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1. Introduction 
This master's project is carried out in cooperation with Deutsches Elektronen-Synchrotron 

(DESY) in Hamburg, Germany. DESY is a high-energy physics research centre, where 

several different accelerators have been built. Also a new linear accelerator is under 

construction. The accelerator will be controlled by electronic equipment, which will be 

located in the accelerator tunnel, and therefore it will be under influence of high radiation 

(mainly gamma radiation and neutrons). It is known that radiation can cause 

malfunctioning of the electronics and decrease its reliability. This gives raise to a need for 

further, detailed investigation of how radiation influences various types of electronic 

devices and how the electronics' reliability can be increased.  

Among the different types of electronic devices taken into consideration in development of 

the control system for the accelerator are Field Programmable Gate Arrays (FPGA) and 

Digital Signal Processors (DSP). This project is focused on analysis of the radiation on 

DSP systems. The main aim of the research is to investigate if the reliability of the 

irradiated DSP system can be increased by using only software methods. More detailed 

explanation of the influence of radiation on electronics and the theory behind all the 

software methods implemented in this project are described in Chapter 2. 

The DSP system used in this project is based on a commercial off-the-shelf (COTS) 

equipment consisting of a DSP Starter Kit (DSK) board from Texas Instruments. The 

board includes: 

- a Texas Instruments TMS320C6713 DSP operating at 225 MHz, 

- an AIC23 stereo codec, 

- 8 MB of synchronous Dynamic Random Access Memory (DRAM), 

- 512 KB of non-volatile Flash memory. 

The DSK6713 board is provided with Code Composer Studio (CCS) software which is an 

integrated development environment (IDE) designed specifically to be used with the TI's 

digital signal processors. This software package includes a compiler, assembler, linker, 

debugger, profiler and many other tools which enable us to fully take advantage of all the 

features of the DSP.  
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For the purposes of the research, a communication system between the DSP placed in the 

accelerator tunnel (radiation environment) and a PC computer located outside the tunnel 

had to be developed. The system consisting of two printed circuit boards (PCB) has been 

fabricated in the Department of Microelectronics and Computer Science (DMCS) at the 

Technical University of Lodz (TUL). All the hardware and software issues connected with 

the design of this communication system are described in Chapter 3. 

Among the software radiation protection methods implemented in this project are parity 

calculation algorithms, forward error correction codes (FEC) (for example: Hamming and 

Reed-Solomon codes) and different voting techniques. The theory behind all these 

algorithms is explained in Chapter 2 while the implementation details are described in 

Chapter 4. 

The developed system with all the implemented software methods have been tested in 

DESY in April 2005. The tests were carried out in the Linac II tunnel. Linac II is a linear 

accelerator, which is used as a source of positrons for the main DESY accelerator – HERA. 

The electron-to-positron converter located in the Linac II tunnel is a source of high gamma 

radiation and neutrons. The DSP board was placed approximately 3 m away from the 

converter, which ensured high system exposure to radiation. The detailed description of the 

tests is presented in Chapter 5, while all the project results are summarized in Chapter 6. 
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2. Radiation protection of the DSP systems 
In this chapter, radiation influence on electronic systems is briefly explained in general. 

Next, some most popular hardware protection methods are described. In the last part of the 

chapter, the theory behind different software methods is explained. 

2.1 Radiation influence on electronic systems 
In the accelerator tunnel there are two main radiation types that have a substantial 

influence on all the electronic devices located in the tunnel. The first one is gamma 

radiation and the second one is neutron radiation. 

Gamma radiation is a high energy electromagnetic radiation produced by nuclear 

transitions. It is a form of ionizing radiation, which means that individual photons that 

constitute the gamma radiation have enough energy to ionize atoms or molecules. The 

penetrating capabilities of gamma radiation are significant. To shield from the gamma rays, 

materials of large atomic number and high density are needed. The effects caused by an 

ionizing particle striking an electronic system are described later in this chapter. 

Neutron influence. Neutron is a particle which has no net electric charge. Together with 

protons neutrons constitute the nuclei. Because of the fact, that neutrons have no charge, 

they have very high penetration capabilities. Charged particles and electromagnetic 

radiation (such as gamma rays) lose their energy when they pass through the matter by 

ionizing the atoms of the material they pass through. This loss of energy slows them down 

and eventually stops them. However, neutrons do not take part in the ionization process. 

They can be stopped only when they hit an atomic nucleus. The probability of such a 

collision is very small therefore neutrons can travel a long way deep into the material 

before they are stopped. When a collision of a neutron and a nucleus finally takes place, 

the atom which was hit is displaced. This causes damage to the silicon lattice of an 

integrated circuit. As a result, traps or other defects are created. However, high energy 

neutrons can also cause nuclear reactions within the semiconductor. In these reactions 

alpha particles are produced. These short range and heavily ionizing products deposit the 

energy and charge which can cause a single event upset [1]. 

Generally, the effects of radiation on electronic circuits can be divided into two main 

categories [2]: 

- Total Ionizing Dose (TID), 
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- Single Event Effects (SEE). 

Total Ionizing Dose is a long-term radiation effect caused mainly by electrons and protons 

or other ionizing particles. It involves a permanent degradation of an electronic device 

subject to radiation. It is an effect of a cumulative charge deposition in the IC material and 

it applies to all kinds of electronic devices (e.g. CMOS and bipolar). The degradation of 

performance can be caused by a change in the threshold voltage (CMOS), increase in 

current consumption or decrease in transistor gain (bipolar technology). 

Single Event Effects are caused by single incidents, when an ionizing particle going 

through the IC deposits enough energy to cause a change in device operation. SEE can be 

divided into two main groups: 

- soft-errors: Single Event Upsets (SEU), Single Event Functional Interrupt (SEFI), 

- hard errors: Single Event Latch-up (SEL), Single Event Burnout (SEB) or Single 

Event Gate Rupture (SEGR). 

Single Event Upsets happen when a given ionizing particle deposits high enough charge in 

the electronic device to change its state [3]. This is illustrated in the following figure: 

 
Fig.2.1 An ionization particle in an NMOS transistor 

Ionization creates electron-hole pairs in the substrate. This leads to a current spike that can 

have an important influence on the electronic system. For example, in a SRAM memory 

cell, this can cause a bit-flip. Figure 2.2 shows a typical memory cell schematic [4]. It is 

designed in such a way, that there are two possible states of operation. When a '1' is stored, 

transistors Q1 and Q4 are 'on' while transistors Q2 and Q3 are 'off'. When a '0' is stored Q1 

and Q4 are 'off' while Q2 and Q3 are 'on'. Always two transistors are enabled and two are 

disabled. When radiation particle hits one of the disabled transistors, the states of the 

transistors change and the memory bit is flipped. 
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Fig.2.2 Memory cell schematic 
SEUs do not damage the device. They only change its state (bit-flip) and therefore after 

memory rewriting the device works correctly. A SEFI is a severe type of error, in which a 

SEU in the device's control circuitry puts the device into an undefined state or a halt. This 

requires a power reset to recover. 

Hard errors can damage the electronic device permanently. The most common hard error 

example is the Single Event Latch-up. This phenomenon is connected with the internal 

parasitic elements of a CMOS device, which are presented in Figure 2.3 [5].  

A p-n-p-n parasitic thyristor can be distinguished. It comprises of two parasitic transistors. 

The PMOS source, n-substrate and p-well correspond to the emitter, base and the collector 

of the lateral p-n-p transistor, respectively. The NMOS source, p-well and n-substrate are 

the emitter, base and collector of the vertical n-p-n bipolar transistor, respectively. The 

base of each transistor is driven by the collector of the other one and this forms a positive 

feedback loop. When a radiation particle hits the CMOS structure it deposits a charge 

which creates a current pulse. If the current gain product of the two parasitic transistors 

(αnpn αpnp ) is larger than 1, latch-up is induced. This produces a large current flow from the 

power supply to the ground contact, which can damage the device (due to excessive 

heating) if the power is not turned off immediately.  
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Fig.2.3. CMOS inverter with parasitic transistors 
Another type of hard error, Single Event Burnout, can be triggered in a power MOSFET 

biased in the 'off' state when a heavy ion passing through deposits enough charge to turn 

the device on. This causes destruction of the device. A power MOSFET may also be 

subject to a Single Event Gate Rupture, which is a formation of a conducting path (a 

localized dielectric breakdown) in the gate oxide. This results in a destructive burnout. 

2.2 Hardware protection methods 
There are several different ways of protecting the electronic equipment against radiation. 

The simplest one is to use shielding. Shielding can reduce the particle flux considerably 

but it does not eliminate it completely. The main problem is that shielding is not capable of 

stopping the neutron radiation. Therefore some additional techniques need to be used. 

One of the solutions is to adjust the process technology to produce rad-hard chips. For 

example an epitaxial bulk CMOS process can avoid the latch-up problem. Even further 

improvement can be achieved by using the Silicon On Insulator (SOI) technology. This 

technology process involves building of the transistors on a thin silicon layer, which is 

placed on top of an insulator. This reduces the capacitances and enables much higher 

speeds of the devices. It also reduces power consumption and what is most important in 

terms of radiation tolerance, it eliminates the possibility of a latch-up completely. The thin 

layer of silicon on top of the insulator also helps to protect the bulk from charged particles, 

reducing the SEU effect. The main drawback of this technology is the cost. 
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There are also other possibilities to adjust the device fabrication process to increase 

radiation immunity. For example, the gate oxide thickness can be decreased. This will 

decrease the probability of creation of radiation induced trapped charges in the oxide layer 

and greatly reduce the total ionizing dose effect [6]. Other techniques used in production of 

rad-hard integrated circuits include low temperature oxidation, oxygen enrichment [7], 

usage of retrograde wells and guard rings. 

Other hardware methods include adjustments in the design of the systems to incorporate 

protection against radiation. This is usually accomplished by triple modular redundancy 

(TMR). In this solution the vulnerable parts of the system (for example memory cells, 

registers, or single flip-flops) are triplicated and additional radiation immune circuit is used 

to decide which output is the correct one. Figure 2.4 shows an example of a D-type flip-

flop realized using triple modular redundancy. 

 

Fig. 2.4 D-type flip-flop with triple modular redundancy and voting 
One of the main drawbacks of the solution is a great increase in the number of transistors 

and silicon area used. The voting circuit itself is also not immune to radiation. 

This was just a brief review of some of the simplest hardware radiation protection 

methods. There exist several other, more sophisticated hardware solutions (for example: 

hardened memory cells). However, this project is focused on improving the reliability of 

commercial off-the-shelf (COTS) equipment using only software and therefore these 

specific, high-cost hardware solutions are not described in detail. 

input output 

radiation 
immune 
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2.3 Software protection methods 
The main focus of all the software protection methods is to control the SEUs caused by 

radiation. SEUs usually affect the memory or internal registers of a processor. Therefore 

most of the presented methods are focused on protection of a given memory block, which 

can store either data or code of an application.  

2.3.1 Parity control 
This is the simplest method and at the same time it is the fastest one. Single parity means 

adding 1 additional bit to the information bits. The value of the added bit should be such 

that the sum of all 1's in the information bits along with the one added bit should be even. 

Therefore, when an error occurs and a single bit is flipped, the total number of 1's becomes 

odd. This method is capable of detecting an odd number of bit errors. This is illustrated by 

the following table: 

Table 2.1 Single parity control examples 

 Information bits with 
parity bit 

Total number 
of ones Errors 

original signal: 1 0 0 0 1 0 1 0  1 4 (even) no errors 

1 error introduced: 1 0 0 1 1 0 1 0  1 5 (odd) detected 

2 errors introduced: 1 1 0 1 0 0 1 0  1 4 (even) undetected 

As shown in the figure, if there are two errors, then the total number of 1's is still even and 

the errors go undetected. To calculate the number of 1's in a given memory block a XOR 

operation can be performed. This simple technique is very widely used in 

telecommunication and electronics. It is also implemented in this project. 

This method is undoubtedly the fastest of all that have been implemented in this project. 

Unfortunately, it does not have the ability to correct any errors. Thus it is not well suitable 

for protection of data, since even if the errors are detected, there is no way of retrieving the 

original data. However, this method can be useful for protection of code, because when the 

errors are detected, the code can be copied from the Flash memory. 

2.3.2 Two dimensional parity control 
The idea of single parity presented in the previous section can be easily extended to 

achieve better error protection. An interesting way of modification of the original single 
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parity calculation algorithm is to calculate the parity checksums in two directions:  vertical 

and horizontal direction. This is explained on the Figure 2.5. The memory bits are arranged 

in 32 bit words. The parity bits are calculated for each word (row) and for each column. 

