = 8; j >
 {

 0; j--)

rc = (crc >> 1) ^ poly;

 the bootloader the crc_table is declared as constant and its

 are defined in the header file. The two crc32 functions were taken from the

32 value.

n in C++ Builder 6 and runs under Windows

ecause the Code Composer Studio IDE for the DSP

 if (crc & 1)
 c
 else
 crc >>= 1;
 }
 crc_table[i] = crc;
 }
}

In the final implementation of

values

internet [13] and needed only small modifications to incorporate into the project.

In brief, crc32 is an algorithm that treats the input message as a very large polynomial,

divides it by another large polynomial and the remainder of this division is the crc

The polynomials are created by representing a given decimal value in a binary form and

treating each bit as a binary coefficient of a polynomial. This kind of algorithm is very

effective, because even very little changes in the message change the division remainder

(the crc32 value). Therefore, this method is very useful for ensuring that a given message

has not been altered by any errors. The presented implementation of crc32 calculation is a

very fast, optimized method. It is based on a lookup table which speeds up the process

considerably.

3.4.2 Software for the PC
The software part for the PC is writte

operating system. This is mainly b

provided by Texas Instruments is also designed to run in Windows environment. The main

purpose for the PC software is to remotely control the DSP, upload new programs to the

DSP and run them remotely. During the execution of the programs, a watchdog is used to

control whether the DSP is working and additional information about detected or corrected

errors is gathered. A screenshot of the program created with C++ Builder is presented in

Figure 3.10:

 38

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Fig.3.10 Screenshot of the PC application
There are two main groups of buttons as there are two modes of operation:

a) uploading new programs to the Flash of DSP

In this mode, when a user clicks the "Turn DSP ON" button, the DSP is turned on and a

signal via parallel port DATA0 bit is set. Then DSP starts the bootloader and awaits the

new application code on the serial port. The user can load the appropriate Hex file with the

code to be uploaded. The Hex files can be easily created using the hex6x.exe tool from TI.

Finally, the code is sent to the DSP when the user clicks the "Send code" button. The

process of sending the code is very simple. The code is divided into smaller blocks and

after each block a crc32 value is sent. The function used for calculation of the crc32 is the

same as the one used in the DSP and described on the previous pages.

b) running the programs from DSP's Flash memory

In the second mode, when the user clicks "Start DSP" button, DSP is turned on, but the

parallel port DATA0 bit is cleared and so the DSP starts execution of a program that is

already in Flash. The PC initializes serial transmission with the DSP by sending a 0x0D

byte over the serial port. This enables the DSP to calculate the transmission speed (using

the SoftUartSpeedDetect function). PC waits for an acknowledgement signal from the

DSP. The signal should consist of three bytes of value 0xAA. Then, the PC starts a

watchdog timer. The DSP should periodically send a special signal over the serial port to

reset this watchdog timer. DSP can also send other signals, for example when using

Hamming codes, it can send information about the amount of errors corrected or detected.

 39

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

All this information is displayed on the PC screen. The values of the message codes that a

DSP can send are listed in Table 3.2.

Table 3.2 Message codes for DSP-PC communication

Byte value Meaning

0xF0 Watchdog signal

0x0F Errors have been corrected by the hamming code.

 Next, the number of corrected bits is sent.

0xFF Errors have been detected by the hamming code.

0x3F Errors have been corrected by the 2D parity.

Next, the number of corrected bits is sent.

0xFC Errors have been detected by the 2D parity.

0x01 Triple voting has failed (all 3 values were different)

0xC3 The two parallel calculations produced different results.

0x3C Triple voting has been used (1 of the 3 values was different from the others)

Additionally, there is an edit box that lets the user change the watchdog timer interval, and

also a button that allows reading of the current parallel port value. There is also a "Save

log" button. Pressing it allows the user to save the contents of the log to a file.

In the PC software part, a DLL library for parallel port communication is used. The library

file name is inpout32.dll and the whole library along with the source codes can be

downloaded for free from the internet [14]. The DLL consists of 2 main functions:

short Inp32(short portaddr);
void Out32(short portaddr, short data);

The Inp32 function reads the port of address portaddr, while the Out32 function writes the

value of data to the port of address portaddr.

For the serial port programming, the Win32 API functions are used. The following is a part

of the source code responsible for opening the serial port and configuring it:

// ########## SERIAL PORT initialization ##########

DCB dcbCommPort;

// open the serial port
hComm = CreateFile(serial_port,GENERIC_READ | GENERIC_WRITE,
 0,0,OPEN_EXISTING,0,0);

 40

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

// check if it opened correctly
if (hComm == INVALID_HANDLE_VALUE)

{
 As.printf("Error opening serial port %s", serial_port);
 Application->MessageBox(As.c_str(),"Error",MB_OK);
 Application->Terminate();
 }

// set the comm timeouts
GetCommTimeouts(hComm,&ctmoOld);
ctmoNew.ReadTotalTimeoutConstant = 1000;
ctmoNew.ReadIntervalTimeout = MAXDWORD;
ctmoNew.ReadTotalTimeoutMultiplier = MAXDWORD;
ctmoNew.WriteTotalTimeoutMultiplier = 0;
ctmoNew.WriteTotalTimeoutConstant = 0;
SetCommTimeouts(hComm, &ctmoNew);

// configure the serial port
dcbCommPort.DCBlength = sizeof(DCB);
GetCommState(hComm, &dcbCommPort);
BuildCommDCB(com_conf, &dcbCommPort);
SetCommState(hComm, &dcbCommPort);

Then, to read or write to the port, the ReadFile and WriteFile functions are used. To send a

single byte to the serial port, a TransmitCommChar function is used. This function is

mainly used for initialization of the connection with the DSP, as the DSP's

SoftUartSpeedDetect() function needs an arrival of one byte of value 0x0D to calculate the

connection speed. On program shutdown, the CloseHandle function is used to release the

serial port handle.

Programming the serial and parallel ports in C++ Builder is easy and straightforward. The

whole program for the PC is quite simple therefore its source code is not presented. One

very important fact is that in order for the port communication to work, the program must

be run by a user with administrator's privileges on the Windows system.

 41

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

4. Implementation of radiation protection methods in
software

This chapter covers all the implementation issues concerning the software methods

described in Chapter 2. All the methods in this master's project were implemented in C or

assembly on the TMS320C6713 DSP from Texas Instruments.

4.1 Parity control
This is the simplest method to implement, and therefore it is also the fastest one. Since the

C6713 DSP has 32-bit registers, the best way to implement the single parity method is to

treat the memory as an array of 32-bit values and calculate the parity bits "vertically". This

is illustrated on the Figure 4.1.

32 bit words

columns

parity bits

of bits

Fig.4.1 Parity control - "vertical" implementation
This kind of implementation has two big advantages:

• the parity of 32-bit columns is calculated in parallel,

• errors in different columns are detected independently.

The presented implementation enables detection of any odd number of bit flips occurring

in one column. Each column is treated independently, so for example, 32 bit errors can be

detected, if each one of them is placed in a different column.

Since a xor operation requires only 1 CPU cycle, the total number of cycles required to

calculate the parity bits for a given memory region is approximately equal to the size of

that region given in 32-bit words. The following is the hand optimized assembly code for

calculation of the parity bits:

 42

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

_parity_calc
 LDW *A4++,A1 ; A1 = data pointer
 LDW *A4++,B2 ; B2 = length
 B loop
 B loop
 B loop
|| ZERO A7
 B loop
|| ZERO A5
 B loop
|| SUB B2,1,B2 ; decrease counter by 1

loop LDW *A1++,A5 ; load the data
|| [B2] SUB B2,1,B2 ; decrease the counter
|| [B2] B loop ; check if it is the end
|| XOR A5,A7,A7 ; xor with A7

 B B3 ; return
 STW A7,*A4 ; parity_bits = A7
 NOP 4

And this is the code of a function checking whether errors occurred:

_parity_check
 LDW *A4++,A1 ; A1 = data pointer
 LDW *A4++,B2 ; B2 = length (loop counter)
 LDW *A4,A7 ; A7 = parity_bits
 B loop2
 B loop2
 B loop2
|| ZERO A4 ; return value = 0
 B loop2
|| ZERO A5
 B loop2
|| SUB B2,1,B2 ; decrease counter by 1

loop2 LDW *A1++,A5 ; load the data
|| [B2] SUB B2,1,B2 ; decrease the counter
|| [B2] B loop2 ; check if it is the end
|| XOR A5,A7,A7 ; xor with A7

 B B3 ; return (after 5 cycles)
 MV A7,A2 ; A2 = result xored with parity_bits
 [A2] MVK -1,A4 ; if (a2!=0) return -1
 NOP 3

The declarations of the two functions are as follows:

typedef struct {
int *pointer; // pointer to the memory region to protect
int length; // length of the region in 32bit words
int parity_bits; // parity bits calculated by parity_calc function
} Tparity;

extern parity_calc(Tparity *);
extern parity_check(Tparity *);

Both functions use a pointer to a Tparity structure as a parameter. This structure is used for

description of a memory region that needs to be protected. The region can either consist of

some data or a code of the DSP program. Similar structures are used in all other memory

protection methods used in this project. The parity_check function returns 0 if there are no

errors, and -1 when errors are detected.

 43

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

4.2 Two dimensional parity control
The general idea behind the two dimensional parity is explained in section 2.3.2. The

method is based on calculation of the parity bits in two directions: vertical and horizontal.

However, this kind of calculation scheme is difficult to implement in software, as

calculating horizontal xor operations is very slow (much slower than vertical). Fortunately,

there is a solution that enables to keep all the benefits of the 2D parity and still manage to

implement it in software in a very fast manner [15]. The method is illustrated in Figure 4.2:

diagonal
parity bits

vertical parity bits

Fig.4.2 2D parity with diagonal bits calculation
In this case the parity bits are calculated in vertical and diagonal direction. The number of

additional parity bits and all the benefits are the same as in vertical and horizontal

approach, but the software implementation is much easier.

Using this approach, it was possible to implement the method in assembly using only 2-

cycle loops. It is possible to write them in 1-cycle loops, but an instruction for bit rotation

is needed to calculate the diagonal parity. The TI's C67xx digital signal processors do not

have such an instruction; therefore a combination of 3 instructions to perform a bit rotation

had to be used. This is explained in Figure 4.3.

However, the TI's digital signal processors from the C64xx family have a bit rotation

instruction and therefore the 2D parity functions can be written with 1-cycle loops and

work two times faster as the ones for C67xx processors.