32-bit words 

horizontal  
parity bits 

vertical parity bits 
 

Fig.2.5 Two dimensional parity 
Now, there is a much greater number of additional parity bits. Beside error detection, there 

is also a possibility to correct a one-bit error. Detection of errors that were previously 

undetectable is now also possible. For example, if there are 2 bits flipped in 1 column, the 

parity bit for this column does not indicate an error, but two horizontal parity bits show 

that an error has occurred. This is shown on the figure: 

32-bit words 

Fig.2.6 2D parity example 

The 2D parity method can be implemented in a very fast way, which is explained in 

section 4.2. Its main advantages are the speed, small redundancy and the ability to correct 

single bit errors. 

errors 

horizontal  
parity bits 
indicating errors 

vertical parity bits 
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2.3.3 Forward error correction codes 
A much more sophisticated method for memory protection is known as Forward Error 

Correction (FEC) codes. The main idea behind FEC codes is to add redundant bits to the 

available information bits and thus obtain a message word in which some bit errors can be 

detected or even corrected. To explain how these codes work, a finite field arithmetic 

needs to be introduced [8], [9]. 

The finite field arithmetic is denoted by GF(q) (Galois Field of order q). A field is an 

arithmetic structure in which after performing addition, multiplication and division on the 

members of the field, obtained results are also members of that field. Because there are 

only finite numbers of elements in a given field, the rules for addition and multiplication 

have to be changed. In computer memory binary numbers are used. They have only two 

elements: 0 and 1. Therefore the order q of the field is equal to 2 and the used field is 

denoted by GF(2). Table 2.2 shows how addition and multiplication is defined in the GF(2) 

arithmetic: 

Table 2.2 Addition and Multiplication in GF(2) arithmetic 

Addition  Multiplication 

+ 0 1  x 0 1 

0 0 1  0 0 0 

1 1 0  1 0 1 

As it can be seen from Table 2.2 the addition operation is the same as a XOR operation and 

multiplication stays the same as ordinary multiplication. Subtraction in this finite field 

arithmetic is performed by addition. This can be easily explained.  In normal arithmetic, 

subtraction from a number is achieved by addition of the additive inverse of the number to 

be subtracted. And the additive inverse of a number is defined as a number which, when 

added to the number itself, results in zero.  
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For example, to subtract a from b the inverse of a is added: 

b – a = b + c  

where c is the inverse of a: 

a + c = 0  =>  a = -c 

In GF(2) arithmetic both members of the field (0 and 1) are their own inverses as when 

added to themselves they result in zero: 

1 + 1 = 0 

0 + 0 = 0 

In case of division, in classic arithmetic to divide a number A by B we multiply A by a 

multiplicative inverse of B. The multiplicative inverse of a number is defined as a number 

by which multiplication gives a result equal to 1. As it can be seen from the Table 2.2 a 

multiplicative inverse of 1 is equal to 1 and the multiplicative inverse of 0 is not defined 

(the same as in classic arithmetic). 

Similarly, scalar product can be also defined in GF(2) arithmetic. Let there be two vectors 

x and y which are two binary n-tuples. The elements of these vectors belong to the GF(2). 

The vectors are denoted as follows: 

x = [x1, x2, ...., xn]  and  y = [y1, y2, ...., yn] 

The scalar product of the two vectors is defined as: 

x.y = x1 . y1+ x2 . y2 + ..... + xn . yn

where addition (denoted by "+") is the modulo-2 addition and multiplication (denoted by 

".") is performed bit by bit without carry according to the rules from Table 2.2. 

There are two important terms that need to be defined before the FEC codes are explained 

in detail. The two terms are a weight of a code and a Hamming distance. 

Weight of a binary codeword c is defined as the number of 1's in the codeword and is 

denoted as w(c). For example, weight of x=100111 is w(x)=4. 

Hamming distance is defined as the number of bit positions in which two binary 

sequences differ. For example, vectors x1=10010 and x2=00111 have a Hamming distance 

of 3. 
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Hamming distance between two vectors can also be calculated as a weight of a sum of the 

two vectors. In general, for a given FEC code the minimum Hamming distance between 

any of the codewords of that code satisfies the following relationships: 

12
1

2min

1min

+≥
+≥

td
td

 

where: 

dmin – minimum Hamming distance 

t1 – number of errors that can be detected 

t2 – number of errors that can be corrected 

 

There exist several different types of FEC codes. The most popular, and the ones used in 

this project are the block codes. Block codes are codes where k consecutive information 

bits are encoded into blocks of n bits where n>k by adding n-k bits, which are called the 

parity bits. If the parity bits are added to the end of the information bits, then the given 

code is called a systematic block code. If the parity bits are inserted between the 

information bits, such a code is called non-systematic block code. 

In this project, the systematic codes are used. This is mainly due to the fact that the 

memory region which is protected by the codes may contain an executable code of the 

DSP and inserting parity bits in this code would stop the DSP from proper operation. 

The ability of FEC codes to correct and detect errors is governed by the following 

equation: 

!)!(
!),(  e      wher),(2

0 iin
ninCinC

t

i
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⋅−
=≥ ∑

=
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where: 

k – number of information bits in a block 

n – total number of bits in a block (information + redundant bits) 

t – number of bit errors, that a given code can correct 

2t – number of bit errors, that can be detected 

The presented inequality is called the Hamming Bound. If the equality is satisfied, the 

given code is called a perfect code. One of the most popular FEC codes is the Hamming 

code, which is a single error correcting perfect code. Since the Hamming code can correct 
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one error, thus t = 1 and substituting it into the Hamming Bound equation gives the 

following relation: 

knn −= 2  

A given FEC code is usually denoted as an (n, k) code. For example, the most popular 

Hamming code is a  (7, 4) code, which means that for every 4 bits, there are 3 more parity 

bits added which yields codewords of 7 bits. In such a codeword 1 error can be corrected 

or 2 errors can be detected.  

To explain the idea of FEC codes, let us assume that a given message which is to be 

protected from errors is a k-element vector d. The codeword which is created by adding 

additional parity bits to the original message is an n-element vector c.  In order to obtain 

the codeword vector c from the data vector d the following operation must be performed: 

Gdc ⋅=  

where G is a k by n matrix called the Generator matrix defined as follows: 
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Fig.2.7 The Generator Matrix 
The equation is called the coding equation. This kind of Generator matrix is used in the 

systematic codes. It can be partitioned into two matrices: Ik and P: 

G = [Ik, P] 

where Ik is a (k by k) identity matrix and P is a (k by (n-k)) parity matrix. 

The decoding equation is given as follows: 

0T =⋅Hc  

where HT is the transpose of the parity check matrix H defined as: 
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H = [PT I(n-k)] 

To define an FEC code, it is enough to define either G, H or P matrix, as the other two 

matrices can be derived from it. There is no systematic way of designing the matrices. 

However there are some conditions that have to be met to obtain a working FEC code. For 

a 1 error correcting and 2 errors detecting code, the minimum distance dmin of the code 

must be equal or greater than 3. Since all the codewords of the code are generated by 

multiplying the data bits by the G matrix, each row of G matrix must have at least three 1's. 

Therefore the P matrix must have at least two 1's in each row. Furthermore, each row of 

the P matrix must be different. 

The decoding equation is very important as only the valid codewords (codewords without 

any errors) satisfy it. Upon receiving a message which may contain errors, the received 

codeword r should be substituted into the equation: 

THrs ⋅=  

where s is called the syndrome and r is the received codeword which is equal to the 

transmitted codeword plus the errors which may have occurred in the transmission 

medium: 

ecr +=  

and substituting this into the syndrome equation gives: 

TTT)( HeHcHecs ⋅+⋅=⋅+=  

From the decoding equation it is clear that the first term on the right hand side is equal to 

zero, thus the syndrome is equal to: 

THes ⋅=  

Therefore, it is clear that the syndrome depends only on the errors introduced. If the 

syndrome calculated on the receiver side is equal to 0, it means that there were no errors in 

the message. If the syndrome is not equal to 0, then errors are detected. However, it may 

happen that the number of errors was greater than the detectable number of errors for a 

given code and the erroneous codeword is the same as one of the valid codewords. Then 

the syndrome would be equal to 0 and the errors would be undetected. 
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It is possible to prepare a table, in which for a given error vector, a corresponding 

syndrome value is calculated. Then, upon receiving a message, the syndrome is calculated. 

Then, there are 4 possible cases: 

1) there were no errors in the message => syndrome is equal to zero 

2) there were some errors and they can be corrected => syndrome is not equal to zero, 

but it can be found in the prepared table and then the corresponding error vector 

can be added to the received message; this will correct the errors and yield a valid 

codeword 

3) there were some errors, too many to be corrected, but they can be detected => 

syndrome is not equal to zero and it cannot be found in the prepared table 

4) the number of errors was greater than the number of detectable errors => syndrome 

may have any value, the errors are not detected nor corrected 

An example (7, 4) Hamming code can be defined by the following P matrix: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

111
011
101
110

P  

This yields the following G and H matrices: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
1001011
0101101
0011110

     

111
011
101
110

   

1000
0100
0010
0001

HG  

And a following table of the syndrome values for given error vectors can be prepared: 
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Table 2.3 Error vectors and corresponding syndromes for (7, 4) Hamming code 

Error vector Syndrome value 

1000000 011 

0100000 101 

0010000 110 

0001000 111 

0000100 100 

0000010 010 

0000001 001 

The table contains only 1 bit error vectors, because the (7, 4) code can correct only 1 bit 

errors. Now, assuming that a data vector d = [0011] is given, the codeword can be 

calculated: 

]0110010[=⋅= Gdc  

If the same codeword is received, then syndrome is equal to zero. However, if the second 

bit in the codeword is flipped, the received vector r=[0111001] and the syndrome is equal 

to: 

]101[

100
010
001
111
011
101
110

]0111001[T =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅=⋅= Hrs  

The calculated syndrome can be easily found in the prepared table, in the second row, and 

therefore the error vector is found: e=[0100000]. Adding the error vector to the received 

codeword yields the correct (transmitted) codeword: 

]0011001[]0111001[]0100000[ =+=+ re  

From the calculated codeword, the data bits can be extracted (first 4 bits from the left): 

0011, which is exactly equal to the data vector d assumed at the beginning. 
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The presented example shows how a Hamming code can be used to correct errors. This 

code can correct 1 error and detect 2 errors (see the Hamming Bound equation). However, 

it cannot detect and correct errors at the same time. The user has to decide whether the 

errors should be corrected or detected. 

There exists a solution that enables simultaneous detection of 2 and correction of 1 error. 

To achieve this, one additional parity bit must be added to the codeword. Such a code is 

called a modified or extended Hamming code. The additional parity bit value is set in such 

a way that the total number of 1's in the whole codeword (n bits) is even. Then, when a 

message is received, the following possibilities exist: 

p = the total number of 1's in the received codeword 

s = calculated syndrome 

1) if p is even and s is equal to zero => no errors present 

2) if p is even and s does not equal to zero => 2 errors are detected 

3) if p is odd and s is equal to zero => 2 errors are detected 

4) if p is odd and s does not equal to zero => 1 error is detected and can be corrected 

The presented FEC codes can be implemented either in hardware or in software. They can 

be used for protection of memory or internal registers of a DSP. In this master's project, a 

(39, 32) code has been implemented in software, because of the 32bit registers of the DSP. 

The implementation details are described in Chapter 4. 

2.3.4 Reed-Solomon codes 
Reed-Solomon (RS) codes are very popular in telecommunication and electronics. Their 

main advantage over other types of error correcting codes is the ability to correct burst 

errors. This is mainly due to the fact that a Reed-Solomon code is word oriented rather 

than bit oriented. It treats all bit errors within 1 word as a single error. Therefore, if for 

example an 8-bit word RS code is used and it is capable of correcting 2 errors, then in the 

best case it can correct a total of 16 one-bit errors. 

Reed-Solomon codes are a particular case of non-binary BCH codes, which belong to the 

family of cyclic FEC codes [10]. In these codes finite field arithmetic is used. Hamming 

codes presented in previous section used finite field arithmetic GF(2). In RS codes, Galois 

fields of order 2m are used: GF(2m). Usually, a field of order 28 is used. 
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An RS code can be specified by 2 parameters:  

m – number of bits in a word 

T – number of errors it can correct within 1 block 

Usually m=8, therefore each word in a code consists of 8 bits (1 byte). The number of 

words in a block is equal to N=28-1 = 255. Out of these 255 words 2T words are used as 

parity (or check) words. The rest of the words are used to store data, the number of data 

words is denoted by K. Therefore 2T=N-K. A compact notation for a given RS code is 

denoted as (N, K, T). For example, a (255, 223, 16) code is an Reed-Solomon code that in 

each 255 bytes block has 223 bytes of data and 32 parity bytes. This code can correct 16 

errors or 32 erasures. Erasure is an error, which location is known. There exist also 

shortened RS codes. These codes are used when 255 byte blocks are too big and are not 

needed. Then a code of shorter block size can be defined. In such a situation, the remaining 

bytes are filled with zeros. For example, in an (208, 192, 8) code the remaining 255-

208=47 bytes are not used and filled with zeros on the encoder and decoder side. 

Reed-Solomon codes are based on Galois field arithmetic for fields of order 2m, denoted as 

GF(2m). To create elements of such a field, a primitive polynomial must be chosen. A 

primitive polynomial is an irreducible polynomial of degree m which divides x2m–1+1. A 

most popular primitive polynomial for m=8 is f(x)=x8+x4+x3+x2+1. Assuming that α is a 

root of the primitive polynomial, all non-zero elements of the field can be represented as 

2m-1 consecutive powers of α: 1, α, α2, α3, ... , α255. 

Addition in GF(28) is carried out by a XOR operation. However, multiplication involves 

much more computations. To multiply two element of GF(28), Log and Antilog tables need 

to be used, because a product of two values is the exponent of the mod (GF-1) sum of their 

logarithms. 

To encode a given data sequence using Reed-Solomon code, the k data bits are treated as a 

data polynomial of order k-1 with its coefficients equal to 1 or 0. For example, data bits 

10011 can be expressed as a polynomial d(x) = x4+x+1. A codeword is equal to the data 

polynomial multiplied by the generator polynomial, which order is equal to n-k. However, 

this kind of encoding produces a non-systematic code. To achieve a systematic encoding, 

the data polynomial must be multiplied by xn-k and then the remainder of a division of the 

data polynomial raised to the xn-k power by the generator polynomial must be added: 
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c(x) = d(x)xn-k+( d(x)xn-k mod g(x) ) 

c(x) – codeword polynomial 

d(x) – data polynomial 

g(x) – generator polynomial 

Therefore every valid codeword is divisible by the generator polynomial. 

The Reed-Solomon decoding process is quite complicated and comprises of the following 

steps: 

1) Syndrome calculation 

A Reed-Solomon codeword has 2T syndromes that depend only on errors (not on the 

transmitted code word). The syndromes can be calculated by substituting the 2T roots 

of the generator polynomial g(x) into the received polynomial r(x).  

If all the syndromes are equal to zero, then no errors are present in the received 

message and the decoding is finished. If any of the syndromes is not equal to zero, then 

the next steps need to be processed. 

2) Finding the locations of the errors 

This procedure involves solving simultaneous equations with T unknowns. This 

process can be divided into two sub-steps: 

a)  Finding an error locator polynomial λ(x) 

The most efficient way of doing this is to use the Berlekamp-Massey algorithm. 

Another approach is to use the Euclid’s algorithm, which is easier to implement, but 

less efficient. The Berlekamp-Massey algorithm for finding the error locator 

polynomial λ(x) consists of the following steps: 

1. Let the syndromes be denoted S1, S2, S3, ..., S2T

2. Initialize the algorithm variables: k=0, λ(0)(x) = 1, L = 0, and T(x) = x, where k is 

the degree of λ(x) at this iteration. 

3. Set k = k+1, Compute the discrepancy ∆k(x) as follows: 

∑
=

−
−−=∆

L

i
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k
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1λ  
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4. If ∆k = 0, then go to step 8 

5. Modify λ polynomial as follows: λk (x) = λ(k–1) – ∆kT(x) 

6. If (2L >= k) then go to step 8 

7. Set L = k and T(x) = λ(k–1) (x)/∆k 

8. Set T(x) = x.T(x) 

9. If present iteration k is < 2T then go to step 3 

b) Finding the roots of the λ polynomial 

The roots of the error locator polynomial are in fact the reciprocals of the error 

locations. Finding these roots is done using the Chien search algorithm. This algorithm 

simply substitutes each of the elements of the field into the error locator polynomial 

until all the roots are found. 

3) Finding the values of errors 

In this step, a Forney algorithm is usually used. In this algorithm, an error magnitude 

polynomial is defined: 

)(λ)](1[)( xxSx +=Ω  

where: 

Ω(x) – error magnitude polynomial 

λ(x) – error locator polynomial 

S(x) – syndrome polynomial defined as: S(x) = S1x+S2x2+...+S2tx2t+S2t+1x2t+1+... 

And the error magnitudes are given by the following equation: 

)('λ
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=

k
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where: 

λ'(x) – first derivative of the error locator polynomial 

Ω(x) – error magnitude polynomial 

X – error locations 

Conceptually, the Reed-Solomon code encodes the message as points in a polynomial 

plotted over a finite field. The coefficients of this polynomial are the data symbols of the 

block. The plot overdetermines the coefficients, which can be recovered from subsets of 

the plotted points. In the same sense as the eye can recognize and correct a couple of "bad" 
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points in a smooth curve, Reed-Solomon code can correct errors in a block of data and 

recover the coefficients of the originally plotted polynomial. 

2.3.5 Voting techniques 
Another method of protection of a DSP from the effects of radiation is voting. This method 

can be used either for protection of memory or to ensure proper result of calculations. The 

idea behind this method is very simple. The data or calculations to be protected need to be 

repeated and then the final result is obtained by voting.  

The most commonly used configuration of voting is the triple modular redundancy. In this 

case the calculations are repeated 3 times. Another possible approach is to repeat 

everything 5 times. Increasing the number of repetitions even further is possible but rather 

inefficient. Another approach is to repeat the calculations only once, and if the two results 

are different, then repeat the procedure once again. Figure 2.8 shows a schematic diagram 

of the triple voting and double calculations: 

 

Fig.2.8 Triple voting and double calculations schematic diagrams 
The main drawback of these methods is that if an error is introduced in the voter or during 

the results comparison, an incorrect result can be obtained even if all the calculations were 

correct. Therefore, the voter should be immune to radiation. However, total radiation 

immunity cannot be achieved in software. 

In the case of triple voting, two different techniques can be used. One approach is to 

compare the 3 values treating each of them as a whole entity. In this case, if all three of 

them are different, then voting cannot be performed and this technique fails. Another 
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solution is to compare the three values bit by bit. There are only two possible values for a 

bit: 0 or 1. Therefore on each bit position, there will be always a situation where two of the 

three bits are the same. This technique will always produce a result and never will the 

result be undecided.  

An example comparing the two approaches: 

Assume that the three calculation results are as follows: 

A = 19 (binary: 00011001), B = 91 (binary: 10010001), C = 18 (binary: 00011000). 

In this case voting method comparing the whole values will not yield a result, as all three 

values are different. However, the bit-by-bit approach will produce a result equal to 25 

(binary: 00011001). 

Some implementation issues concerning the voting techniques are described in section 4.5, 

while example programs that used these techniques and were tested in the radioactive 

environment are presented in section 5.3 
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3. DSP-PC communication system 

3.1 Introduction 
Analysis of the radiation influence on the digital signal processor requires that the 

processor itself should be put inside the accelerator tunnel, where the radiation is present. 

Because of this, a system that would enable remote control of the DSP was needed. This is 

depicted in Figure 3.1.  

Gamma  radiation 
and neutrons 

communication 

DSP 

Inside the accelerator tunnel Outside the tunnel 
 

Fig.3.1 DSP-PC communication system 
The main requirements for the communication system between the DSP and a PC 

computer are as follows: 

- remote control of the DSP (turning it on and off), 

- remote reset of the DSP, 

- execution of any given program on the DSP, 

- implementation of a watchdog, 

- gathering information about the performance of the DSP in the radioactive 

environment, 

- the communication distance of about 50 m. 

This chapter describes all the details about the developed system (hardware and software). 

3.2 The TMS320C6713 DSP overview 
The DSP used in this master's project is a C6713 processor, which is one of the most 

powerful floating-point digital signal processors produced by Texas Instruments. It has a 

very interesting architecture consisting of a total of 8 independent functional units: 
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• Two ALUs (Fixed-Point), 

• Four ALUs (Floating- and Fixed-Point), 

• Two Multipliers (Floating- and Fixed-Point). 

It also has 2 sets of 16 32-bit registers. This is illustrated in Figure 3.2. [11] 

The main benefit of such architecture is the fact that this processor can carry out up to 8 

different instructions in parallel in 1 CPU cycle. This can be achieved if each of the 8 

instructions utilizes a different functional unit. The following is an example of an assembly 

code illustrating this: 

 ADD.L1 A0,A1,A2 ; A2 = A0+A1 – addition using L1 unit 
|| ADD.L2 B0,B1,B2 ; B2 = B0+B1 – addition using L2 unit 
|| SUB.S1 A3,A4,A5 ; A5 = A3-A4 – subtraction using S1 unit 
|| SUB.S2 B3,B4,B5 ; B5 = B3-B4 – subtraction using S2 unit 
|| LDW.D1 *A6,A7  ; load a 32-bit word from address A6 into A7 – unit D1 
|| LDW.D2 *B6,B7  ; load a 32-bit word from address B6 into B7 – unit D2 
|| MPY.M1 A8,A9,A10 ; A10 = A8*A9 – multiplication using M1 unit 
|| MPY.M2 B8,B9,B10 ; B10 = B8*B9 – multiplication using M2 unit 

To perform instructions in parallel the "||" characters have to be placed at the beginning of 

the line. If the functional unit is not specified, the assembler will allocate a proper unit 

automatically. 

Another feature worth explaining is the possibility to write conditional assembly 

instructions. This is realized by putting a register in square brackets before the instruction: 

[A0] MVK.S1 A0,B0  ; this operation will be performed if A0 is different from 0 
[!B0] ADD.S2 B1,B2,B3 ; this is executed if B0 is equal to 0 
 

In such conditional statements only A1, A2, B0, B1 and B2 registers can be used. In a 

group of instructions performed in parallel, each instruction can have a different condition. 
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Figure 3.2 C6713 functional block and CPU (DSP core) diagram 

Another issue that should be explained is the fact that some instructions take more than  

1 cycle to execute. In such cases the result of an instruction is available a few cycles later. 

These are called "delay slots". For example, a branch instruction has 5 delay slots, which 

means that the jump in the program is made 5 cycles after the command has been 

processed: 

 MVK 0xFF,A2 
 B LABEL1  ; branch to LABEL1 
 MVK 0x0,A0  ;  
 MVK 0x20,A1  ; 
 ADD A0,A1,A1 ; 
 SUB A1,A5,A2 ; 
 NOP   ; branch takes place here 
 MV 0x0,A2  ; this instruction is not processed 

In the above code all 5 instructions (MVK, MVK, ADD, SUB, NOP) are executed and 

then the program counter jumps to the LABEL1 label. Numbers of delay slots required by 

the most frequently used instructions are listed in Table 1.1. 
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Table 3.1 Delay slots for some example instructions 

Instruction Description Delay slots 
LDW load from memory 4 

B branch 5 
MPY integer multiplication 1 

ADDSP single-precision 
floating-point addition 3 

MPYSP single-precision  
floating-point multiplication 3 

ADDDP double-precision 
floating-point addition 6 

MPYDP double-precision 
floating-point multiplication 9 

 

3.3 Hardware part of the communication system 
To fulfill all the requirements of the communication system, both serial and parallel ports 

of a PC computer had to be used. To meet the 50 m distance requirement it was necessary 

to use the EIA485/422 serial transmission standard instead of the EIA232 standard which 

is commonly used in all PC serial ports, but can work only over a limited distance.  

The system consists of two PCB boards. The first one is located in the accelerator together 

with the DSP, while the second one is located near the PC outside the accelerator. The two 

boards are connected using a 20-wire ribbon twisted cable. The PC-DSP communication 

system block-diagram is presented in Figure 3.3. 

C6713 DSP PC 

 

Figure 3.3 Communication system block diagram 
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The parallel communication is used for: 

- turning the DSP on and off (parallel port data bit 5), 

- remotely resetting the DSP (parallel port data bit 4), 

- additional control signals (parallel port data bits 0-3). 

While the serial transmission is used for: 

- uploading new programs to the DSP, 

- watchdog implementation, 

- exchange of additional information (e.g.: about performance of the DSP under 

radiation, number of detected & corrected errors, etc.). 

3.3.1 DSP module 
The schematic of the circuit on the DSP side of the system (placed in the accelerator) is 

presented in Appendix A. Figure 3.4 presents a block diagram of that circuit and a picture 

of the fabricated printed circuit board connected to the DSK board is presented in Fig.3.5. 

The circuit connects to the DSK6713 board via two 80-pin connectors.  

The first one - peripheral expansion connector – is used for the 4 parallel signals and the 

serial signals. The 5 V parallel signals are clipped to 3.3 V using the 3.3 V Zener diodes. 

The EIA422 signals are converted to TTL levels using MAX3485 ICs. The 3.3 V supply 

voltage for the ICs is taken from the DSK board via the peripheral expansion connector. 

The second connector – HPI expansion connector - is used only for the active-low RESET 

signal. 

Additionally, the circuit consists of a DC-DC converter, which has an input range of 

9-18 V and output of 5 V (3 A). The converter is needed, because the DSK board has quite 

high supply current demand (up to 3 A) and therefore the losses would be too big if the 5 V 

supply voltage were sent to the DSK over the 50 m cable. Therefore, a higher voltage is 

sent over the cable reducing the current and then it is converted to 5 V using the DC-DC 

converter.  
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Fig.3.4 Block diagram of the DSP-module 

 
Fig.3.5 DSP-module connected to the DSK board 

 

3.3.2 PC module 
The circuit near the PC consists of a 74HC244 octal buffer, a relay, an NPN transistor and 

several transceivers. Its schematic is presented in Appendix B, while the block diagram is 

shown in Figure 3.6 and the photo of the fabricated board is presented in Figure 3.7. 
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Fig.3.6 Block diagram of the PC-module 

 
Fig.3.7 PC-module photo 

The buffer is connected to the parallel port of the PC and drives the parallel signals to the 

DSP. Data bits 0-3 of PC's parallel port are used for communication with the DSP, while 

data bit 4 is used for the DSP's active-low RESET signal. Data bit 5 is used for remote 

switching of the DSK board on and off. This is accomplished by a relay that switches the 

supply voltage for the DSK on/off. The relay is controlled by a BC547 NPN transistor 

connected to one of the outputs of the buffer.  
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The serial port of the PC is connected to the MAX232 IC which converts the EIA232 

signals to TTL levels. Then the signals are converted to EIA485 using the MAX485 

integrated circuits. There is a separate pair of wires (and a separate transceiver) for each 

direction of the signals. 