 44

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Fig.4.3 Bit rotation example
In the implementation of the algorithm used in this project the protected memory region is

divided into smaller blocks of size 32x32 = 1024 bits (128 bytes). Every such block has its

own 64 parity bits (32 vertical + 32 diagonal). Therefore in each of the 128 bytes blocks

the program can correct 1 single-bit error. However, this error must be inside the memory

block and not among the parity check bits. If it is in one of the parity bits, then the error is

detected but not corrected.

The 2D parity calculation and check functions have been written in assembly and

optimized by hand. The functions prototypes along with the definition of the structure

associated with each memory region protected using this method are as follows:

typedef struct {
int *pointer; // pointer to the memory region to protect
int *xor_bits; // pointer to the memory where parity bits are stored
int length; // length of the protected region in 32bit words
} Tparity2D;

extern parity2D_calc(Tparity2D *);
extern parity2D_check(Tparity2D *);

int parity2D_init(Tparity2D *block, int length);
void parity2D_close(Tparity2D *block);

The two additional functions parity2D_init and parity2D_close are needed for dynamic

memory allocation/deallocation for the parity bits. This is due to the fact that number of

parity bits depends on the size of the memory region to protect. The size of this memory

region must be a multiple of 4 bytes due to the nature of the algorithm. The following is

the source code of the 2D parity functions:

written in C:

int parity2D_init(Tparity2D *block, int length) // length is the size of memory in bytes

7 6 5 4 3 2 1 0

4 3 2 1 0 7 6 5

4 3 2 1 0 7 6

shift left by 3 shift right by 5

bitwise OR

5

result is the same as for bit
rotation left by 3 positions

 45

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

{
 div_t temp;

 temp=div(length,128); // divide by 128 bytes (one block size)
 if (temp.rem>0) temp.quot++;
 block->xor_bits = (int *)malloc(2*temp.quot*sizeof(int)); //allo. mem. for parity bits
 block->length = length >> 2;
 if (block->xor_bits == NULL) return 0;
 else return 1;
}

void parity2D_close(Tparity2D *block)
{
 free (block->xor_bits);
}

written in assembly:

; ##
_parity2D_calc
 LDW *A4++,A3 ; A3 = protected memory region pointer
 LDW *A4++,B4 ; B4 = pointer to parity bits
 LDW *A4,A1 ; A1 = length
 NOP 3

big_loop MVK 32,B0
|| ZERO A7 ; vertical xor will be stored in A7
|| ZERO B7 ; diagonal xor will be stored in B7

 CMPGTU A1,B0,A2 ; if length>32
 [A2] SUB A1,B0,A1 ; then { length-=32; b0=31; }
 [!A2] MV A1,B0 ; else {
 [!A2] MVK 0,A1 ; length = 0;

 SUB B0,1,B0 ; b0 = length-1;}

 B loop3 ; 2x branch, becuase it's a 2 cycle loop

 ZERO B2
|| ZERO A9

 B loop3
|| MVK -3,A2 ; used for bit rotation (shl)

 ZERO B6
|| ZERO A5
|| MVK 35,B1 ; used for bit rotation (shru)

;2 cycle loop
loop3 LDW.D1 *A3++,A5 ; load the data
|| ADD.L1 A2,1,A2
|| SUB.L2 B1,1,B1
|| OR.S2 B2,A9,B6
|| [B0] SUB.D2 B0,1,B0 ; decrease the counter
|| [B0] B.S1 loop3 ; check if it's the end of the loop

 XOR.L1 A5,A7,A7 ; vertical xor
|| XOR.L2 B6,B7,B7 ; diagonal xor
|| SHL.S1 A5,A2,A9 ; SHL,SHR and OR from 1st cycle
|| SHRU.S2 A5,B1,B2 ; make the bit rotation

;epilogue
 SUB B1,1,B1
|| OR B2,A9,B6

 XOR B6,B7,B7
|| SHL.S1 A5,A2,A9
|| SHRU.S2 A5,B1,B2

 [!A1] B B3 ; if (length==0) return
|| [A1] B big_loop
 STW A7,*B4++ ; vertical = A7
 STW B7,*B4++ ; diagonal = B7

 46

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

 SUB A3,8,A3 ; set the data pointer
 NOP 2

; ##
_parity2D_check

 LDW *A4++,A3 ; A3 = memory to protect pointer
 LDW *A4++,B4 ; B4 = pointer to parity bits
 LDW *A4,A1 ; A1 = length
 ZERO B5 ; B5 = number of corrected errors
 NOP 2

big_loop2 MVK 32,B0
|| LDW *B4++,A7 ; A7 = vertical xor
 LDW *B4++,B7 ; B7 = diagonal xor

 CMPGTU A1,B0,A2 ; if length>32
 [A2] SUB A1,B0,A1 ; then { length-=32; b0=31)
 [!A2] MV A1,B0 ; else { b0= length-1;
 [!A2] MVK 0,A1 ; length=0; }

 SUB B0,1,B0

 B loop4 ; 2x branch because it's a 2 cycle loop
|| ZERO A4 ; return value

 ZERO B2
|| ZERO A9
|| MVK -3,A2 ; used for bit rotation (shl)
|| MVK 35,B1 ; used for bit rotation (shru)

 B loop4

 ZERO B6
|| ZERO A5
|| MV A3,B8 ; copy of the data pointer

;2 cycle loop
loop4 LDW.D1 *A3++,A5 ; load the data
|| ADD.L1 A2,1,A2
|| SUB.L2 B1,1,B1
|| OR.S2 B2,A9,B6
|| [B0] SUB.D2 B0,1,B0 ; decrease counter
|| [B0] B.S1 loop4 ; check if it's the end of the loop

 XOR.L1 A5,A7,A7 ; vertical xor
|| XOR.L2 B6,B7,B7 ; diagonal xor
|| SHL.S1 A5,A2,A9 ; SHL,SHR and OR from 1st cycle
|| SHRU.S2 A5,B1,B2 ; make the bit rotation

;epilogue
 SUB B1,1,B1
|| OR B2,A9,B6

 XOR B6,B7,B7
|| SHL.S1 A5,A2,A9
|| SHRU.S2 A5,B1,B2

; check if there was an error and repair it:
 OR A7,B7,A2 ; if vertical=0 & diagonal=0
 [!A2] B next ; then go to next
 MVK 32,A0
 MV A7,A9 ; copy of the vertical xor
 LMBD 1,A7,A5 ; left-most bit detection for vertical
|| LMBD 1,B7,B6 ; left-most bit detection for diagonal
 SUB A5,B6,A8 ; diagonal-vertical
|| AND A5,A0,A2
|| AND B6,A0,B2
 ADD A5,1,A5
|| ADD B6,1,B6
|| OR A2,B2,B2
 SHL A7,A5,A7
|| SHL B7,B6,B7

 47

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

 OR A7,B7,A2
 OR B2,A2,A2 ; if error is in the parity bits
 [A2] B B3 ; or more errors occurred then return -1
 MVK -1,A4
|| CMPLT A8,0,A2 ; if H-V<0 then add 32
 [A2] ADD A8,A0,A8

 SHL A8,2,A5 ; multiply by 4, because it's 32bit data array
 ADD B8,A5,B8
 LDW *B8,A6 ; load the errored data
 NOP 4
 XOR A6,A9,A6 ; change the bit (correct the error)
|| ADD B5,1,B5
 STW A6,*B8 ; save corrected data
;next
next [A1] B big_loop2 ; if (length>0) next loop
|| [!A1] B B3 ; else return B5 (number of corrected errors)
 MV B5,A4
 SUB A3,8,A3
 NOP 3

To summarize, the 2D parity algorithm is an interesting solution, because it is quite fast

and its code is short but has much bigger capabilities then the single parity method. On the

C64xx family DSPs the two dimensional parity method can be as fast as the one

dimensional method. In cases when errors caused by radiation occur only as single bit flips

and they are separated in memory by a large distance (so that they are located in different

128 byte memory blocks) this method seems to be the best solution due to its high speed.

4.3 Forward Error Correction codes
The Forward Error Correcting (FEC) codes which have been explained in section 2.3.3

have been implemented in two ways. The first one uses matrix multiplication to calculate

the parity bits. This way it is very easy to define any given Hamming code by simply

defining its G or H matrix. This solution enables very easy testing of Hamming codes of

different lengths. However its main drawback is that the amount of calculations is very big

and therefore the speed of the parity bit calculations is very slow. According to the CCS

Profiler, for a memory block of 128 bytes, this method is about 23 times slower than the

2D parity algorithm. However, there is a much better way of implementing the Hamming

codes. It does not use the matrices, it simply involves hard-coding the necessary xor

operations. This method has been used to implement a (38, 32) code in assembly and it

proved to be about much faster than the "matrix implementation". The amount of CPU

cycles needed to protect a given memory region was comparable to the number of cycles

needed by the 2D parity algorithm.

The chosen (38, 32) code has the ability to correct 1 error or detect 2 errors. However, it

cannot do both at the same time. The user has to decide to focus on either error correcting

and then be able to correct 1 error, or focus on error detection and detect 2 errors.

 48

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

However, the code was extended by adding 1 parity bit, which is calculated over all 38

codeword bits and the extended code is able to correct 1 error and detect 2 errors

simultaneously.

Both implementations are based on the same idea to divide the protected memory region

into blocks of 32x32 = 1024bits (128 bytes) and to calculate the hamming code vertically.

This means that for every column of 32 bits 6 parity bits are added (because a (38, 32)

code is used). This yields that for a 128 bytes block, additional 8 parity bytes (64 bits) are

needed. This kind of implementation has some very important advantages. Firstly, the 32

bit columns are treated as separate messages, thus 1 error can be corrected in each bit

column. This gives a total of 32 correctable 1-bit errors in the whole block (assuming that

every error is in a different column). The second advantage is of course the speed of

calculations, because the 32 codes are calculated and checked in parallel.

The following is the matrix implementation of the (38, 32) code with one additional parity

bit. The function that performs the same error checking, but has the xor-ing hardcoded in

assembly is presented in Appendix D.

int hamm_init(Thamm *block, int length) // length is the size of protected memory region
{ // in bytes, and must be multiple of 4*K
 int rem, quot;

 rem = length % (4*K);
 quot = length / (4*K);

 if (rem)
 {
 block->no_of_blocks = 0;
 return 0; // error, wrong length
 }
 block->parity_bits = (int *)malloc((N-K+1)*4*quot); // memory alloc. for parity bits
 if (block->parity_bits == NULL)
 {
 block->no_of_blocks = 0;
 return 0;
 } else
 {
 block->no_of_blocks = quot;
 return 1;
 }
}

void hamm_close(Thamm *block)
{
 free (block->parity_bits);
}

void hamm_calc(Thamm *block)
{
 int j,i,k;

 for (i=0; i<(N-K+1)*block->no_of_blocks; i++)
 block->parity_bits[i] = 0;

 for (k = 0; k<block->no_of_blocks; k++) // for each block
 {
 for (j = 0; j<(N-K); j++) // perform the matrix multiplication

 49

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

 for (i = 0; i<K; i++)
 block->parity_bits[k*(N-K+1)+j] ^=(block->data[k*K+i] & Ht[i][j]);

 // additional parity bit calculation:
 for (i = 0; i<N; i++)
 if (i<K) block->parity_bits[k*(N-K+1)+N-K] ^= block->data[k*K+i];
 else block->parity_bits[k*(N-K+1)+N-K] ^= block->parity_bits[k*(N-K+1)+i-K];
 }
}

int hamm_check(Thamm *block)
{
 int j,i,k,error,tot_error,k1,k2;
 unsigned int temp,t,parity;
 int S[32]; // 32 syndromes because 32 parallel hamming codes are calculated

 error = 0;
 tot_error = 0;

 for (k = 0; k<block->no_of_blocks; k++) // for each block
 {
 k1 = k*K;
 k2 = k*(N-K+1)-K;
 parity = block->parity_bits[k2+N];

 for (i=0; i<32; i++) S[i] = 0;

 for (j = 0; j<N-K; j++) // do the matrix multiplication
 {
 temp = 0;

 for (i = 0; i<N; i++)
 if (i<K)
 {
 temp^=(block->data[k1+i] & Ht[i][j]);
 if (j == 0) parity ^= block->data[k1+i];
 } else
 {
 temp^=(block->parity_bits[k2+i] & Ht[i][j]);
 if (j == 0) parity ^= block->parity_bits[k2+i];
 }

 for (i = 0; i<32; i++) // change S from vertical to horizontal
 {
 t = ((temp >> i) & 0x01);
 if (t)
 {
 S[i] |= (t << j);
 error = 1;
 }
 }
 }
 if (error) // check if there were any errors
 {
 error = 0;
 for (i = 0; i<32; i++) // check all 32 syndromes
 if (S[i]) // if syndrome != 0 -> error
 if ((parity & (0x1 << i)) > 0) // 1 error to correct
 {
 parity ^= (0x1 << i); // turn off the parity bit

 j = 0;
 while (COSET[j++] != S[i])
 if (j == N) return -1; // more than 1 error occurred
 j--;
 // correct 1 error
 if (j<K) block->data[k1+j] ^= (0x01 << i);
 else block->parity_bits[k2+j] ^= (0x01 << i);
 tot_error++;
 } else return -1; // 2 errors detected
 }
 if (parity) return -1; // not all errors have been corrected
 }
 return tot_error; // return number of corrected errors
}

 50

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

4.4 Reed-Solomon codes
Because of the complexity of the Galois field arithmetic, software implementation of

Reed-Solomon codes is not fast. These codes can be quite efficiently implemented in

hardware using rather simple circuits with shift registers, but software implementation is

much more complicated. The main problem is the implementation of multiplication in

GF(2m). As it was described in section 2.3.4, to multiply two elements of the field, 3 table

look-ups and 1 modulo addition must be performed.

The Reed-Solomon encoding and decoding functions used in this project are based on the

source code from literature [10].

Because of the extensive number of calculations that need to be performed, the

encoding/decoding software routines are very slow. The time needed to check a given

memory region for errors (in the case when there are no errors) is comparable to the time

needed to copy this memory block from the Flash. If errors are present and are corrected,

then the execution time is much longer than the time needed for copying the data from

Flash.

Another major drawback of the RS codes, is that their software implementation uses

several big arrays to hold some temporary data. In the case of a DSP running in a

radioactive environment this is a very serious disadvantage. The RS code is supposed to be

used for protection of a given memory region. If the RS code algorithm itself needs to use

a large block of memory for its own data, then it becomes vulnerable to the radiation and

cannot be used as a reliable method. The 2D parity method does not use memory for

storing data at all and the FEC codes use only a few bytes of memory for additional data.

To summarize, the Reed-Solomon codes, although very popular in telecommunication and

in hardware implementations, are not an efficient method for software implementation to

protect a DSP in a radioactive environment. Their main disadvantages are slow speed

compared to the other methods, high usage of memory for temporary data, and large code

size. However, the digital signal processors from the C6400 family have the Galois field

arithmetic implemented in them. In these processors, just a single assembly instruction is

needed to perform multiplication in GF(28). Therefore, software implementation of the

Reed-Solomon codes on the C6400 DSPs can be much faster and efficient. Texas

Instruments presents the RS codes implementation on C6400 processors in the application

note [16].

 51

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

4.5 Voting techniques

4.5.1 Triple voting
As it was described in section 2.3.5, triple voting can be implemented in 2 ways:

comparing the 3 values bit-by-bit, or treating them as individual entities (for example:

integers). Although the bit-by-bit approach is more effective, in all the programs in this

project triple voting was implemented using the second approach. This is due to the fact,

that this solution can give more information about the DSP behavior in the radioactive

environment. Whenever the voting was actually used (one of the three compared values

was different), a "Voting used" message was sent to the PC. The voting routine itself was

not protected in any way. The code of the routine and amount of CPU cycles it used was

significantly smaller than the resources used by the calculations. Therefore, probability that

an error would occur during voting was negligible. However, if during the tests at DESY a

need for protection of the voting routine had arisen; this could have been achieved by

performing the voting twice.

An example application that utilized triple voting was implemented. This application

performs FFT filtering of a sound signal. The program and its performance in radioactive

environment are described in section 5.3.1.

Generally, implementation of triple voting is straightforward. The voting part of the

program is very simple and fast. The main drawback of this method is that all the

operations must be performed 3 times and this introduces a large load to the CPU.

Therefore, this method can only be implemented in programs, where the calculation

functions are very fast and it is possible to repeat them 3 times and still meet all the

performance requirements.

4.5.2 Parallel calculations
In section 2.3.5 a different method of voting is described. In this approach, the calculations

are performed only twice. If the two results are different, then the procedure is repeated.

 52

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Calculations Calculations

Fig.4.4 Parallel calculations diagram
The architecture of the C6713 DSP allows performing the two calculations in parallel. This

way, theoretically, the execution time of operations performed using this method should be

comparable to the execution time of single calculations. In reality, situation is a bit

different. When the DSP performs only 1 calculation operation at a time (for example

calculates the convolution of a signal with a filter's unit impulse response) the optimized

assembly code is written in a way to use all the DSP ALUs and resources to enhance the

speed of calculations. When the calculations are performed twice in parallel, it is not

possible to optimize the code to such a great extent. Therefore, in some cases, it can

happen that performing the calculations twice, one after another may be faster than

performing them at the same time (in parallel). More detailed analysis of this problem is

presented in Chapter 6, where the CPU cycles needed by an example filtering function

implemented using this method are presented.

The part of the program that is the most vulnerable to the errors caused by radiation is the

comparison of the two results, because this operation is done only once. However, the

assembly instructions that perform the comparison of the two results take only 2 CPU

cycles. Therefore, probability that an error corrupts this operation is very small.

One very important disadvantage of this method is the fact, that writing the function to

perform the same calculations in parallel requires the function to be written in assembly.

Therefore, the time needed to write the function is much longer than in the case of writing

the function using C language.

Both results
the same?

No

Yes

Result

 53

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

An example program that uses this method of protection against calculation errors is

presented in section 5.3.2. This program performs filtering of a sound signal by

convolution in time-domain.

 54

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

5. Experimental procedures carried out in DESY

5.1 Overview
The DSK6713 board was tested for radiation influence at the Deutsches Elektronen-

Synchrotron (DESY) centre in Hamburg, Germany in April 2005. The board was placed in

the Linac II tunnel. Linac II is a linear accelerator, in which positrons are created. When

the positrons leave the Linac II tunnel, they enter a PIA (Positron Intensity Accumulator)

ring where they are bunched into packets. Afterwards they are sent to the DESY II

accelerator. The DSK6713 board was placed approximately 3 m away from the electron-

to-positron converter, which is the main source of gamma radiation and neutrons in the

Linac II tunnel.

Before putting the DSK board into the accelerator, the system was tested in the laboratory

in DESY. During these tests, an unexpected problem was found. The board would reset

itself from time to time (approximately every 20-30 minutes). This problem did not exist

when the system was tested in Łódź. After further investigation, it turned out that there was

some kind of interference on the reset signal which was connected to the parallel port of

the PC. After connecting the oscilloscope to the PC's parallel port it was clear that this

interference is in the port itself. Figure 5.1 shows the signal shape on the oscilloscope,

while a constant value of '1' is sent over the investigated port pin.

Fig.5.1 Disturbance on the PC's parallel port
The disturbance in the signal was very short (a few nanoseconds). However it was enough

to reset the board. What was strange about this phenomenon is that the interference seemed

to be caused by sudden movements of people around the PC. For example, every time

when a person sitting near the PC would stand up, the signal was disturbed. Touching the

PC, or even shaking it, did not trigger the signal distortion, while moving the chair which

was nearby – did. The same disturbance was observed on two different PC computers. A

3.3

U[V]

0
time

 55

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

100nF capacitor was connected to the system to filter out the signal, but this solution did

not solve the problem. Therefore, a decision was made to disconnect the reset signal. The

PC software was changed in such a way, that instead of a reset, the board was turned off

for 5 seconds and turned on again.

After these minor changed, the board was placed in the Linac II tunnel. It was kept there

for about a week. First, a few programs that tested the influence of radiation on the DSP

system were run. Later, two example applications (protected by different software

methods) were tested.

5.2 Analysis of influence of radiation on the DSP

5.2.1 EIA-485 transmission test

Introduction
The purpose of this test was to investigate the behaviour of the EIA-485 serial transmission

in the radioactive environment. Reliability of the serial connection between the DSP and a

PC was crucial, as all the information about the performance of the DSP under radiation is

sent to the PC using this connection. The main idea behind this test is quite simple. The

DSP awaits an incoming byte on the serial link and sends back the received byte to the PC

as soon as it is received. The PC sends a byte to the DSP and listens on the serial port. If it

receives the same byte it had previously sent, then it sends another byte and the loop

continues.

DSP part of the application
At the beginning of the program the DSP reads the value of the PC’s parallel port bit2

(DSP’s GPIO bit5). If the bit value is 0 then the whole DSP application code is kept in

Flash and executed from there. If the bit is set to 1, the code is copied into RAM and

executed from RAM. The main difference between these two modes of operation is that

the code in Flash can achieve a maximum transmission speed of about 2000 bps, while the

code executed from RAM is much faster and can easily work at a rate of 115200 bps.