3.4 Software part 
The software part also needs to be split between the DSP and the PC. The DSP part of the 

software is written in C and Assembler using the Code Composer Studio (CCS), while the 

PC part of the software was written in C++ Builder 6. The PC software works under 

Windows operating system, because the CCS programming environment also uses 

Windows. 

3.4.1 Software for the DSP 
One of the most important requirements for this DSP-PC communication system was to be 

able to execute any given program on the DSP. This should be achieved by uploading the 

program code through the serial port. To meet this requirement the Flash memory located 

on the DSK6713 board had to be used. 

Flash was the best choice because it is a non-volatile memory, which means that a given 

program needs to be uploaded only once and it stays in the Flash until it is overwritten by a 

different program. The second very important advantage of the Flash is that it is highly 

resistant to the influence of radiation. The time after which the radiation can damage the 

contents of the Flash memory is much longer than the time of the tests carried out in this 

project. Therefore one can be sure that the code executed from flash is not altered by 

radiation. However, Flash has also some disadvantages. The main drawback is that in order 

to write some data into the Flash, it has to be erased first. The erasure cannot be performed 

on a single byte or word. A whole block of Flash must be erased. The Flash memory used 

in the DSK6713 board consists of 32KB blocks. Another disadvantage is that Flash 

memory is much slower compared to RAM. Therefore, the time-critical parts of the 

programs need to be copied to RAM for their execution. 

The first 32KB block of the Flash is used for storing the code of a bootloader and the 

remaining part of the Flash is used to store the code and data of the programs that will be 

executed on the DSP. This solution perfectly fits with the default boot mode of the C6713 

DSP. In this boot mode, right after reset, DSP copies 1KB of memory from the beginning 
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of the Flash to the beginning of the internal RAM (address 0x0) and then branches to that 

0x0 address and begins execution of the code. Figure 3.8 presents the Flash memory 

divided into the 32KB blocks. 

0x90000000 

 

Figure 3.8 Flash memory organization 

The first 1KB of Flash holds a simple code written in assembly. This code configures the 

external memory interface, which is used to communicate with SDRAM and FLASH, and 

configures the general purpose input/output (GPIO) port. Then it reads the fourth bit of the 

GPIO port. The input pin associated with that bit is connected through the communication 

system with bit 0 of the PC's parallel port. If the bit is set, then DSP branches to the 

bootloader code. If the bit is cleared, DSP branches to the address stored at 0x90008000. 

Therefore, if a user wants to upload a new program to the DSP, he simply needs to turn it 

on with the bit0 of the parallel port set to 1. Then the bootloader is executed. If the user 

wants to run a program that has already been uploaded, then the DSP needs to be started 

with parallel port's bit0 cleared. Then DSP loads the programs entry point from the 

0x90008000 address and jumps to the entry point. If the flash is erased and no program is 

uploaded then the value at 0x90008000 is equal to 0xFFFFFFFF and the DSP enters an 

infinite loop. This is the most important part of the discussed code (without the EMIF 

configuration): 

; GPIO configuration 
 MVKL 0x0,A0   ;  
 MVKH 0x01B00000,A0  ; A0 = GPIO address 
 ZERO A3 
 MVK 0x00FF,A3 
 STW .D1T1 A3,*A0++  ; GPEN = 0xFF 
 MVK 0x0,A3  ; clear all the other GPIO registers: 
 STW .D1T1 A3,*A0++  ; GPDIR 
 STW .D1T1 A3,*A0++  ; GPVAL 
 STW .D1T1 A3,*A0++  ; GPDH 
 STW .D1T1 A3,*A0++  ; GPHM  
 STW .D1T1 A3,*A0++  ; GPDL 
 STW .D1T1 A3,*A0++  ; GPLM 
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 STW .D1T1 A3,*A0++  ; GPGC 
 STW .D1T1 A3,*A0++  ; GPPOL 
  
 ; read GPIO bit 4 
 MVK .S1 0x08,A0   ; 
 MVKH .S1 0x01B0000   ; A0,A0 0 = GPVAL address 

DW 
f,  

infinite loop 

these two are not equal, it does not write the block into flash and does not send the 

 LDW .D1T1 *A0++,A3   ; load GPVAL value 
L NOP 4    ; 4 delay slots for 

A3,0x1 0x1 EXTU .S1 b, A1 ; extract bit0 
  
 [A1]  mvkl   _c_int00,A0  ;  
 [A1] mvkh   _c_int00,A0  ; if (bit0 != 0) 
 [A1] b  A0   ;  branch to the bootloader 
 [!A1] mvkl PROG TR R, ; if (bit0 == 0)    _EN Y_ADD A3 
 [!A1] mvkh   PROG_ENTRY_ADDR, A3 ;  load program's entry point address 
 nop 3 
       ldw    *A3, A2   ; Load entry point 
       nop 4 
       xor A2,0xffffffff,A1 ; check if it equals 0xffffffff 
 [A1]  b  A2   ; jump to the program in flash 
       nop 5  
 

it: b wait    ; wa
 NOP 5 

The main part of the source code of the bootloader is presented on the following page. The 

whole code is placed in the Flash. However, the Flash memory is very slow compared to 

internal random access memory (IRAM) of the processor; therefore some of the time-

critical functions are copied into IRAM during run-time and executed from there. All the 

parts of the code that need to be run from IRAM are marked as the "fast" section. Then, 

during linking, this section is linked as if it was placed in IRAM; however it is actually 

placed in Flash. It is the program's responsibility to copy that section into an appropriate 

address in RAM. This is simply achieved by the following function call: 

memcpy( (void *)&run_fast, (void *)&load_fast, (int)&size_fast ); 

where: 

run_fast – pointer to the "run address" in IRAM, 

load_fast – pointer to the "load address" in Flash, 

size_fast – size of the "fast" section. 

All these 3 variables are declared and defined automatically by the CCS linker. In the 

bootloader all the functions responsible for the serial communication, erasing and writing 

to Flash are placed in the "fast" section. 

The main loop of the bootloader consists of copying the "fast" section code from Flash to 

IRAM, reading data on the serial port and writing that data into Flash. The data is sent 

from the PC to the DSP in blocks. After each block, a crc32 checksum of the block is sent. 

DSP calculates the crc32 of the received block and compares it to the received crc32. If 
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acknowledgement (ACK) and waits for a retransmission of the block from the PC. If the 

crc32's are the same, the data block is written into Flash. Then, crc32 of the data in Flash is 

calculated again and compared with the received crc32 to make sure that Flash has been 

programmed correctly. When all the blocks have been correctly received, PC clears the 

parallel port data bit0 and the DSP goes into an infinite loop. Then the DSK board can be 

reset and the newly uploaded program can be started. Crucial variables used in the 

bootloader, such as serial_speed and flash_dest_addr are stored in 3 copies and always 

triple voting is carried out on them before they are used. If the triple voting fails (all 3 

copies are different) then an appropriate message is sent to the PC over the serial port and 

the program upload process is stopped. All the messages sent over the serial port are also 

repeated 3 times to make sure that the correct message reaches the PC. The most important 

part of the bootloader code is presented in Appendix C. 

The DSP program from Appendix C uses the following three functions responsible for the 

// initialization and detection of transmission speed 
char SoftUartInchar( unsigned int serial_speed );  // reading the serial port 

rst 's 

The first transition oc at the end of the first 

 

obtained from the SoftUartSpeedDetect() function. All three functions are written in 

communication over the serial port: 

unsigned int SoftUartSpeedDetect(); 

SoftUartOutchar(unsigned int serial_speed, char out ); // writing to the serial port 

The SoftUartSpeedDetect() function must be called fi in order to configure the DSP

multichannel buffered serial port (MCBSP) correctly and to detect the speed of the serial 

transmission. In order for this function to work correctly, the PC must first send one byte 

that begins with a "1" bit followed by a "0" bit. This is because the function measures the 

time between two consecutive high-to-low transitions in the serial transmission line. This 

is illustrated on the following figure: 

 

Figure 3.9 Serial transmission speed detection 

Start D0 
DR 

T 

curs at the beginning of the start bit, the second 

data bit. Therefore T is equal to a time for transmission of 2 bits and dividing it by 2 the 

necessary delay needed to read and write bits over the serial connection is obtained. 

The other two functions are used for reading and writing to the serial port with the speed
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assembler and use the MCBSP port in general purpose I/O mode. They are taken from the 

Texas Instruments (TI) Application Report [12]. An important fact is that the original 

function SoftUartSpeedDetect() from [12] had an error in it. This error made the function 

completely useless, as it was always returning 0. The error has been located and repaired. It 

involved changing two assembly instructions.  The following is the code of the corrected 

SoftUartSpeedDetect() function with the location of the error marked in comments: 

_SoftUartSpeedDetect: 
;** ----------------- function prolog ---------------------------------------* 
;** preserve ”save-on-call” registers 
 SUB B15, 4, A0 

15--[2] ; f 

global interrupts 
-- -------------------------------------------* 

to SPCR register 
s McBSP0 port address 

gister 
es McBSP0 port address 
register 

de 

h 
-----------------------* 

it measurement 
-- --------------------------------------------* 

B .S2 L3        <- error 
t was:|| [A1] LDW .D1T1 *A0,A3 <- error 

 

is low 
--------------------------------------------* 

 STW .D2 A10, *B
|| STW .D1 B10, *A0--[2] ; f 
 STW .D2 A11, *B15--[2] ; f 
|  0--[2] ; f | STW .D1 B11, *A

 STW .D2 A12, *B15--[2] ; f 
||  STW .D1 B12, *A0--[2] ; f 
 STW .D2 A13, *B15--[2] ; f 
||  STW .D1 B13, *A0--[2] ; f 
|  | MVC .S2 CSR,B13 ; f 

  STW .D2 A14, *B15--[2] ; f
|  | STW .D1 B14, *A0--[2] ; f 

||  AND .L2 -2,B13,B13 ; f 
2] ; f  STW .D2 A15, *B15--[

|  | STW .D1 B3, *A0--[2] ; f 
e ||  MVC .S2 B13,CSR ; f disabl

---;** - ------------------------
 MVK .S1 0x8,A0 ; set offset 

ake MVKH .S1 0x18c0000,A0 ; t
 LDW .D1T1 *A0,A3 ; load SPCR register 
 NOP 4 
 CLR .S1 A3,0x10,0x10,A3 ; 
 AND .L1 0xfffffffe,A3,A3 ; 

ig value  STW .D1T1 A3,*A0 ; store new SPCR conf
A0 ; set offset for PCR re||  MVK .S1 0x24,

 MVKH .S1 0x18c0000,A0 ; tak
 LDW .D1T1 *A0,A3 ; load PCR 
 NOP 4 

mo SET .S1 A3,0xc,0xd,A3 ; set bit 12&13 for I/O 
 STW .D1T1 A3,*A0 ; store new PCR config value 
 NOP 5 

,A3 ;  LDW .D1T1 *A0
 NOP 4 

is hig EXTU .S1 A3,0x1b,0x1f,A1 ; wait while DEIATAT 
----------------------------------;** ----------------

 .align 32 
1 ; L1: [ A1] B .S2 L

|  | [ A1] LDW .D1T1 *A0,A3 ; 
||  EXTU .S1 A3,0x1b,0x1f,A1 ; wait while DEIATAT is high 

 ; initialize counter ||  [!A1] ZERO .L2 B4
 NOP 5 ; for StartB
;** - --------------------------
 .align 32  

t was:L3:[A1] L3: [!A1] B .S2 L3 ;     originally i
|  lly i| [!A1] LDW .D1T1 *A0,A3 ;  origina

||  EXTU .S1 A3,0x1b,0x1f,A1 ; 
4 ; increment counter while ||  [!A1] ADD .L2 0x1,B4,B

 NOP 5 ; DEIATAT bit is low 
;** -------------------------------------------------------------------------* 
 .align 32 
L31B: [ A1] B .S2 L31B ; 
|  | [ A1] LDW .D1T1 *A0,A3 ; 

||  EXTU .S1 A3,0x1b,0x1f,A1 ; 
,B4,B4 ; increment counter while ||  [ A1] ADD .L2 0x1

 NOP 5 ; DEIATAT bit 
---;** --------------------------

 .align 32 
 SHRU .S2 B4,0x1,B4 ; 
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 MVK .S2 0x0b,B0 ; 
 SET .S1 A3,0x5,0x5,A3 ; set DXSTAT bit to 1 
||  MV .L1X B0,A4 ; 