However, the code kept in RAM is not protected in any way, thus it may hang up if errors

in RAM are caused by radiation.

The whole application was written in assembler and consists mainly of the SoftUartInChar

and SoftUartOutChar functions presented in Chapter 3.

 56

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

PC part of the application
The PC program enables the user to choose in which mode (slow – from Flash, or fast –

from RAM) the DSP program will be launched. Then the user can initiate the serial

connection by sending the 0x13 value needed by the SoftUartSpeedDetect function to

calculate the connection speed. The program enables the user to send 1 byte of any value

and checks whether the same value is sent back by the DSP. It can also work in a loop,

where each time the sent value is increased by 1. All the encountered errors are displayed

on the screen and can be logged to a file.

Performance in the accelerator environment
First, the test program was executed in slow-mode - that is a mode in which the whole code

is kept in Flash and serial transmission speed is 2048 bps. The program was running for

about 12.5 hours (from 6.04 20:52 to 7.04 9:25) and no errors were reported. Then the

program was launched in the fast mode, where the DSP application code is placed in

internal RAM of the DSP and transmission speed is 115000 bps. The program was running

for a total of 6 hours (in the times: 9:38 - 13:35 and 17:38 - 19:25) and again no

transmission errors were found. The time of this test was relatively short because the code

of the DSP had to be placed in RAM to enable fast serial transmission and it was not

protected in any way. Then the PC program was launched in a mode, where the PC just

listens on the serial port, to see if the radiation induces any error bits in an idle EIA-485

transmission line. Again, no errors were reported.

To sum up, all the serial transmission tests lasted a total of 21.5 hours and during that time,

not even a single bit error was found. Therefore a conclusion was made that the EIA-485

transmission is reliable enough to be used in the next tests which focus on the influence of

the radiation on the digital signal processor itself and its internal memory. It can also be

concluded that the EIA-485 transmission can be used as a reliable medium in an

accelerator environment in future projects.

 57

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

5.2.2. Internal RAM test

Introduction
The purpose of this test was to check how radiation influences the internal memory of the

DSP. The program simply scans the whole IRAM continuously to see if any changes are

present.

DSP part of the application
The whole program was written in assemby and is contained in Flash. It does not use the

IRAM or external SDRAM at all. All the necessary variables are kept in internal registers;

therefore the whole IRAM can be used only for testing the influence of radiation.

Additionally, important variables, such as the serial connection speed, are kept in 3

registers and triple voting is used on them. The program first fills the whole 256 KB of

IRAM with a test value of 0xFFFF0000. Then it scans the RAM and checks whether the

read values are equal to the test value. After the whole memory is checked, which takes

about 3.5s (because the code is kept in Flash), a watchdog signal is sent to the PC. If a

value read from the memory is not equal to the test value, then immediately a message is

sent to the PC. The message contains the address of the error, and a new value read at this

address. The whole message is sent 3 times to ensure proper reception on the PC side. The

program flow diagram is depicted in Figure 5.2.

PC part of the application
The PC program simply starts the DSP, initiates the serial transmission and listens on the

serial port for incoming messages. There is a watchdog timer which resets the DSK board

if no signal is received within 4 seconds. Triple voting is carried out on all the received

messages and the outcome is displayed on the screen and can be logged into a file.

 58

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Fill memory with
TEST_VALUE

ADDR=0x0

Load VALUE from
memory at address ADDR

Fig.5.2 DSP program flow diagram

Performance in the radioactive environment
The program which tested the influence of radiation on the internal RAM of the DSP was

launched 2 times. The first time, test lasted for 42 hours and 25 minutes (the test started on

7-04 at 19:27 and ended on 9-04 at 13:52). The observed errors (bit-flips in memory) are

listed in Table 5.1.

Table 5.1 Observed memory bit-flips

Date & time of error Bits flipped Memory address

7-04 19:45 1 0x00013BD0

8-04 9:07 1 0x0000B424

8-04 17:10 1 0x000077A0

8-04 17:23 1 0x00034410

8-04 17:41 1 0x00032FA8

8-04 18:52 1 0x00029C6C

9-04 3:49 1 0x0000B480

9-04 4:55 1 0x00039ED0

ADDR=ADDR+1

ADDR=0x40000

Send watchdog signal

Send message to the PC
with ADDR and VALUE VALUE = TEST_VALUE

No

Yes

No

Yes

 59

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

There were two very short breaks in the test (of approx. 20 minutes of total length) because

some network settings of the PC had to be changed and this involved restarting the

Windows operating system.

The easiest way to quantify Linac II activity during the test is to measure the PIA current,

which corresponds to the number of electrons hitting the electron-to-positron converter

[17]. A graph showing the PIA current during the test and the moments of bit-flips marked

in pink is presented in Fig.5.3.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Time [hours]

PI
A

cu
rr

en
t [

m
A]

Fig.5.3 Linac II activity during the test (bit-flips marked in pink)
The second test was performed a few days later, when the activity of the accelerator was

much higher. The test lasted for 10 hours (from 14.04 23:14 to 15:04 9:14). The following

is a graph showing the Linac II activity and a table with all the reported memory bit-flips:

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 1

Time [hours]

P
IA

 c
ur

re
nt

 [m
A

]

0

Fig.5.4 Linac II activity during the test (bit-flips marked in pink)

 60

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Table 5.2 Observed memory bit-flips

Date & time of error Bits flipped Memory address
14-04 23:16:49 1 0x0003CB68

14-04 23:26:48 1 0x0001F9D4

14-04 23:43:23 1 0x00006E9C

15-04 00:35:35 1 0x0003E058

15-04 01:23:56 1 0x000083B8

15-04 01:23:57 1 0x000084B8
15-04 02:07:39 1 0x0003F5D8

15-04 02:15:53 1 0x0000F3FC

15-04 03:22:15 1 0x000234B0

15-04 04:00:14 1 0x000306B8

15-04 04:05:26 1 0x000264FC

15-04 04:40:20 1 0x0003204C

15-04 04:50:48 1 0x00016E84

15-04 05:17:52 1 0x0001F8C8

15-04 07:18:36 1 0x00009424

It can be easily noticed that during the second test PIA current was relatively high most of

the time. Therefore radiation was much higher and the number of bit-flips is much bigger

than in the first test. There were 15 errors reported in 10 hours of testing compared to only

8 errors during the 42 hours of the first test. The most important observation that can be

made is that all the errors involved changing only 1 bit at a time. When the radiation was

high, errors were reported every couple of minutes. There was one situation, where two

errors occurred within one memory scanning loop which lasts for about 4 seconds. The two

errors were present at memory locations separated by 0x100 (256) bytes. If Hamming or

2D parity memory protection methods had been used, then the two bit-flips would have

been placed in two different memory blocks and each of them could have been corrected

by the algorithms. Generally, during both tests, there were no burst errors reported. Each

time a bit-flip occurred, its memory address was uncorrelated with addresses of previous

bit-flips.

 61

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

5.2.3. DSP ALU test

Introduction
The purpose of this test was to check how radiation influences the DSP itself and if it

causes any wrong results in the calculations made by the ALU modules.

DSP part of the application
The program for the DSP was written in assembly and placed in Flash. The whole program

is just one loop, where the DSP performs some calculations. The C6713 DSP has all its

modules duplicated; therefore it can perform many arithmetic operations in parallel. In this

test, the DSP makes two parallel calculations on two different sets of internal registers.

The calculations start with initial value of 0x1200 from which 0x0C00 is subtracted. Then

the result is multiplied by 0x03 which should give a final result of 0x1200 (the same as

initial value). Then the calculations are repeated. Both, the subtraction and multiplication

are performed twice in parallel by two independent processor modules. If any ot the two

results is not equal to 0x1200, a message is sent to the PC. The calculation loop is repeated

0xC000 times and afterwards the results (even if they are correct) are sent to the PC and

the loop is started again. The correct results after the loop are used as a watchdog signal.

Initialize loop
A3 = 0x1200 B3 =0x1200

DSP

Side A Side B
A3 = A3 – 0x0C00 B3 = B3 – 0x0C00

A3 = A3*0x03 B3 = B3*0x03

Fig.5.5 DSP program flow diagram

A3 = 0x1200 and B3 = 0x1200 Send results
to the PC

No

Yes
End of the loop?

Yes
No

 62

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

The following is the most important part of the source code:

start: ; A4 = serial_speed
 MV A4,A8
|| MV A4,A10
|| MV A4,B10 ; A8 = A10 = B10 = serial_speed
 MVKL LOOP_COUNT,B2 ; loop counter
 MVKH LOOP_COUNT,B2 ; loop counter

loop_start: ; set initial values
 MVK AA,A3 ; A3 = initial value
|| MVK AA,B3 ; B3 = initial value
 MVK BB,A5 ; A5 = value to be subtracted
|| MVK BB,B5 ; B5 = value to be subtracted
 MVK CC,A4 ; A4 = multiplication coeff
|| MVK CC,B4 ; B4 = multiplication coeff

main_loop:
 [B2] B main_loop
|| [B2] SUB A3,A5,A3 ; side "A" subtract
|| [B2] SUB B3,B5,B3 ; side "B" subtract
 [B2] MPY A4,A3,A3 ; side "A" multiply
|| [B2] MPY B4,B3,B3 ; side "B" multiply
 [B2] MVK AA,A1 ; load correct values
|| [B2] MVK AA,B1
 [B2] XOR A3,A1,A1 ; check A-side result
|| [B2] XOR B3,B1,B1 ; check B-side result
|| MVK BB,A5 ; A5 = value to be subtracted
|| MVK BB,B5 ; B5 = value to be subtracted
 [B2] OR A1,B1,B0 ; B0>0 if any of the two results is wrong
|| MVK CC,A4 ; A4 = multiplication coeff
|| MVK CC,B4 ; B4 = multiplication coeff
 [B0] MVK 0x0,B2 ; if B0>0 stop loop
|| [!B0] SUB B2,1,B2 ; if B0==0 decrease loop counter

 MV A3,B11 ; b11 = A-side result
|| MV B3,B12 ; b12 = B-side result

send_msg:
 ; here is the code that sends the message to the PC
 ; and then jumps to loop_start

PC part of the application
The PC program starts the DSP, initiates the serial connection and listens on the serial port

for the calculation results. It also activates a watchdog timer that resets the board if no

messages are received for 4s. The program enables the user to input an expected results

value (default value = 0x1200) and displays on the screen only the messages that contain

results not equal to the expected one.