;  MPYLHU .M1X A4,B4
  

,A3 
|| STW .D1T1 A3,*A0 ; sto

 
re new PCR config value 

--- ----------------------------------------------* 

itcnt ; 
  0 ; 

---------------------------------------* 

  

 
global interrupts 

 

-- ------------------------------------------* 

imilar. All the three functions are used repeatedly in all 

correct, 

rc; 

function: 

56]; 

 MPYU .M2 B0,B4,B0 ;
 SHL .S1 A3,0x10,A3 ; 

 ;  ADD .L2X B0,A3,B0
* ;* ------------------------

 .align 32 
waitcnt:  [ B0] B .S1 wa
|| [ B0] SUB .L2 B0,0x1,B
|| [ B0] LDW .D1T1 *A0,A  3 ; Dummy load 
 NOP 5 
; BRANCH OCCUEIA ; 
;** ------- ------- function epilog 

es
---

;** r tore preserved by call registers 
 SUB B15, 4, A0 

[2], B3 ; f  LDW .D1 *++A0
||  LDW .D2 *++B15[2], A15 ; f 
||  MVC .S2 CSR, B13 ; f 
 LDW .D1 *++A0[2], B14 ; f 

  ], A14 ; f || LDW .D2 *++B15[2
|| OR .L2 B13, 1, B13 ; f 
 LDW .D1 *++A0[2], B13 ; f 
||  LDW .D2 *++B15[2], A13 ; f
|| MVC .S2 B13,CSR ; f enable   
 LDW .D1 *++A0[2], B12 ; f 
||  LDW .D2 *++B15[2], A12 ; f
 LDW .D1 *++A0[2], B11 ; f 
||  LDW .D2 *++B15[2], A11 ; f 
||  B .S2 B3 ; f return(); 
|| MV .L1X B4,A4 ;   
 LDW .D2 *++B15[2], A10 ; f 
|| LDW .D1 *++A0[2], B10 ; f   
 NOP 4 ; f 

----;** - ------------------------

The other two functions are very s

o SP programther D s that involve communication with the PC using the serial port. 

Another important aspect of the presented DSP application for uploading programs into 

Flash is the crc32 calculation. This ensures that the received blocks of data are 

which is very important, as the EIA485 transmission may not be totally radiation immune. 

In case of large numbers of errors reported during transmission, the speed of transmission 

can be decreased or some additional protection like Hamming codes or triple redundancy 

can be introduced to ensure correct transmission. The crc32 calculation function used in 

the program is as follows: 

unsigned int crc32_calc(char *fp,int length)    /* calculate the crc value */ 
{ 
    register unsigned int c
 
    crc = 0xFFFFFFFF; 
    while (length--) 

ble[ (crc^*fp++) & 0xFF ];         crc = (crc>>8) ^ crc_ta
 

FFFF );     return( crc^0xFFFF
} 

It uses a lookup table which is generated by the following 

st
 

atic unsigned int crc_table[2
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void crc32_gen_table(void)                /* build the crc table */ 
{ 
    unsigned int crc, poly; 
    int i, j; 
 
    poly = 0xEDB88320; 

)     for (i = 0; i < 256; i++
    { 

i;         crc = 
        for (j = 8; j >
        { 

 0; j--) 

rc = (crc >> 1) ^ poly; 

 the bootloader the crc_table is declared as constant and its 

 are defined in the header file. The two crc32 functions were taken from the  

32 value. 

n in C++ Builder 6 and runs under Windows 

ecause the Code Composer Studio IDE for the DSP 

            if (crc & 1) 
                c
            else 
                crc >>= 1; 
        } 
        crc_table[i] = crc; 
    } 
} 

In the final implementation of

values

internet [13] and needed only small modifications to incorporate into the project. 

In brief, crc32 is an algorithm that treats the input message as a very large polynomial, 

divides it by another large polynomial and the remainder of this division is the crc

The polynomials are created by representing a given decimal value in a binary form and 

treating each bit as a binary coefficient of a polynomial. This kind of algorithm is very 

effective, because even very little changes in the message change the division remainder 

(the crc32 value). Therefore, this method is very useful for ensuring that a given message 

has not been altered by any errors. The presented implementation of crc32 calculation is a 

very fast, optimized method. It is based on a lookup table which speeds up the process 

considerably. 

3.4.2 Software for the PC 
The software part for the PC is writte

operating system. This is mainly b

provided by Texas Instruments is also designed to run in Windows environment. The main 

purpose for the PC software is to remotely control the DSP, upload new programs to the 

DSP and run them remotely. During the execution of the programs, a watchdog is used to 

control whether the DSP is working and additional information about detected or corrected 

errors is gathered. A screenshot of the program created with C++ Builder is presented in 

Figure 3.10: 
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Fig.3.10 Screenshot of the PC application 
There are two main groups of buttons as there are two modes of operation: 

a) uploading new programs to the Flash of DSP 

In this mode, when a user clicks the "Turn DSP ON" button, the DSP is turned on and a 

signal via parallel port DATA0 bit is set. Then DSP starts the bootloader and awaits the 

new application code on the serial port. The user can load the appropriate Hex file with the 

code to be uploaded. The Hex files can be easily created using the hex6x.exe tool from TI. 

Finally, the code is sent to the DSP when the user clicks the "Send code" button. The 

process of sending the code is very simple. The code is divided into smaller blocks and 

after each block a crc32 value is sent. The function used for calculation of the crc32 is the 

same as the one used in the DSP and described on the previous pages. 

b) running the programs from DSP's Flash memory 

In the second mode, when the user clicks "Start DSP" button, DSP is turned on, but the 

parallel port DATA0 bit is cleared and so the DSP starts execution of a program that is 

already in Flash. The PC initializes serial transmission with the DSP by sending a 0x0D 

byte over the serial port. This enables the DSP to calculate the transmission speed (using 

the SoftUartSpeedDetect function). PC waits for an acknowledgement signal from the 

DSP. The signal should consist of three bytes of value 0xAA. Then, the PC starts a 

watchdog timer. The DSP should periodically send a special signal over the serial port to 

reset this watchdog timer. DSP can also send other signals, for example when using 

Hamming codes, it can send information about the amount of errors corrected or detected. 
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All this information is displayed on the PC screen. The values of the message codes that a 

DSP can send are listed in Table 3.2. 

Table 3.2 Message codes for DSP-PC communication 

Byte value Meaning 

0xF0 Watchdog signal 

0x0F Errors have been corrected by the hamming code. 

 Next, the number of corrected bits is sent. 

0xFF Errors have been detected by the hamming code. 

0x3F Errors have been corrected by the 2D parity.  

Next, the number of corrected bits is sent. 

0xFC Errors have been detected by the 2D parity. 

0x01 Triple voting has failed (all 3 values were different) 

0xC3 The two parallel calculations produced different results. 

0x3C Triple voting has been used (1 of the 3 values was different from the others) 

Additionally, there is an edit box that lets the user change the watchdog timer interval, and 

also a button that allows reading of the current parallel port value. There is also a "Save 

log" button. Pressing it allows the user to save the contents of the log to a file. 

In the PC software part, a DLL library for parallel port communication is used. The library 

file name is inpout32.dll and the whole library along with the source codes can be 

downloaded for free from the internet [14]. The DLL consists of 2 main functions: 

short Inp32( short portaddr ); 
void Out32( short portaddr, short data ); 

The Inp32 function reads the port of address portaddr, while the Out32 function writes the 

value of data to the port of address portaddr. 

For the serial port programming, the Win32 API functions are used. The following is a part 

of the source code responsible for opening the serial port and configuring it: 

// ##########  SERIAL PORT initialization  ########## 
 
DCB dcbCommPort; 
 
// open the serial port 
hComm = CreateFile(serial_port,GENERIC_READ | GENERIC_WRITE, 
                0,0,OPEN_EXISTING,0,0); 
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// check if it opened correctly 
if (hComm == INVALID_HANDLE_VALUE)  

{ 
        As.printf("Error opening serial port %s", serial_port); 
        Application->MessageBox(As.c_str(),"Error",MB_OK); 
        Application->Terminate(); 
        } 
 
// set the comm timeouts 
GetCommTimeouts(hComm,&ctmoOld); 
ctmoNew.ReadTotalTimeoutConstant = 1000; 
ctmoNew.ReadIntervalTimeout = MAXDWORD; 
ctmoNew.ReadTotalTimeoutMultiplier = MAXDWORD; 
ctmoNew.WriteTotalTimeoutMultiplier = 0; 
ctmoNew.WriteTotalTimeoutConstant = 0; 
SetCommTimeouts(hComm, &ctmoNew); 
 
// configure the serial port 
dcbCommPort.DCBlength = sizeof(DCB); 
GetCommState(hComm, &dcbCommPort); 
BuildCommDCB(com_conf, &dcbCommPort); 
SetCommState(hComm, &dcbCommPort); 

Then, to read or write to the port, the ReadFile and WriteFile functions are used. To send a 

single byte to the serial port, a TransmitCommChar function is used. This function is 

mainly used for initialization of the connection with the DSP, as the DSP's 

SoftUartSpeedDetect() function needs an arrival of one byte of value 0x0D to calculate the 

connection speed. On program shutdown, the CloseHandle function is used to release the 

serial port handle. 

Programming the serial and parallel ports in C++ Builder is easy and straightforward. The 

whole program for the PC is quite simple therefore its source code is not presented. One 

very important fact is that in order for the port communication to work, the program must 

be run by a user with administrator's privileges on the Windows system. 
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4. Implementation of radiation protection methods in 
software 

This chapter covers all the implementation issues concerning the software methods 

described in Chapter 2. All the methods in this master's project were implemented in C or 

assembly on the TMS320C6713 DSP from Texas Instruments. 

4.1 Parity control 
This is the simplest method to implement, and therefore it is also the fastest one. Since the 

C6713 DSP has 32-bit registers, the best way to implement the single parity method is to 

treat the memory as an array of 32-bit values and calculate the parity bits "vertically". This 

is illustrated on the Figure 4.1.  

32 bit words 

columns

parity bits 

of bits

 

Fig.4.1 Parity control - "vertical" implementation 
This kind of implementation has two big advantages: 

• the parity of 32-bit columns is calculated in parallel, 

• errors in different columns are detected independently. 

The presented implementation enables detection of any odd number of bit flips occurring 

in one column. Each column is treated independently, so for example, 32 bit errors can be 

detected, if each one of them is placed in a different column. 

Since a xor operation requires only 1 CPU cycle, the total number of cycles required to 

calculate the parity bits for a given memory region is approximately equal to the size of 

that region given in 32-bit words. The following is the hand optimized assembly code for 

calculation of the parity bits: 
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_parity_calc      
  LDW *A4++,A1  ; A1 = data pointer 
  LDW *A4++,B2 ; B2 = length 
  B  loop 
  B  loop 
  B  loop 
||  ZERO A7   
  B  loop 
||  ZERO A5    
  B  loop 
||  SUB B2,1,B2  ; decrease counter by 1 
 
loop  LDW *A1++,A5  ; load the data 
||  [B2] SUB B2,1,B2  ; decrease the counter 
||  [B2] B  loop  ; check if it is the end 
||  XOR A5,A7,A7 ; xor with A7 
   
  B  B3  ; return 
  STW A7,*A4  ; parity_bits = A7 
   NOP 4 
 

And this is the code of a function checking whether errors occurred: 

 
_parity_check   
  LDW *A4++,A1  ; A1 = data pointer 
  LDW *A4++,B2 ; B2 = length (loop counter) 
  LDW *A4,A7  ; A7 = parity_bits 
  B  loop2 
  B  loop2 
  B  loop2 
||  ZERO A4   ; return value = 0  
  B  loop2 
||  ZERO A5    
  B  loop2 
||  SUB B2,1,B2  ; decrease counter by 1 
 
loop2  LDW *A1++,A5  ; load the data 
|| [B2]  SUB B2,1,B2  ; decrease the counter 
|| [B2]  B  loop2  ; check if it is the end 
||  XOR A5,A7,A7 ; xor with A7 
   
  B  B3  ; return (after 5 cycles) 
  MV A7,A2  ; A2 = result xored with parity_bits 
 [A2]  MVK -1,A4  ; if (a2!=0) return -1 
   NOP 3       
    
 

The declarations of the two functions are as follows: 

typedef struct { 
int *pointer;  // pointer to the memory region to protect 
int length;  // length of the region in 32bit words 
int parity_bits; // parity bits calculated by parity_calc function 
} Tparity; 
 
extern parity_calc(Tparity *); 
extern parity_check(Tparity *); 
 

Both functions use a pointer to a Tparity structure as a parameter. This structure is used for 

description of a memory region that needs to be protected. The region can either consist of 

some data or a code of the DSP program. Similar structures are used in all other memory 

protection methods used in this project. The parity_check function returns 0 if there are no 

errors, and -1 when errors are detected.  

 43



Marcin Wojtczak 
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment 

4.2 Two dimensional parity control 
The general idea behind the two dimensional parity is explained in section 2.3.2. The 

method is based on calculation of the parity bits in two directions: vertical and horizontal. 

However, this kind of calculation scheme is difficult to implement in software, as 

calculating horizontal xor operations is very slow (much slower than vertical). Fortunately, 

there is a solution that enables to keep all the benefits of the 2D parity and still manage to 

implement it in software in a very fast manner [15]. The method is illustrated in Figure 4.2: 

diagonal  
parity bits 

vertical parity bits 
 

Fig.4.2 2D parity with diagonal bits calculation 
In this case the parity bits are calculated in vertical and diagonal direction. The number of 

additional parity bits and all the benefits are the same as in vertical and horizontal 

approach, but the software implementation is much easier.  

Using this approach, it was possible to implement the method in assembly using only 2-

cycle loops. It is possible to write them in 1-cycle loops, but an instruction for bit rotation 

is needed to calculate the diagonal parity. The TI's C67xx digital signal processors do not 

have such an instruction; therefore a combination of 3 instructions to perform a bit rotation 

had to be used. This is explained in Figure 4.3. 

However, the TI's digital signal processors from the C64xx family have a bit rotation 

instruction and therefore the 2D parity functions can be written with 1-cycle loops and 

work two times faster as the ones for C67xx processors. 
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Fig.4.3 Bit rotation example 
In the implementation of the algorithm used in this project the protected memory region is 

divided into smaller blocks of size 32x32 = 1024 bits (128 bytes). Every such block has its 

own 64 parity bits (32 vertical + 32 diagonal). Therefore in each of the 128 bytes blocks 

the program can correct 1 single-bit error. However, this error must be inside the memory 

block and not among the parity check bits. If it is in one of the parity bits, then the error is 

detected but not corrected. 

The 2D parity calculation and check functions have been written in assembly and 

optimized by hand. The functions prototypes along with the definition of the structure 

associated with each memory region protected using this method are as follows: 

typedef struct { 
int *pointer;  // pointer to the memory region to protect 
int *xor_bits;  // pointer to the memory where parity bits are stored 
int length;  // length of the protected region in 32bit words 
} Tparity2D; 
 
extern parity2D_calc(Tparity2D *); 
extern parity2D_check(Tparity2D *); 
 
int parity2D_init(Tparity2D *block, int length); 
void parity2D_close(Tparity2D *block); 
 

The two additional functions parity2D_init and parity2D_close are needed for dynamic 

memory allocation/deallocation for the parity bits. This is due to the fact that number of 

parity bits depends on the size of the memory region to protect. The size of this memory 

region must be a multiple of 4 bytes due to the nature of the algorithm. The following is 

the source code of the 2D parity functions: 

written in C: 

int parity2D_init(Tparity2D *block, int length) // length is the size of memory in bytes 

7 6 5 4 3 2 1 0

4 3 2 1 0   7 6 5

4 3 2 1 0 7 6

shift left by 3 shift right by 5 

bitwise OR 

5

result is the same as for bit 
rotation left by 3 positions 
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{ 
    div_t temp; 
 
    temp=div(length,128);  // divide by 128 bytes (one block size) 
    if ( temp.rem>0 ) temp.quot++;   
    block->xor_bits = (int *)malloc(2*temp.quot*sizeof(int)); //allo. mem. for parity bits 
    block->length = length >> 2; 
    if (block->xor_bits == NULL) return 0; 
     else return 1; 
} 
 
void parity2D_close(Tparity2D *block) 
{ 
    free (block->xor_bits); 
} 
 

written in assembly: 

; ############################################## 
_parity2D_calc    
  LDW *A4++,A3  ; A3 = protected memory region pointer 
  LDW *A4++,B4  ; B4 = pointer to parity bits   
  LDW *A4,A1  ; A1 = length 
  NOP 3 
   
big_loop  MVK 32,B0 
||  ZERO A7   ; vertical xor will be stored in A7 
||  ZERO B7   ; diagonal xor will be stored in B7 
       
  CMPGTU A1,B0,A2 ; if length>32 
 [A2]  SUB A1,B0,A1  ;  then { length-=32; b0=31; } 
 [!A2]  MV A1,B0  ;   else { 
 [!A2]   MVK 0,A1   ;   length = 0;    
   
  SUB B0,1,B0  ;    b0 = length-1;} 
 
  B   loop3  ; 2x branch, becuase it's a 2 cycle loop 
   
  ZERO B2 
||  ZERO A9 
 
  B   loop3 
||  MVK -3,A2  ; used for bit rotation (shl) 
 
  ZERO B6 
||  ZERO A5 
||  MVK 35,B1  ; used for bit rotation (shru) 
 
;2 cycle loop   
loop3  LDW.D1  *A3++,A5 ; load the data 
||  ADD.L1  A2,1,A2 
||  SUB.L2  B1,1,B1  
||  OR.S2  B2,A9,B6 
|| [B0]  SUB.D2  B0,1,B0  ; decrease the counter 
|| [B0]  B.S1    loop3  ; check if it's the end of the loop 
 
   
  XOR.L1  A5,A7,A7 ; vertical xor 
||  XOR.L2  B6,B7,B7 ; diagonal xor 
||  SHL.S1  A5,A2,A9 ; SHL,SHR and OR from 1st cycle 
||  SHRU.S2 A5,B1,B2 ; make the bit rotation 
 
;epilogue 
  SUB B1,1,B1 
||  OR B2,A9,B6 
 
  XOR B6,B7,B7 
||  SHL.S1  A5,A2,A9 
||  SHRU.S2 A5,B1,B2 
       
 [!A1] B B3   ; if (length==0) return 
|| [A1] B  big_loop   
   STW A7,*B4++ ; vertical = A7 
   STW B7,*B4++  ; diagonal = B7 
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   SUB A3,8,A3  ; set the data pointer 
   NOP 2 
 
 
; ############################################## 
_parity2D_check   
 
  LDW *A4++,A3  ; A3 = memory to protect pointer 
  LDW *A4++,B4  ; B4 = pointer to parity bits 
  LDW *A4,A1  ; A1 = length 
  ZERO B5   ; B5 = number of corrected errors 
  NOP 2 
   
big_loop2  MVK 32,B0 
||  LDW *B4++,A7 ; A7 = vertical xor 
  LDW *B4++,B7  ; B7 = diagonal xor 
       
  CMPGTU A1,B0,A2 ; if length>32 
 [A2]  SUB A1,B0,A1  ;  then { length-=32; b0=31 ) 
 [!A2]  MV A1,B0  ;   else { b0= length-1; 
 [!A2]   MVK 0,A1   ;     length=0; }    
   
  SUB B0,1,B0      
       
  B   loop4  ; 2x branch because it's a 2 cycle loop 
||  ZERO A4   ; return value 
   
  ZERO B2 
||  ZERO A9 
||  MVK -3,A2  ; used for bit rotation (shl) 
||  MVK 35,B1  ; used for bit rotation (shru) 
 
  B   loop4 
 
  ZERO B6 
||  ZERO A5 
||  MV A3,B8  ; copy of the data pointer 
 
;2 cycle loop   
loop4  LDW.D1  *A3++,A5 ; load the data 
||  ADD.L1  A2,1,A2 
||  SUB.L2  B1,1,B1  
||  OR.S2  B2,A9,B6 
|| [B0] SUB.D2  B0,1,B0   ; decrease counter 
|| [B0] B.S1    loop4   ; check if it's the end of the loop 
 
   
  XOR.L1  A5,A7,A7 ; vertical xor 
||  XOR.L2  B6,B7,B7 ; diagonal xor 
||  SHL.S1  A5,A2,A9 ; SHL,SHR and OR from 1st cycle 
||  SHRU.S2 A5,B1,B2 ; make the bit rotation 
 
;epilogue 
  SUB B1,1,B1 
||  OR B2,A9,B6 
 
  XOR B6,B7,B7 
||  SHL.S1  A5,A2,A9 
||  SHRU.S2 A5,B1,B2 
 
; check if there was an error and repair it:    
   OR  A7,B7,A2  ; if vertical=0 & diagonal=0 
 [!A2]  B  next   ; then go to next 
   MVK 32,A0 
  MV  A7,A9  ; copy of the vertical xor 
  LMBD 1,A7,A5  ; left-most bit detection for vertical   
||  LMBD 1,B7,B6  ; left-most bit detection for diagonal 
  SUB A5,B6,A8  ; diagonal-vertical 
||  AND A5,A0,A2 
||  AND B6,A0,B2 
  ADD A5,1,A5 
||  ADD B6,1,B6 
||   OR A2,B2,B2 
  SHL A7,A5,A7 
||  SHL B7,B6,B7 
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  OR A7,B7,A2  
  OR B2,A2,A2  ; if error is in the parity bits 
 [A2] B  B3   ; or more errors occurred then return -1 
   MVK -1,A4   
||  CMPLT A8,0,A2  ; if H-V<0 then add 32 
 [A2]  ADD A8,A0,A8   
   
  SHL A8,2,A5  ; multiply by 4, because it's 32bit data array 
  ADD B8,A5,B8 
  LDW *B8,A6  ; load the errored data 
  NOP 4 
  XOR A6,A9,A6  ; change the bit (correct the error) 
||  ADD B5,1,B5 
  STW A6,*B8  ; save corrected data 
;next   
next [A1] B big_loop2  ; if (length>0) next loop 
|| [!A1] B  B3   ; else return B5 (number of corrected errors) 
  MV B5,A4 
  SUB A3,8,A3 
  NOP 3 
 

To summarize, the 2D parity algorithm is an interesting solution, because it is quite fast 

and its code is short but has much bigger capabilities then the single parity method. On the 

C64xx family DSPs the two dimensional parity method can be as fast as the one 

dimensional method. In cases when errors caused by radiation occur only as single bit flips 

and they are separated in memory by a large distance (so that they are located in different 

128 byte memory blocks) this method seems to be the best solution due to its high speed. 

4.3 Forward Error Correction codes 
The Forward Error Correcting (FEC) codes which have been explained in section 2.3.3 

have been implemented in two ways. The first one uses matrix multiplication to calculate 

the parity bits. This way it is very easy to define any given Hamming code by simply 

defining its G or H matrix. This solution enables very easy testing of Hamming codes of 

different lengths. However its main drawback is that the amount of calculations is very big 

and therefore the speed of the parity bit calculations is very slow. According to the CCS 

Profiler, for a memory block of 128 bytes, this method is about 23 times slower than the 

2D parity algorithm. However, there is a much better way of implementing the Hamming 

codes. It does not use the matrices, it simply involves hard-coding the necessary xor 

operations. This method has been used to implement a (38, 32) code in assembly and it 

proved to be about much faster than the "matrix implementation". The amount of CPU 

cycles needed to protect a given memory region was comparable to the number of cycles 

needed by the 2D parity algorithm.  

The chosen (38, 32) code has the ability to correct 1 error or detect 2 errors. However, it 

cannot do both at the same time. The user has to decide to focus on either error correcting 

and then be able to correct 1 error, or focus on error detection and detect 2 errors. 
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However, the code was extended by adding 1 parity bit, which is calculated over all 38 

codeword bits and the extended code is able to correct 1 error and detect 2 errors 

simultaneously. 

Both implementations are based on the same idea to divide the protected memory region 

into blocks of 32x32 = 1024bits (128 bytes) and to calculate the hamming code vertically. 

This means that for every column of 32 bits 6 parity bits are added (because a (38, 32) 

code is used). This yields that for a 128 bytes block, additional 8 parity bytes (64 bits) are 

needed. This kind of implementation has some very important advantages. Firstly, the 32 

bit columns are treated as separate messages, thus 1 error can be corrected in each bit 

column. This gives a total of 32 correctable 1-bit errors in the whole block (assuming that 

every error is in a different column). The second advantage is of course the speed of 

calculations, because the 32 codes are calculated and checked in parallel. 