Performance in the radioactive environment
The test program was running for a total of 36 hours (one period of about 10h and later for

26h). Unfortunately, the Linac II activity was rather small during the tests. During that

time all the calculation results were correct. There was no error in the calculations made by

the DSP. However, there were two occasions when the watchdog timer on the PC expired

and the DSK board was reset. This means that radiation has hanged the DSP or influenced

it in such a way, that it stopped running and did not send any message to the PC. The

 63

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

graphs showing PIA current in the tunnel with the moments of watchdog reset marked in

pink are presented in the following figure:

0

5

10

15

20

25

0 3 6 9 12 15 18 21 24 27 30 33 36

Time [hours]

P
IA

 c
ur

re
nt

 [m
A

]

Fig.5.6 Linac II activity during the test (watchdog resets marked in pink)
The most interesting thing about these graphs is that both times when the DSP hanged and

the watchdog reset had to be used occurred when PIA current was almost 0. This means

that radiation can be quite high and have important influence on the DSP also when the

PIA current is very low.

5.3 Example applications protected against radiation

5.3.1. FFT filtering of a sound signal

Introduction
In this test an example application program was loaded into the DSP’s Flash memory and

executed. The program performs the FFT transform of an 8kHz input sound signal, filters it

(using complex multiplication in the frequency domain), then calculates inverse FFT and

outputs the result to the audio codec.

DSP program
The program is quite big and complicated. It uses EDMA and “ping-pong” buffering to

increase its performance. It also uses the TI’s operating system called DSP/BIOS. Many of

the DSP/BIOS modules do not work correctly when they are placed in Flash. Therefore all

the DSP/BIOS code is placed in RAM along with the chip support library (csl6713.lib) and

run-time support library (rts6700.lib). Of course, the most important and time-critical parts

of the program (e.g. FFT calculation, filtering) are also placed in RAM. The total amount

 64

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

of code placed in RAM is 41 KB. All this code is protected using the 2-dimensional parity

method. Each time, when an interrupt is triggered, the code is checked for errors before the

interrupt routine is executed. If more errors are detected than can be corrected, then the

code is copied from Flash to RAM again. After the memory check, the appropriate

interrupt routine is executed. The 2D parity function that performs the memory check is

also placed in RAM, because of the need for fast execution. Therefore, it is vulnerable to

the effects of radiation. However, the code of the function is very small. It is less then 300

bytes, while the Hamming code function's code is more than 1 KB. As a result, only 300

bytes of the RAM memory are actually vulnerable to radiation. If the program were not

protected by the 2D parity method, then the whole 41 KB of application code stored in

RAM would be vulnerable. So, usage of the 2D parity method decreases the probability

that bit-flips in internal memory corrupt the application code by about 41000/300=136.67

times.

All the calculations performed in the program are repeated 3 times and voting is used to

determine the final result. Also, all the buffers, filter coefficients and other tables (e.g.

coefficients used in FFT calculation) are protected using the Hamming code. Whenever

errors are detected or corrected, or voting needs to be used, an appropriate message is sent

to the PC. A diagram showing the general concept of how the program processes the input

signal is presented on Figure 5.7:

 65

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Input signal

Buffer

FFT FFT FFT

Fig.5.7 DSP program flow diagram

PC program
The PC program is just the one explained in the chapter about the DSP-PC communication

system. It listens on the serial port for messages from the DSP. There is a watchdog timer,

which resets the DSK board if no signal is received in a specified time.

Voting

complex
multiply
by F(s)

complex
multiply
by F(s)

complex
multiply
by F(s)

Voting

Inverse
FFT

Inverse
FFT

Inverse
FFT

Voting

Buffer

If 1 of the 3 values is
different then send “voting
used” message to the PC

If 1 of the 3 values is
different then send “voting
used” message to the PC

If 1 of the 3 values is
different then send “voting
used” message to the PC

Output signal

If during any of the votings all 3
values are different then "voting
failed” message is sent to the PC

 66

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Performance in the radioactive environment
First, the program was launched on 11-04 at 16:55. At that time the watchdog would reset

the board almost all the time (every 2-3 minutes). Changing the watchdog timer value from

the default 1.5s to 2s fixed the problem. It is hard to find a reasonable explanation for this,

because the DSP was programmed to send the watchdog signal every second. However,

after the change, watchdog stopped resetting the board and the program was running

smoothly. The total time of execution of the program was about 48 hours. During that

period the following events happened:

• 12.04 at 22:20 - over 280 messages “voting used” were received and this was

immediately followed by a watchdog reset. This could mean that the radiation has

corrupted the DSP operation in such a big way that it achieved a large number of

incorrect calculation results (which were fixed by triple voting), and it also stopped

sending the watchdog signal, which caused the watchdog reset. However, the next

day an error was found in the PC software, which could have caused the watchdog

reset even if the watchdog signal was send by the DSP, if a large number of other

messages were sent from the DSP at the same time when the watchdog signal

should arrive. Therefore it is impossible to decide what really happened 12.04 at

22:20. It could have been one of the two possibilities: either the radiation

influenced the DSP in such a way that it did not send the watchdog signal, or it only

caused a large number of incorrect results that were fixed by triple voting and the

reset of the DSP was caused by an error in PC software.

• 2 times “voting used” message was received (on 13.04 at 1:02 and at 8:19) – this

means that one of the calculations produced wrong result, but triple voting

managed to correct it and produced the right result.

• 4 times single bit error was corrected by the 2-dimensional parity algorithm in the

code of the program (it happened on 13.04 at 1:58, 6:02, 9:30 and 17:20).

A graph showing the activity of the accelerator by means of the PIA current is shown on

Figure 5.8 (the radiation induced events are marked in pink):

 67

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

0

5

10

15

20

25

30

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Time [hours]

P
IA

 c
ur

re
nt

 [m
A

]

Fig.5.8 Linac II activity during the test (SEUs marked in pink)
To sum up, during 48 hours of program execution there were 6 times when the

implemented software radiation protection methods helped in keeping the DSP properly

running and producing correct results. Four of them involved correction of the bits in

memory that were flipped by radiation and two times triple voting helped in obtaining

correct results. However, there was one time, when the software did not manage to keep

the DSP running properly despite the effects of radiation and the board was reset by the

watchdog. All of the events happened in the periods were the PIA current was above 0mA.

In the times when the accelerator activity was much smaller, no events were reported.

5.3.2. Convolution filter (without DSP/BIOS)

Introduction
In this test the example application that was running on the DSP was a simple filter. The

program carried out the filtering by convolution calculation. The main difference compared

to the previous program is that this time DSP/BIOS was not used and therefore the

program code was considerably smaller.

DSP program
The main part of the program is the routine that calculates the convolution of the input

signal with the filter’s unit impulse response. This function is written in assembly in such a

way, that all the calculations are carried out twice in parallel. Whenever the two results are

not equal to each other, the calculations are repeated and an appropriate message is sent to

the PC. The block diagram is shown on Figure 5.9. Additionally, in the convolution

calculation function, all important variables, such as pointers to filter coefficients and

 68

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

buffers, are kept in registers with triple redundancy. During each loop iteration triple

voting is performed on them. This solution gives even more protection, as the function can

work correctly even if radiation induces changes in the internal registers. The main

drawback of this approach is the loss in speed. The function execution time is higher than

execution time of a simple unprotected convolution calculation function repeated 2 times,

and voting performed afterwards.

In this program, again the whole code that is placed in RAM is checked for errors before

being executed. The error checking is done using the 2-dimensional parity algorithm which

is executed before each interrupt service routine. However, because there is no DSP/BIOS,

the size of the code in RAM that needs to be protected is only 6.5 KB. The small size of

code is also caused by the fact that the algorithm used for filtering is much simpler than

FFT. The most important problem with DSP/BIOS was that this system uses some areas of

RAM for its own data and this was not protected in any way in the previous program. This

time, when DSP/BIOS is not present, everything is under control and there are no areas of

data or code that are not protected. Additionally, all the necessary data tables (e.g. filter

coefficients) are protected by the Hamming code.

 69

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Input signal

Start the convolution
calculation loop

DSP

Side A Side B

Calculate Calculate

Fig.5.9 DSP program flow diagram

PC program
The PC program is the same as the one used in previous test.

Performance in the radioactive environment
The program was tested in the Linac II tunnel for about 29h.30min (from 17:42 13.04 to

23:16 14.04). During this time the activity of the accelerator was very high. A total of 4

events caused by radiation have been observed. Fig.5.10 shows the values of PIA current

in the Linac II tunnel during the test with the events triggered by radiation shown by pink

markers.

Side A Side B
 result = result

Next loop iteration

End of the loop?

Repeat loop
iteration and send
message to the PC

No

Yes

No

Yes

Output signal

 70

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Time [hours]

P
IA

 c
ur

re
nt

 [m
A

]

Fig.5.10 Linac II activity during the test (SEUs marked in pink)
Here are more details about the events caused by radiation:

• 13.04 at 21:30 - one bit error was corrected by the Hamming code. The error

must have occurred somewhere in the data section of the program, as only the

data was protected by Hamming code.

• 13.04 at 21:48 - another error in memory was corrected. This time 1 bit-flip

occurred in the code of the program and was corrected by the 2D parity

algorithm.

• 14.04 at 12:35 - 1 bit error was corrected by the 2D parity method

• 14.04 at 21:57 - the PC received 1 byte of value 0x0 over the serial port.

However, this value is not equal to any of the valid message codes. One second

later, the watchdog timer expired and the DSK board was reset. This is clearly a

situation, where radiation stopped the DSP from proper operation and the

software protection methods failed. A 0x0 received on the serial port means that

the serial port output of the DSP malfunctioned, because normally, in idle state,

the serial port output is set to logical ‘1’. An example situation when the serial

port output is equal to ‘0’ is when the DSP is turned off, or when it is just after

reset. Probably, radiation caused the DSP to stop or even reset itself and this

switched the serial port output to ‘0’ and prevented the watchdog signal from

being sent.

The most important fact is that during the whole test there was no situation when the two

parallel convolution calculations would produce different results. Also, the triple voting on

 71

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

internal registers of the processor did not report any changes in the values stored in

registers. Therefore, the method of performing parallel calculations and using triple

modular redundancy to protect the internal register values does not increase the reliability

of a DSP.

 72

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

6. Project results

6.1 Memory protection
In general, the tests performed at DESY showed that radiation has an important influence

on the DSP and its internal RAM memory. The most frequently observed type of single

upset event caused by radiation was a change in the internal memory of the processor. In

all the tests only 1 bit errors were found in RAM. This means that to protect the system’s

memory, 1 error correcting codes are sufficient.

In this master's project two main memory protection methods have been implemented.