The following is the matrix implementation of the (38, 32) code with one additional parity 

bit. The function that performs the same error checking, but has the xor-ing hardcoded in 

assembly is presented in Appendix D. 

int hamm_init(Thamm *block, int length)  // length is the size of protected memory region 
{         // in bytes, and must be multiple of 4*K 
    int rem, quot; 
 
    rem = length % (4*K); 
    quot = length / (4*K); 
 
    if ( rem )  
    { 
        block->no_of_blocks = 0; 
        return 0; // error, wrong length 
    } 
    block->parity_bits = (int *)malloc((N-K+1)*4*quot); // memory alloc. for parity bits 
    if (block->parity_bits == NULL)  
    { 
        block->no_of_blocks = 0; 
        return 0; 
    } else  
    { 
        block->no_of_blocks = quot; 
        return 1; 
    } 
} 
 
void hamm_close(Thamm *block) 
{ 
    free (block->parity_bits); 
} 
 
void hamm_calc(Thamm *block) 
{ 
    int j,i,k; 
 
    for (i=0; i<(N-K+1)*block->no_of_blocks; i++)  
        block->parity_bits[i] = 0; 
 
    for (k = 0; k<block->no_of_blocks; k++)   // for each block 
    { 
        for (j = 0; j<(N-K); j++)   // perform the matrix multiplication 

 49



Marcin Wojtczak 
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment 

     for (i = 0; i<K; i++) 
         block->parity_bits[k*(N-K+1)+j] ^=( block->data[k*K+i] & Ht[i][j] ); 
 
        // additional parity bit calculation: 
        for (i = 0; i<N; i++ ) 
     if (i<K) block->parity_bits[k*(N-K+1)+N-K] ^= block->data[k*K+i]; 
         else block->parity_bits[k*(N-K+1)+N-K] ^= block->parity_bits[k*(N-K+1)+i-K]; 
    } 
} 
 
int hamm_check(Thamm *block) 
{ 
    int j,i,k,error,tot_error,k1,k2; 
    unsigned int temp,t,parity; 
    int S[32];  // 32 syndromes because 32 parallel hamming codes are calculated 
 
    error = 0; 
    tot_error = 0; 
 
    for (k = 0; k<block->no_of_blocks; k++)  // for each block 
    { 
        k1 = k*K; 
        k2 = k*(N-K+1)-K; 
        parity = block->parity_bits[k2+N]; 
  
        for (i=0; i<32; i++) S[i] = 0; 
  
        for (j = 0; j<N-K; j++)  // do the matrix multiplication 
        { 
            temp = 0; 
 
            for (i = 0; i<N; i++) 
                if (i<K)  
                { 
                    temp^=( block->data[k1+i] & Ht[i][j] ); 
                    if (j == 0) parity ^= block->data[k1+i]; 
                } else  
                { 
                    temp^=( block->parity_bits[k2+i] & Ht[i][j] ); 
                    if (j == 0) parity ^= block->parity_bits[k2+i]; 
                } 
 
                for (i = 0; i<32; i++) // change S from vertical to horizontal 
                { 
                    t = ((temp >> i) & 0x01); 
                    if (t)  
                    { 
                        S[i] |= ( t << j ); 
                        error = 1; 
                    } 
                } 
        } 
        if (error)  // check if there were any errors 
        { 
            error = 0; 
            for (i = 0; i<32; i++ )  // check all 32 syndromes 
                if (S[i])   // if syndrome != 0 -> error 
                    if ((parity & ( 0x1 << i )) > 0 ) // 1 error to correct 
                    {  
                        parity ^= (0x1 << i); // turn off the parity bit    
                         
                        j = 0; 
                        while (COSET[j++] != S[i]) 
                            if (j == N) return -1; // more than 1 error occurred 
                        j--; 
                        // correct 1 error 
                        if (j<K) block->data[k1+j] ^= (0x01 << i); 
                            else block->parity_bits[k2+j] ^= (0x01 << i); 
                        tot_error++; 
                    } else return -1; // 2 errors detected 
        } 
        if (parity) return -1; // not all errors have been corrected 
    } 
    return tot_error; // return number of corrected errors 
}  
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4.4 Reed-Solomon codes 
Because of the complexity of the Galois field arithmetic, software implementation of 

Reed-Solomon codes is not fast. These codes can be quite efficiently implemented in 

hardware using rather simple circuits with shift registers, but software implementation is 

much more complicated. The main problem is the implementation of multiplication in 

GF(2m). As it was described in section 2.3.4, to multiply two elements of the field, 3 table 

look-ups and 1 modulo addition must be performed.  

The Reed-Solomon encoding and decoding functions used in this project are based on the 

source code from literature [10]. 

Because of the extensive number of calculations that need to be performed, the 

encoding/decoding software routines are very slow. The time needed to check a given 

memory region for errors (in the case when there are no errors) is comparable to the time 

needed to copy this memory block from the Flash. If errors are present and are corrected, 

then the execution time is much longer than the time needed for copying the data from 

Flash. 

Another major drawback of the RS codes, is that their software implementation uses 

several big arrays to hold some temporary data. In the case of a DSP running in a 

radioactive environment this is a very serious disadvantage. The RS code is supposed to be 

used for protection of a given memory region. If the RS code algorithm itself needs to use 

a large block of memory for its own data, then it becomes vulnerable to the radiation and 

cannot be used as a reliable method. The 2D parity method does not use memory for 

storing data at all and the FEC codes use only a few bytes of memory for additional data.  

To summarize, the Reed-Solomon codes, although very popular in telecommunication and 

in hardware implementations, are not an efficient method for software implementation to 

protect a DSP in a radioactive environment. Their main disadvantages are slow speed 

compared to the other methods, high usage of memory for temporary data, and large code 

size. However, the digital signal processors from the C6400 family have the Galois field 

arithmetic implemented in them. In these processors, just a single assembly instruction is 

needed to perform multiplication in GF(28). Therefore, software implementation of the 

Reed-Solomon codes on the C6400 DSPs can be much faster and efficient. Texas 

Instruments presents the RS codes implementation on C6400 processors in the application 

note [16].  
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4.5 Voting techniques 

4.5.1 Triple voting 
As it was described in section 2.3.5, triple voting can be implemented in 2 ways: 

comparing the 3 values bit-by-bit, or treating them as individual entities (for example: 

integers). Although the bit-by-bit approach is more effective, in all the programs in this 

project triple voting was implemented using the second approach. This is due to the fact, 

that this solution can give more information about the DSP behavior in the radioactive 

environment. Whenever the voting was actually used (one of the three compared values 

was different), a "Voting used" message was sent to the PC. The voting routine itself was 

not protected in any way. The code of the routine and amount of CPU cycles it used was 

significantly smaller than the resources used by the calculations. Therefore, probability that 

an error would occur during voting was negligible. However, if during the tests at DESY a 

need for protection of the voting routine had arisen; this could have been achieved by 

performing the voting twice. 

An example application that utilized triple voting was implemented. This application 

performs FFT filtering of a sound signal. The program and its performance in radioactive 

environment are described in section 5.3.1. 

Generally, implementation of triple voting is straightforward. The voting part of the 

program is very simple and fast. The main drawback of this method is that all the 

operations must be performed 3 times and this introduces a large load to the CPU. 

Therefore, this method can only be implemented in programs, where the calculation 

functions are very fast and it is possible to repeat them 3 times and still meet all the 

performance requirements. 

4.5.2 Parallel calculations 
In section 2.3.5 a different method of voting is described. In this approach, the calculations 

are performed only twice. If the two results are different, then the procedure is repeated. 
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Calculations Calculations

 

Fig.4.4 Parallel calculations diagram 
The architecture of the C6713 DSP allows performing the two calculations in parallel. This 

way, theoretically, the execution time of operations performed using this method should be 

comparable to the execution time of single calculations. In reality, situation is a bit 

different. When the DSP performs only 1 calculation operation at a time (for example 

calculates the convolution of a signal with a filter's unit impulse response) the optimized 

assembly code is written in a way to use all the DSP ALUs and resources to enhance the 

speed of calculations. When the calculations are performed twice in parallel, it is not 

possible to optimize the code to such a great extent. Therefore, in some cases, it can 

happen that performing the calculations twice, one after another may be faster than 

performing them at the same time (in parallel). More detailed analysis of this problem is 

presented in Chapter 6, where the CPU cycles needed by an example filtering function 

implemented using this method are presented. 

The part of the program that is the most vulnerable to the errors caused by radiation is the 

comparison of the two results, because this operation is done only once. However, the 

assembly instructions that perform the comparison of the two results take only 2 CPU 

cycles. Therefore, probability that an error corrupts this operation is very small. 

One very important disadvantage of this method is the fact, that writing the function to 

perform the same calculations in parallel requires the function to be written in assembly. 

Therefore, the time needed to write the function is much longer than in the case of writing 

the function using C language.  

Both results 
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An example program that uses this method of protection against calculation errors is 

presented in section 5.3.2. This program performs filtering of a sound signal by 

convolution in time-domain.  
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5. Experimental procedures carried out in DESY  

5.1 Overview 
The DSK6713 board was tested for radiation influence at the Deutsches Elektronen-

Synchrotron (DESY) centre in Hamburg, Germany in April 2005. The board was placed in 

the Linac II tunnel. Linac II is a linear accelerator, in which positrons are created. When 

the positrons leave the Linac II tunnel, they enter a PIA (Positron Intensity Accumulator) 

ring where they are bunched into packets. Afterwards they are sent to the DESY II 

accelerator. The DSK6713 board was placed approximately 3 m away from the electron-

to-positron converter, which is the main source of gamma radiation and neutrons in the 

Linac II tunnel. 

Before putting the DSK board into the accelerator, the system was tested in the laboratory 

in DESY. During these tests, an unexpected problem was found. The board would reset 

itself from time to time (approximately every 20-30 minutes). This problem did not exist 

when the system was tested in Łódź. After further investigation, it turned out that there was 

some kind of interference on the reset signal which was connected to the parallel port of 

the PC. After connecting the oscilloscope to the PC's parallel port it was clear that this 

interference is in the port itself. Figure 5.1 shows the signal shape on the oscilloscope, 

while a constant value of '1' is sent over the investigated port pin. 

 

Fig.5.1 Disturbance on the PC's parallel port 
The disturbance in the signal was very short (a few nanoseconds). However it was enough 

to reset the board. What was strange about this phenomenon is that the interference seemed 

to be caused by sudden movements of people around the PC. For example, every time 

when a person sitting near the PC would stand up, the signal was disturbed. Touching the 

PC, or even shaking it, did not trigger the signal distortion, while moving the chair which 

was nearby – did. The same disturbance was observed on two different PC computers. A 
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100nF capacitor was connected to the system to filter out the signal, but this solution did 

not solve the problem. Therefore, a decision was made to disconnect the reset signal. The 

PC software was changed in such a way, that instead of a reset, the board was turned off 

for 5 seconds and turned on again. 

After these minor changed, the board was placed in the Linac II tunnel. It was kept there 

for about a week. First, a few programs that tested the influence of radiation on the DSP 

system were run. Later, two example applications (protected by different software 

methods) were tested. 

5.2 Analysis of influence of radiation on the DSP 

5.2.1 EIA-485 transmission test 

Introduction 
The purpose of this test was to investigate the behaviour of the EIA-485 serial transmission 

in the radioactive environment. Reliability of the serial connection between the DSP and a 

PC was crucial, as all the information about the performance of the DSP under radiation is 

sent to the PC using this connection. The main idea behind this test is quite simple. The 

DSP awaits an incoming byte on the serial link and sends back the received byte to the PC 

as soon as it is received. The PC sends a byte to the DSP and listens on the serial port. If it 

receives the same byte it had previously sent, then it sends another byte and the loop 

continues. 

DSP part of the application 
At the beginning of the program the DSP reads the value of the PC’s parallel port bit2 

(DSP’s GPIO bit5). If the bit value is 0 then the whole DSP application code is kept in 

Flash and executed from there. If the bit is set to 1, the code is copied into RAM and 

executed from RAM. The main difference between these two modes of operation is that 

the code in Flash can achieve a maximum transmission speed of about 2000 bps, while the 

code executed from RAM is much faster and can easily work at a rate of 115200 bps. 

However, the code kept in RAM is not protected in any way, thus it may hang up if errors 

in RAM are caused by radiation. 

The whole application was written in assembler and consists mainly of the SoftUartInChar 

and SoftUartOutChar functions presented in Chapter 3. 
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PC part of the application 
The PC program enables the user to choose in which mode (slow – from Flash, or fast – 

from RAM) the DSP program will be launched. Then the user can initiate the serial 

connection by sending the 0x13 value needed by the SoftUartSpeedDetect function to 

calculate the connection speed. The program enables the user to send 1 byte of any value 

and checks whether the same value is sent back by the DSP. It can also work in a loop, 

where each time the sent value is increased by 1. All the encountered errors are displayed 

on the screen and can be logged to a file. 

Performance in the accelerator environment 
First, the test program was executed in slow-mode - that is a mode in which the whole code 

is kept in Flash and serial transmission speed is 2048 bps. The program was running for 

about 12.5 hours (from 6.04 20:52 to 7.04 9:25) and no errors were reported. Then the 

program was launched in the fast mode, where the DSP application code is placed in 

internal RAM of the DSP and transmission speed is 115000 bps. The program was running 

for a total of 6 hours (in the times: 9:38 - 13:35 and 17:38 - 19:25) and again no 

transmission errors were found. The time of this test was relatively short because the code 

of the DSP had to be placed in RAM to enable fast serial transmission and it was not 

protected in any way. Then the PC program was launched in a mode, where the PC just 

listens on the serial port, to see if the radiation induces any error bits in an idle EIA-485 

transmission line. Again, no errors were reported. 

To sum up, all the serial transmission tests lasted a total of 21.5 hours and during that time, 

not even a single bit error was found. Therefore a conclusion was made that the EIA-485 

transmission is reliable enough to be used in the next tests which focus on the influence of 

the radiation on the digital signal processor itself and its internal memory. It can also be 

concluded that the EIA-485 transmission can be used as a reliable medium in an 

accelerator environment in future projects. 
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5.2.2. Internal RAM test 

Introduction 
The purpose of this test was to check how radiation influences the internal memory of the 

DSP. The program simply scans the whole IRAM continuously to see if any changes are 

present.  