First one is the 2D parity control which can correct 1 bit error in every 128 bytes. The

second one is the (39,32) extended Hamming code which can correct up to 32 1-bit errors

in a 128 bytes block if every error is introduced in a different “bit column”. Therefore both

methods are sufficient to deal with the effects of radiation on the DSP’s memory.

However, it is important to remember, that memory protection methods can be useful only

if the program memory is scanned for errors each time before execution of a given code.

For example, if some interrupt service routine (ISR) needs to be protected then the memory

containing the ISR code has to be scanned each time the interrupt is triggered. This

produces relatively high additional CPU load. Both memory protection methods

implemented in this project require about 800 CPU cycles to scan a 1 KB memory region

for errors. If a faster routine is needed, then simple parity control can be used. This method

requires only about 280 CPU cycles to scan a 1 KB memory block, however it cannot

correct errors. Therefore, when an error is detected the code needs to be copied from some

other radiation immune source, for example the Flash memory. However, copying the code

from Flash is dependent on the Flash memory speed and can be very time-consuming. On

the other hand, the process of correcting 1 bit error using the 2D parity control method

requires only about 20 extra CPU cycles. In the case of the Hamming code this process is a

few times longer and depends on the location of the error.

Another important factor which has to be taken into account is the fact that there is

a probability that an error occurs in the memory checking function itself. Therefore the

memory scanning function should also be checked for errors or its code copied from Flash

prior to its execution. Because of this fact the 2D parity control function seems to be a

much better choice than the Hamming function, because its code is much shorter. The 2D

parity checking function code size is about 280 bytes, while the Hamming memory

 73

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

checking function code size is over 1 KB. Therefore checking the code for errors or

copying it from Flash is about 4 times faster in the case of 2D parity. If the function is not

protected and not copied from Flash, the probability that an error occurs within its code is

also 4 times smaller. Comparison of the code size and execution speed of all memory

protection methods used in the test is presented in Table 6.1. The presented CPU cycles

needed to scan 1 KB memory block are given for the case, when no errors are present.

Table 6.1 Comparison of memory protection methods

Method Code size
CPU cycles

needed to scan
1 KB of memory

Simple parity control 72 bytes 288

2D parity control 280 bytes 771

(38,32) Hamming code 934 bytes 750

(38,32) extended Hamming code 1160 bytes 796

Summarizing the presented data, it can be concluded that both methods implemented (2D

parity and Hamming codes) are sufficient to provide radiation immunity. However the 2D

parity control method is best suitable for protection of code which is frequently executed

and its execution time is crucial for the system, for example the interrupt service routines.

This is due to the small size of the 2D parity control function code and its very quick

process of error correction. Methods based on the Hamming code can be used in all other

cases and for protection of data due to their higher error correcting capabilities with

approximately the same speed of execution as the 2D parity control.

6.2 Protection against errors in calculations
Another type of SEU’s caused by radiation is when the processor itself is influenced. As an

effect of this, some calculations and other DSP operations yield incorrect results. This can

be fixed by repetition of the calculations and using voting methods to choose the correct

result. In the test of the FFT filtering program 2 times voting has prevented the DSP from

obtaining incorrect result. However, the other method which was implemented, the method

involving parallel calculations in two independent ALU’s of the DSP did not prove to be

useful. There was no situation were the two parallel calculations would give different

results. Of course, both methods introduce additional load to the processor and require

 74

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

additional CPU power to provide radiation immunity. The case of triple voting is very

simple. Repetition of calculations 3 times means that the DSP can perform 3 times smaller

number of operations than in the case when no protection is implemented. The additional

delay introduced by voting is very small and negligible compared to the calculations (e.g.

FFT). Also the code of the voting routine is very short. Therefore the probability that an

error occurs during voting is much smaller than the probability that it occurs during the

process of calculations. In the case of parallel calculations, the analysis is much more

complicated. At first, one can think that performing calculations 2 times in parallel should

take the same amount of time as normal process of calculations. However, this is not

exactly true. When operations are not performed twice in parallel, all the CPU resources

can be used for optimization of the calculation process and therefore the result may be

obtained much faster. The exact additional CPU power needed by this radiation protection

method is difficult to estimate and is different for every type of calculations algorithm.

This method also needs additional CPU power to protect the values of the internal

registers, for example by triple voting. This protection may be crucial for some types of

algorithms. For example, if an error is introduced in the register holding the data address

on the "A" side of the DSP, then the data loaded for calculations will be incorrect and

therefore the "A" and "B" side results will be different. If the calculations are repeated

without correcting the error in the register, then the two results will be always be different

and the program will enter an infinite loop. To avoid such situations, the register value

needs to be protected from errors. Another approach is to use the same register for data

address for both calculations. This will avoid infinite loop possibility, but will not ensure

radiation immunity, as the error introduced in the register will influence the results of

calculations but will be undetected. In this project, the parallel calculations method was

used for protection of convolution calculation. Table 6.2 presents the amount of CPU

cycles needed by the normal (optimized) convolution routine and "twice in parallel"

calculation function with and without triple voting on internal registers.

 75

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Table 6.2 CPU cycles needed by parallel calculations method

Method of convolution calculation CPU cycles

normal C function, optimized by compiler 464

"twice in parallel" without additional register protection 765

"twice in parallel" with triple voting on all internal registers 2403

It can be seen from the Table 6.2 that the parallel calculation method is much slower than

the normal calculation process; however it is not two times slower. Therefore, this solution

is still faster then the case where the calculations would be simply repeated and then the

two results compared. Another important fact is that if the calculations were just repeated

and later compared, then additional memory (vulnerable to SEUs) would be needed for

storing the results of both calculations. This memory is not needed if the parallel

calculations approach is used. However, when additional protection of registers is used, the

total execution time increases dramatically. In the case of the function used in this project,

the number CPU cycles needed is 6 times bigger than in the case of no protection.

However, this is in the extreme case when all internal registers are protected. Usually, the

optimum solution requires protection of only some limited number of registers and then the

number of CPU cycles needed is smaller. Another drawback of the parallel calculations

method is the fact that the functions must be written in assembly and therefore the software

development time is much longer. However, the most important disadvantage of this

method is the fact that during the tests at DESY there was no occasion when the two

parallel results would be different, or the internal register value changed. Therefore, the

method is ineffective in real radiation environment.

6.3 Serial transmission
One very important observation made during the tests is that the EIA 485 serial

transmission can be used as a reliable medium in a radioactive environment. During all the

tests, which lasted over a week, no error in the serial transmission has been reported. This

means that the EIA 485 transceivers are immune to radiation and this standard may be used

in future, further research. The standard is well known for its interference immunity. This

is mainly due to the fact that the signals are transmitted as voltage difference between two

transmission wires rather than a single voltage value with respect to a common ground.

Therefore, when some interference is introduced, it affects both wires in almost the same

 76

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

manner so the voltage difference between the wires is not changed and the signal can be

read correctly. This feature is important also in the accelerator tunnel, because there is a

large number of different kinds of electronic equipment placed in the tunnel and all these

devices can interfere with the transmission.

 77

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

7. Conclusions
The main goal of this project was to analyze the influence of radiation (mainly Gamma

radiation and neutrons) on a DSP system and investigate if the reliability of the system can

be increased by means of purely software methods. The processor used in the experiments

was a C6713 DSP from Texas Instruments.

For the purposes of the research a communication system between the DSP placed in the

radioactive environment (accelerator tunnel) and a PC located outside the radioactive area

has been designed and fabricated. The system has been used in all the tests that have been

conducted in DESY in April 2005.

In this project numerous software methods have been implemented in C and assembly

language. The tests performed in DESY confirmed that radiation causes single effect

upsets (SEU) in the digital signal processor. Most of the SEUs were connected with

changes in the internal memory of the processor. The most important observation was that

all of these changes are only 1 bit memory bit-flips. The main two methods of memory

protection implemented in this project (2D parity control and Hamming codes) are able to

correct all such errors. Another type of SEUs observed was a change of the DSP operation

causing for example incorrect calculation results. This kind of errors have also been

detected and corrected by triple voting. Another implemented method that was suppose to

correct such errors was based on performing all DSP operations twice in parallel (utilizing

the DSP modular architecture). However, this method did not produce satisfactory results.

There was no situation during the tests, when the two parallel results would be different,

therefore the method did not have any influence on improving reliability of the DSP.

Another important aspect of the research was that the EIA-485 serial transmission standard

used in the communication system proved to be reliable and immune to radiation. During

over 1 week of testing there have been no errors in the serial transmission reported. This

gives optimistic perspective for any future research.

However, there have been a few occasions (a total of 4 during all the tests) when the

implemented methods have not managed to detect and correct errors caused by radiation.

Probably these situations occurred when the radiation particles hit the DSP core and

stopped its normal operation. In these cases the DSP no longer executed its code and

 78

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

therefore all the software methods became useless. In such cases watchdog reset was

performed.

Overall, this project proved that the reliability of a DSP system in a radioactive

environment can be improved significantly by means of pure software methods. During the

tests at DESY there were numerous occasions when the implemented methods detected

and corrected errors induced by radiation. However, the improved reliability comes at a

cost of performing additional operations like memory checking, repeating of calculations

and voting. Therefore, during development of an application that will be running in a

radioactive environment, detailed calculations must be performed to estimate how much

processor power will be available for the implementation of the radiation protection. If

only a small amount of CPU cycles are available, then only the simplest methods (e.g.

simple parity control) can be used and errors can be only detected. If more CPU resources

can be used for radiation protection, then more sophisticated methods (e.g. 2D parity

control, Hamming codes, triple voting) can be used and errors caused by radiation will be

corrected. However, all the software methods have a limit of their performance. When

radiation particle hits the core of the CPU it can cause the processor to stop executing its

software and then only an external method (e.g. a watchdog) or a hardware protection

method can help.

 79

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

References

[1] R. J. Peterson, "Radiation-induced errors in memory chips", Brazilian Journal of
Physics, vol.33 no.2, 2003

[2] N. Sramek, "Radiation Hardened Electronics for Space Systems", The Aerospace
Corporation, 12.06.2001

[3] F. Anghinolfi, "Radiation Hard Electronics", CERN/EP, 2000

[4] A. S. Sedra, K.C. Smith, "Microelectronic circuits", Oxford University Press, 1998

[5] S. M. Sze, "Semiconductor devices", John Wiley &Sons Inc, 2002

[6] M. Moll, "Radiation Hardening of Silicon Detectors by Oxygen Enrichment", CERN,
10. April 2000

[7] F. Giustino, “Radiation Effects on Semiconductor Devices”, PhD thesis, Politecnico di
Torino, 2001

[8] E. Olcayto, "Information theory" lecture material, University of Strathclyde

[9] M. Purser, "Introduction to Error-Correcting Codes", Artech House Inc., 1995

[10] R. H. Morelos-Zaragoza, "The Art of Error Correcting Coding", John Wiley & Sons
Ltd, 2002

[11] TMS320C6713 Data Sheet, Texas Instruments

[12] T. Hiers, R. Ma, P. Malleth, S. Chen, "TMS320C6000 McBSP: UART", Application
Report SPRA633B, Texas Instruments, 2004

[13] G. Rhoads, http://remus.rutgers.edu/~rhoads/

[14] Logix4u, http://www.logix4u.net

[15] P. Shirvani, N. Saxena, E. J. McCluskey, "Software-Implemented EDAC Protection
Against SEUs", Stanford University, Stanford

[16] J. Sankaran, "Reed Solomon Decoder: TMS320C64x Implementation", Application
Report SPRA686, Texas Instruments, 2000

[17] D.K. Rybka, A. Kalicki, K. Pozniak, R. Romaniuk, B. Mukherjee, S. Simrock,
"Irradiation Investigations for TESLA and X-FEL experiments at DESY"

 80

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Appendix A: Schematic of the DSP module

 81

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Appendix B: Schematic of the PC module

 82

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Appendix C: Main part of the DSP bootloader code

#define CHIP_6713 1

#include <csl.h>
#include <csl_gpio.h>

#include "dsk6713.h"
#include "dsk6713_flash.h"

#include "crc32.h"

// ######## macro definitions ###############
#define BUFFER_SIZE 2048
#define ACK 0xF0
#define VOTE_FAILED 0x01
#define FLASH_FAILED 0x0F

#define COPY_CODE_FROM_FLASH \
 memcpy((void *)&run_fast, (void *)&load_fast, (int)&size_fast)

#define VOTE(a,b,c) \
 if (!(a ^ b)) c = a;\
 else if (!(b ^ c)) a = b;\
 else if (!(a ^ c)) b = c;\
 else failure(VOTE_FAILED);

#pragma CODE_SECTION (ReadBlock,"fast"); // put func.ReadBlock into "fast" section

char buffer[BUFFER_SIZE]; // data buffer
unsigned int serial_speed[3]; // serial transmission speed

GPIO_Handle hGpio; // for GPIO (PC-parallel connection)

extern int load_fast; // load address of "fast" section
extern int run_fast; // run address of "fast" section
extern int size_fast; // size of "fast" section

unsigned int crc32_received,crc32_temp;

volatile unsigned int *LED_ptr = (volatile unsigned int*)(0x90080000); // on-board LEDs

// ####################### functions ###########################

void send_msg(char val)
{
SoftUartOutchar(serial_speed, val); // send the message 3 times
SoftUartOutchar(serial_speed, val);
SoftUartOutchar(serial_speed, val);
}

void ReadBlock(void) // function reads a block of data & its crc32 through serial port
{
int i;
char *ptr;

// read the block of data
i = BUFFER_SIZE;
ptr = buffer;
while (i--)
 *ptr++ = SoftUartInchar(serial_speed[0]);

// read crc32 of the block
i = 4;
ptr = (char *)&crc32_received;
while (i--)
 *ptr++ = SoftUartInchar(serial_speed[0]);

}
void failure(char val) // function is called when triple voting or flash crc32 fail
{
send_msg(val);
while(1);
}

 83

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

// ################# MAIN ######################
void main (void)
{
unsigned int flash_dest_addr[3];

// GPIO configuration
GPIO_Config MyConfig = {
 0x00000000, // gpgc
 0x000000F0, // gpen pins 4-7 are set to read mode
 0x00000000, // gdir
 0x00000000, // gpval
 0x00000000, // gphm
 0x00000000, // gplm
 0x00000000 // gppol
 };

hGpio = GPIO_open(GPIO_DEV0,GPIO_OPEN_RESET);
GPIO_config(hGpio,&MyConfig);

/* Initialize the board support library */
DSK6713_init();

*LED_ptr = 0x1;
DSK6713_rset(DSK6713_MISC, 0x1); // switch McBSP0 to peripheral expansion connector

// copy the "fast" functions from flash to internal RAM
COPY_CODE_FROM_FLASH;

serial_speed[0] = SoftUartSpeedDetect(); // detect the serial transmission speed
serial_speed[2] = serial_speed[1] = serial_speed[0];
send_msg(ACK); // send ACK

*LED_ptr = 0x9;
// erase the flash and set the start address of flash to be written
flash_dest_addr[2] = DSK6713_FLASH_BASE+0x8000;
flash_dest_addr[0] = flash_dest_addr[1] = flash_dest_addr[2]; // used for triple voting
DSK6713_FLASH_erase(flash_dest_addr[0], DSK6713_FLASH_PAGESIZE*7);
*LED_ptr = 0x1;

send_msg(ACK); // inform about flash erased

while (1) {
 // read block of data
 if (!((GPIO_read (hGpio,0x00F0) >> 4) & 0x01)) break; //check if GPIO bit 4 is set

 COPY_CODE_FROM_FLASH;
 *LED_ptr = 0x03;
 VOTE(serial_speed[0],serial_speed[1],serial_speed[2]); // voting on serial_speed
 ReadBlock();

 // calculate crc32
 crc32_temp = crc32_calc(buffer, BUFFER_SIZE);

 if (crc32_temp == crc32_received) { // if ok then write to the flash
 *LED_ptr = 0x5;
 // voting on flash_dest_addr
 VOTE(flash_dest_addr[0],flash_dest_addr[1],flash_dest_addr[2]);

 DSK6713_FLASH_write((Uint32)buffer, flash_dest_addr[0], BUFFER_SIZE);
 crc32_temp = crc32_calc((char *)flash_dest_addr[0], BUFFER_SIZE);
 if (crc32_temp != crc32_received)
 failure(FLASH_FAILED);

 send_msg(ACK); // send acknowledgement

 flash_dest_addr[0] += BUFFER_SIZE;
 flash_dest_addr[2] = flash_dest_addr[1] = flash_dest_addr[0];
 }
 }

GPIO_close(hGpio); // the end
*LED_ptr = 0xf; // light up all the diodes
while (1) ; // infinite loop
}

 84

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

Appendix D: Hamming code function in assembly
This function detects and corrects errors in a memory block. The argument of the function

is a pointer to a structure Thamm that describes the protected memory block.

Thamm declaration in C:

typedef struct {
int *data;
int *parity_bits;
int no_of_blocks;
} Thamm;

Function code in assembly:

N .equ 38
K .equ 32

 .sect "fast"

COSET: .byte 48, 24, 12, 6, 3, 40, 20, 10
 .byte 5, 36, 18, 9, 34, 17, 33, 56
 .byte 28, 14, 7, 52, 26, 13, 44, 22
 .byte 11, 60, 30, 15, 42, 21, 45, 51
 .byte 1, 2, 4, 8, 16, 32

_hamm_check_asm:
 stw a10, *b15-- ; push a10 to stack
 ldw *a4++,a0 ; a0 = pointer to data
 ldw *a4++,a5 ; a5 = pointer to parity bits
 ldw *a4,a1 ; a1 = no_of_blocks
 mvk 64,b4
|| mvk 0x0,a3 ; a3 = total errors
 mvk 0x0,a2
 add b4,a0,b0 ; a0 -> data[0], b0 -> data[16]

 add 12,a5,b5 ; a5 -> parity[0], b5 -> parity[3]
 [!a1] b end ; if (no_of_blocks == 0) return 0

loop:
 ;load parity bit values
 mv a0,a6 ; a6 -> data[0]
|| mv a5,b6 ; b6 -> parity[0]
 ldw *a5++,a7 ; a7 = temp_S[0]
|| ldw *b5++,b7 ; b7 = temp_S[3]
 ldw *a5++,a8 ; a8 = temp_S[1]
|| ldw *b5++,b8 ; b8 = temp_S[4]
 ldw *a5++,a9 ; a9 = temp_S[2]
|| ldw *b5++,b9 ; b9 = temp_S[5]
 ldw *b5++,a10 ; a10 = temp_S[6] - additional parity
 nop
 xor a7,b7,b4
 xor a8,b8,a4
 xor a4,b4,b4
|| xor a9,b9,a4
 xor a4,b4,b4
 xor b4,a10,a10

 ldw *a0++,a4 ; load data[0]
|| ldw *b0++,b4 ; load data[16]
 nop 3
 ldw *a0++,a4 ; load data[1]
|| ldw *b0++,b4 ; load data[17]
 ; a4 = data[0], b4 = data[16]
 xor a4,b8,b8
|| xor b4,a9,a9
|| xor a4,a10,a10
 xor a4,b9,b9

 85

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

|| xor b4,b7,b7
|| xor b4,a10,a10
 xor b4,b8,b8
 ldw *a0++,a4 ; load data[2]
|| ldw *b0++,b4 ; load data[18]
 ; a4 = data[1], b4 = data[17]
 xor b4,a8,a8
|| xor a4,b7,b7
|| xor a4,a10,a10
 xor b4,a9,a9
|| xor a4,b8,b8
|| xor b4,a10,a10
 xor b4,b7,b7
 ldw *a0++,a4 ; load data[3]
|| ldw *b0++,b4 ; load data[19]
 ; a4 = data[2], b4 = data[18]
 xor b4,a7,a7
|| xor a4,a9,a9
 xor b4,a8,a8
|| xor a4,b7,b7
|| xor b4,a10,a10
 xor b4,a9,a9
|| xor a4,a10,a10
 ldw *a0++,a4 ; load data[4]
|| ldw *b0++,b4 ; load data[20]
 ; a4 = data[3], b4 = data[19]
 xor a4,a8,a8
|| xor b4,b8,b8
|| xor a4,a10,a10
 xor a4,a9,a9
|| xor b4,b9,b9
|| xor b4,a10,a10
 xor b4,a9,a9
 ldw *a0++,a4 ; load data[5]
|| ldw *b0++,b4 ; load data[21]
 ; a4 = data[4], b4 = data[20]
 xor b4,a8,a8
|| xor a4,a10,a10
 xor b4,b7,b7
|| xor a4,a7,a7
|| xor b4,a10,a10
 xor b4,b8,b8
|| xor a4,a8,a8
 ldw *a0++,a4 ; load data[6]
|| ldw *b0++,b4 ; load data[22]
 ; a4 = data[5], b4 = data[21]
 xor a4,b7,b7
|| xor b4,a9,a9
|| xor a4,a10,a10
 xor a4,b9,b9
|| xor b4,a7,a7
|| xor b4,a10,a10
 xor b4,b7,b7
 ldw *a0++,a4 ; load data[7]
|| ldw *b0++,b4 ; load data[23]
 ; a4 = data[6], b4 = data[22]
 xor b4,a9,a9
|| xor a4,b8,b8
|| xor a4,a10,a10
 xor b4,b7,b7
|| xor a4,a9,a9
|| xor b4,a10,a10
 xor b4,b9,b9
 ldw *a0++,a4 ; load data[8]
|| ldw *b0++,b4 ; load data[24]
 ; a4 = data[7], b4 = data[23]
 xor a4,a8,a8
|| xor b4,b8,b8
|| xor a4,a10,a10
 xor a4,b7,b7
|| xor b4,a8,a8
|| xor b4,a10,a10
 xor b4,a9,a9
 ldw *a0++,a4 ; load data[9]
|| ldw *b0++,b4 ; load data[25]

 86

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

 ; a4 = data[8], b4 = data[24]
 xor b4,a7,a7
|| xor a4,a9,a9
 xor b4,a8,a8
|| xor b4,a10,a10
 xor b4,b7,b7
|| xor a4,a7,a7
|| xor a4,a10,a10
 ldw *a0++,a4 ; load data[10]
|| ldw *b0++,b4 ; load data[26]
 ; a4 = data[9], b4 = data[25]
 xor a4,a9,a9
|| xor b4,b8,b8
|| xor a4,a10,a10
 xor a4,b9,b9
|| xor b4,a9,a9
|| xor b4,a10,a10
 xor b4,b7,b7
|| xor b4,b9,b9
 ldw *a0++,a4 ; load data[11]
|| ldw *b0++,b4 ; load data[27]
 ; a4 = data[10], b4 = data[26]
 xor b4,a8,a8
|| xor a4,b8,b8
|| xor a4,a10,a10
 xor b4,a9,a9
|| xor a4,a8,a8
 xor b4,b7,b7
|| xor b4,b8,b8
|| xor b4,a10,a10
 ldw *a0++,a4 ; load data[12]
|| ldw *b0++,b4 ; load data[28]
 ; a4 = data[11], b4 = data[27]
 xor a4,a7,a7
|| xor b4,b7,b7
|| xor a4,a10,a10
 xor a4,b7,b7
|| xor b4,a7,a7
|| xor b4,a10,a10
 xor b4,a8,a8
|| xor b4,a9,a9
 ldw *a0++,a4 ; load data[13]
|| ldw *b0++,b4 ; load data[29]
 ; a4 = data[12], b4 = data[28]
 xor b4,a8,a8
|| xor a4,b9,b9
|| xor a4,a10,a10
 xor a4,a8,a8
|| xor b4,b7,b7
|| xor b4,a10,a10
 xor b4,b9,b9
 ldw *a0++,a4 ; load data[14]
|| ldw *b0++,b4 ; load data[30]
 ; a4 = data[13], b4 = data[29]
 xor a4,a7,a7
|| xor b4,b8,b8
|| xor a4,a10,a10
 xor a4,b8,b8
|| xor b4,a7,a7
|| xor b4,a10,a10
 xor b4,a9,a9
 ldw *a0++,a4 ; load data[15]
|| ldw *b0++,b4 ; load data[31]
 ; a4 = data[14], b4 = data[30]
 xor b4,a7,a7
|| xor a4,b9,b9
|| xor a4,a10,a10
 xor b4,a9,a9
|| xor b4,b9,b9
|| xor b4,a10,a10
 xor b4,b7,b7
|| xor a4,a7,a7
 nop
 ; a4 = data[15], b4 = data[31]
 xor a4,b7,b7

 87

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

|| xor b4,a7,a7
|| xor b4,b9,b9
|| xor a4,a10,a10
 xor a4,b8,b8
|| xor b4,a8,a8
|| xor b4,a10,a10
 xor a4,b9,b9
|| xor b4,b8,b8

 or a7,a8,a2
|| or b7,b8,b2
|| mvk 64,a4
 or a2,a9,a2
|| or b2,b9,b2
|| add a0,a4,a0 ; a0 points to data[0] of next block
|| add b0,a4,b0 ; b0 points to data[16] of next block
 or a2,b2,a2 ;
 or a10,a2,a2 ; check if any temp_S != 0
|| add a5,16,a5 ; a5 points to parity[0] of next block
|| add b5,12,b5 ; a5 points to parity[3] of next block

 [a2] b correct_errors
 sub a1,1,a1 ; decrease loop counter
 nop 4
end:
 [a1] b loop
 [!a1] b b3
||[!a1] ldw *++b15,a10 ; pop a10 from the stack
 nop 4
 mv a3,a4

correct_errors
 ; first calculate S[i]
 mvk 31,a0 ; i = 31
|| mvk 31,b0
syndrome_loop:
 shru a7,a0,a5 ; temp_S[0] >> i
|| shru b7,b0,b5 ; temp_S[3] >> i
 and a5,0x1,a5 ; a5 & 0x1
|| and b5,0x1,b5 ; b5 & 0x1
 shl b5,3,b5 ; b5 << 3
 or a5,b5,a2
 shru a8,a0,a5 ; temp_S[1] >> i
|| shru b8,b0,b5 ; temp_S[4] >> i
 and a5,0x1,a5 ; a5 & 0x1
|| and b5,0x1,b5 ; b5 & 0x1
 shl a5,1,a5 ; a5 << 1
 shl b5,4,b5 ; b5 << 4
 or a5,b5,a4
 or a4,a2,a2
|| shru a9,a0,a5 ; temp_S[2] >> i
|| shru b9,b0,b5 ; temp_S[5] >> i
 and a5,0x1,a5 ; a5 & 0x1
|| and b5,0x1,b5 ; b5 & 0x1
 shl a5,2,a5 ; a5 << 2
|| mvk 0x0,b1
 shl b5,5,b5 ; b5 << 5
 or a5,b5,a4
|| mvk 0x1,b2
 or a4,a2,a2 ; a2 = S[i]
|| shl b2,b0,b2 ; b2 = (0x1 << i)

 and a10,b2,b2
 [a2] mvk 0x1,b1 ; b1 = 1 if (a2>0), b1 = 0 if (a2 == 0)
 shru b2,b0,b2 ; b2 = corresponding parity_bit
 and b1,b2,b1
|| xor b1,b2,b2
 [b1] b find_coset ; if ((S[i]>0) && (parity_bit>0)) correct 1 error
 [b2] b b3 ; if ((S[i]>0) && (p==0)) || ((S[i]==0) && (p>0))
 [b2] mvk -1,a4 ; then return -1 (can't correct the errors)
||[!a2] sub a0,1,a0
||[b2] ldw *++b15,a10 ; pop a10 from the stack
 [!a2] sub b0,1,b0
 cmplt b0,0x0,b1

 88

Marcin Wojtczak
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment

 nop 2
 [!b1] b syndrome_loop
syndr_loop_end:
 mvk 28,a2
 add b6,a2,a5 ; a5 -> parity[0] of next block
 [b1] b end
 add 12,a5,b5 ; b5 -> parity[3] of next block
 mvk 128,b1
 add a6,b1,a0 ; a0 -> data[0] of next block
|| mvk 192,b2
 add a6,b2,b0 ; b0 -> data[16] of next block
 mv a0,a6 ; a6 = a0
|| mv a5,b6 ; a5 = b6

find_coset:
 mvkl COSET,b1
|| mvk 0x0,a5
 mvkh COSET,b1
 mvk -1,b5
 mvk N,b0 ; number of cosets
coset_loop:
 ldb *b1++,b2 ; load coset
 sub b0,1,b0
 [b0] b coset_loop
 nop 2
 xor a2,b2,b2 ; compare coset with S[i]
 [!b2] mv a5,b5 ; b5 = index of matching coset
 add a5,1,a5

 cmplt b5,0,b2 ; check if b5<0
 [b2] b b3 ; if yes then return -1
||[b2] ldw *++b15,a10 ; pop a10 from the stack
 [b2] mvk -1,a4
 mvk K,a2
 cmplt b5,a2,b2 ; check if (found index < K)
 [!b2] sub b5,a2,b5
 shl b5,2,b5 ; multiply by 4, because int = 4 bytes

 [b2] add a6,b5,b4
 [!b2] add b6,b5,b4
 ldw *b4,b2 ; load value to correct
|| sub a0,1,b0
 mvk 0x1,a2
 cmplt b0,0x0,b1
 [b1] b syndr_loop_end
 [!b1] b syndrome_loop ;next syndrome
 shl a2,a0,a2 ; a2 = 0x01 << i
 add a3,1,a3 ; total_errors++
 xor b2,a2,b2 ; repair the error
 stw b2,*b4 ; store corrected value
 mv b0,a0

 89

	1. Introduction
	2. Radiation protection of the DSP systems
	2.1 Radiation influence on electronic systems
	2.2 Hardware protection methods
	2.3 Software protection methods
	2.3.1 Parity control
	2.3.2 Two dimensional parity control
	2.3.3 Forward error correction codes
	2.3.4 Reed-Solomon codes
	2.3.5 Voting techniques

	DSP-PC communication system
	3.1 Introduction
	3.2 The TMS320C6713 DSP overview
	3.3 Hardware part of the communication system
	3.3.1 DSP module
	3.3.2 PC module

	3.4 Software part
	3.4.1 Software for the DSP
	3.4.2 Software for the PC

	Implementation of radiation protection methods in software
	4.1 Parity control
	4.2 Two dimensional parity control
	4.3 Forward Error Correction codes
	4.4 Reed-Solomon codes
	4.5 Voting techniques
	4.5.1 Triple voting
	4.5.2 Parallel calculations

	5. Experimental procedures carried out in DESY
	5.1 Overview
	5.2 Analysis of influence of radiation on the DSP
	5.2.1 EIA-485 transmission test
	Introduction
	DSP part of the application
	PC part of the application
	Performance in the accelerator environment

	5.2.2. Internal RAM test
	Introduction
	DSP part of the application
	PC part of the application
	Performance in the radioactive environment

	5.2.3. DSP ALU test
	Introduction
	DSP part of the application
	PC part of the application
	Performance in the radioactive environment

	5.3 Example applications protected against radiation
	5.3.1. FFT filtering of a sound signal
	Introduction
	DSP program
	PC program
	Performance in the radioactive environment

	5.3.2. Convolution filter (without DSP/BIOS)
	Introduction
	DSP program
	PC program
	Performance in the radioactive environment

	6. Project results
	6.1 Memory protection
	6.2 Protection against errors in calculations
	6.3 Serial transmission

	7. Conclusions
	References
	Appendix A: Schematic of the DSP module
	Appendix B: Schematic of the PC module
	Appendix C: Main part of the DSP bootloader code
	Appendix D: Hamming code function in assembly