DSP part of the application 
The whole program was written in assemby and is contained in Flash. It does not use the 

IRAM or external SDRAM at all. All the necessary variables are kept in internal registers; 

therefore the whole IRAM can be used only for testing the influence of radiation. 

Additionally, important variables, such as the serial connection speed, are kept in 3 

registers and triple voting is used on them. The program first fills the whole 256 KB of 

IRAM with a test value of 0xFFFF0000. Then it scans the RAM and checks whether the 

read values are equal to the test value. After the whole memory is checked, which takes 

about 3.5s (because the code is kept in Flash), a watchdog signal is sent to the PC. If a 

value read from the memory is not equal to the test value, then immediately a message is 

sent to the PC. The message contains the address of the error, and a new value read at this 

address. The whole message is sent 3 times to ensure proper reception on the PC side. The 

program flow diagram is depicted in Figure 5.2. 

PC part of the application 
The PC program simply starts the DSP, initiates the serial transmission and listens on the 

serial port for incoming messages. There is a watchdog timer which resets the DSK board 

if no signal is received within 4 seconds. Triple voting is carried out on all the received 

messages and the outcome is displayed on the screen and can be logged into a file. 
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ADDR=0x0
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Fig.5.2 DSP program flow diagram 

Performance in the radioactive environment 
The program which tested the influence of radiation on the internal RAM of the DSP was 

launched 2 times. The first time, test lasted for 42 hours and 25 minutes (the test started on 

7-04 at 19:27 and ended on 9-04 at 13:52). The observed errors (bit-flips in memory) are 

listed in Table 5.1. 

Table 5.1 Observed memory bit-flips 

Date & time of error Bits flipped Memory address 

7-04 19:45 1 0x00013BD0 

8-04 9:07 1 0x0000B424 

8-04 17:10 1 0x000077A0 

8-04 17:23 1 0x00034410 

8-04 17:41 1 0x00032FA8 

8-04 18:52 1 0x00029C6C 

9-04 3:49 1 0x0000B480 

9-04 4:55 1 0x00039ED0 

ADDR=ADDR+1

ADDR=0x40000 

Send watchdog signal

Send message to the PC 
with ADDR and VALUE VALUE = TEST_VALUE

No 

Yes 

No 

Yes 
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There were two very short breaks in the test (of approx. 20 minutes of total length) because 

some network settings of the PC had to be changed and this involved restarting the 

Windows operating system.  

The easiest way to quantify Linac II activity during the test is to measure the PIA current, 

which corresponds to the number of electrons hitting the electron-to-positron converter 

[17]. A graph showing the PIA current during the test and the moments of bit-flips marked 

in pink is presented in Fig.5.3. 
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Fig.5.3 Linac II activity during the test (bit-flips marked in pink) 
The second test was performed a few days later, when the activity of the accelerator was 

much higher. The test lasted for 10 hours (from 14.04 23:14 to 15:04 9:14). The following 

is a graph showing the Linac II activity and a table with all the reported memory bit-flips: 
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Fig.5.4 Linac II activity during the test (bit-flips marked in pink) 
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Table 5.2 Observed memory bit-flips 

Date & time of error Bits flipped Memory address 
14-04 23:16:49 1 0x0003CB68 

14-04 23:26:48 1 0x0001F9D4 

14-04 23:43:23 1 0x00006E9C 

15-04 00:35:35 1 0x0003E058 

15-04 01:23:56 1 0x000083B8 

15-04 01:23:57 1 0x000084B8 
15-04 02:07:39 1 0x0003F5D8 

15-04 02:15:53 1 0x0000F3FC 

15-04 03:22:15 1 0x000234B0 

15-04 04:00:14 1 0x000306B8 

15-04 04:05:26 1 0x000264FC 

15-04 04:40:20 1 0x0003204C 

15-04 04:50:48 1 0x00016E84 

15-04 05:17:52 1 0x0001F8C8 

15-04 07:18:36 1 0x00009424 

 
It can be easily noticed that during the second test PIA current was relatively high most of 

the time. Therefore radiation was much higher and the number of bit-flips is much bigger 

than in the first test. There were 15 errors reported in 10 hours of testing compared to only 

8 errors during the 42 hours of the first test. The most important observation that can be 

made is that all the errors involved changing only 1 bit at a time. When the radiation was 

high, errors were reported every couple of minutes. There was one situation, where two 

errors occurred within one memory scanning loop which lasts for about 4 seconds. The two 

errors were present at memory locations separated by 0x100 (256) bytes. If Hamming or 

2D parity memory protection methods had been used, then the two bit-flips would have 

been placed in two different memory blocks and each of them could have been corrected 

by the algorithms. Generally, during both tests, there were no burst errors reported. Each 

time a bit-flip occurred, its memory address was uncorrelated with addresses of previous 

bit-flips. 
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5.2.3. DSP ALU test 

Introduction 
The purpose of this test was to check how radiation influences the DSP itself and if it 

causes any wrong results in the calculations made by the ALU modules.  

DSP part of the application 
The program for the DSP was written in assembly and placed in Flash. The whole program 

is just one loop, where the DSP performs some calculations. The C6713 DSP has all its 

modules duplicated; therefore it can perform many arithmetic operations in parallel. In this 

test, the DSP makes two parallel calculations on two different sets of internal registers. 

The calculations start with initial value of 0x1200 from which 0x0C00 is subtracted. Then 

the result is multiplied by 0x03 which should give a final result of 0x1200 (the same as 

initial value). Then the calculations are repeated. Both, the subtraction and multiplication 

are performed twice in parallel by two independent processor modules. If any ot the two 

results is not equal to 0x1200, a message is sent to the PC. The calculation loop is repeated 

0xC000 times and afterwards the results (even if they are correct) are sent to the PC and 

the loop is started again. The correct results after the loop are used as a watchdog signal.  

Initialize loop 
A3 = 0x1200 B3 =0x1200

DSP 

Side A Side B 
A3 = A3 – 0x0C00 B3 = B3 – 0x0C00 

  
A3 = A3*0x03 B3 = B3*0x03

 

Fig.5.5 DSP program flow diagram 

A3 = 0x1200 and B3 = 0x1200 Send results 
to the PC 

No

Yes
End of the loop? 

Yes
No

 62



Marcin Wojtczak 
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment 

The following is the most important part of the source code: 

start:      ; A4 = serial_speed 
  MV  A4,A8 
||  MV  A4,A10 
||  MV  A4,B10  ; A8 = A10 = B10 = serial_speed 
  MVKL  LOOP_COUNT,B2 ; loop counter 
  MVKH  LOOP_COUNT,B2 ; loop counter 
     
loop_start:     ; set initial values 
  MVK  AA,A3  ; A3 = initial value   
||  MVK  AA,B3  ; B3 = initial value 
  MVK  BB,A5  ; A5 = value to be subtracted 
||  MVK  BB,B5  ; B5 = value to be subtracted 
   MVK  CC,A4  ; A4 = multiplication coeff 
||  MVK  CC,B4  ; B4 = multiplication coeff 
   
main_loop: 
 [B2]  B   main_loop 
|| [B2]  SUB  A3,A5,A3 ; side "A" subtract 
|| [B2]  SUB  B3,B5,B3 ; side "B" subtract 
 [B2]  MPY  A4,A3,A3 ; side "A" multiply 
|| [B2]  MPY  B4,B3,B3 ; side "B" multiply 
 [B2]  MVK  AA,A1  ; load correct values 
|| [B2]  MVK  AA,B1 
 [B2]  XOR  A3,A1,A1 ; check A-side result 
|| [B2]  XOR  B3,B1,B1 ; check B-side result 
||   MVK  BB,A5  ; A5 = value to be subtracted 
||  MVK  BB,B5  ; B5 = value to be subtracted 
 [B2]  OR  A1,B1,B0 ; B0>0 if any of the two results is wrong 
||   MVK  CC,A4  ; A4 = multiplication coeff 
||  MVK  CC,B4  ; B4 = multiplication coeff 
 [B0]  MVK  0x0,B2  ; if B0>0 stop loop  
|| [!B0] SUB   B2,1,B2  ; if B0==0 decrease loop counter  
    
  MV  A3,B11  ; b11 = A-side result 
||  MV  B3,B12  ; b12 = B-side result    
   
send_msg:  
  ; here is the code that sends the message to the PC 
  ; and then jumps to loop_start 

PC part of the application 
The PC program starts the DSP, initiates the serial connection and listens on the serial port 

for the calculation results. It also activates a watchdog timer that resets the board if no 

messages are received for 4s. The program enables the user to input an expected results 

value (default value = 0x1200) and displays on the screen only the messages that contain 

results not equal to the expected one. 

Performance in the radioactive environment 
The test program was running for a total of 36 hours (one period of about 10h and later for 

26h). Unfortunately, the Linac II activity was rather small during the tests. During that 

time all the calculation results were correct. There was no error in the calculations made by 

the DSP. However, there were two occasions when the watchdog timer on the PC expired 

and the DSK board was reset. This means that radiation has hanged the DSP or influenced 

it in such a way, that it stopped running and did not send any message to the PC. The 
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graphs showing PIA current in the tunnel with the moments of watchdog reset marked in 

pink are presented in the following figure: 
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Fig.5.6 Linac II activity during the test (watchdog resets marked in pink) 
The most interesting thing about these graphs is that both times when the DSP hanged and 

the watchdog reset had to be used occurred when PIA current was almost 0. This means 

that radiation can be quite high and have important influence on the DSP also when the 

PIA current is very low. 

5.3 Example applications protected against radiation 

5.3.1. FFT filtering of a sound signal 

Introduction 
In this test an example application program was loaded into the DSP’s Flash memory and 

executed. The program performs the FFT transform of an 8kHz input sound signal, filters it 

(using complex multiplication in the frequency domain), then calculates inverse FFT and 

outputs the result to the audio codec. 

DSP program 
The program is quite big and complicated. It uses EDMA and “ping-pong” buffering to 

increase its performance. It also uses the TI’s operating system called DSP/BIOS. Many of 

the DSP/BIOS modules do not work correctly when they are placed in Flash. Therefore all 

the DSP/BIOS code is placed in RAM along with the chip support library (csl6713.lib) and 

run-time support library (rts6700.lib). Of course, the most important and time-critical parts 

of the program (e.g. FFT calculation, filtering) are also placed in RAM. The total amount 

 64



Marcin Wojtczak 
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment 

of code placed in RAM is 41 KB. All this code is protected using the 2-dimensional parity 

method. Each time, when an interrupt is triggered, the code is checked for errors before the 

interrupt routine is executed. If more errors are detected than can be corrected, then the 

code is copied from Flash to RAM again. After the memory check, the appropriate 

interrupt routine is executed. The 2D parity function that performs the memory check is 

also placed in RAM, because of the need for fast execution. Therefore, it is vulnerable to 

the effects of radiation. However, the code of the function is very small. It is less then 300 

bytes, while the Hamming code function's code is more than 1 KB. As a result, only 300 

bytes of the RAM memory are actually vulnerable to radiation. If the program were not 

protected by the 2D parity method, then the whole 41 KB of application code stored in 

RAM would be vulnerable. So, usage of the 2D parity method decreases the probability 

that bit-flips in internal memory corrupt the application code by about 41000/300=136.67 

times. 

All the calculations performed in the program are repeated 3 times and voting is used to 

determine the final result. Also, all the buffers, filter coefficients and other tables (e.g. 

coefficients used in FFT calculation) are protected using the Hamming code. Whenever 

errors are detected or corrected, or voting needs to be used, an appropriate message is sent 

to the PC. A diagram showing the general concept of how the program processes the input 

signal is presented on Figure 5.7: 
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Input signal

Buffer

FFT FFT FFT 

 

Fig.5.7 DSP program flow diagram 

PC program 
The PC program is just the one explained in the chapter about the DSP-PC communication 

system. It listens on the serial port for messages from the DSP. There is a watchdog timer, 

which resets the DSK board if no signal is received in a specified time.  
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Performance in the radioactive environment 
First, the program was launched on 11-04 at 16:55. At that time the watchdog would reset 

the board almost all the time (every 2-3 minutes). Changing the watchdog timer value from 

the default 1.5s to 2s fixed the problem. It is hard to find a reasonable explanation for this, 

because the DSP was programmed to send the watchdog signal every second. However, 

after the change, watchdog stopped resetting the board and the program was running 

smoothly. The total time of execution of the program was about 48 hours. During that 

period the following events happened: 

• 12.04 at 22:20 - over 280 messages “voting used” were received and this was 

immediately followed by a watchdog reset. This could mean that the radiation has 

corrupted the DSP operation in such a big way that it achieved a large number of 

incorrect calculation results (which were fixed by triple voting), and it also stopped 

sending the watchdog signal, which caused the watchdog reset. However, the next 

day an error was found in the PC software, which could have caused the watchdog 

reset even if the watchdog signal was send by the DSP, if a large number of other 

messages were sent from the DSP at the same time when the watchdog signal 

should arrive. Therefore it is impossible to decide what really happened 12.04 at 

22:20. It could have been one of the two possibilities: either the radiation 

influenced the DSP in such a way that it did not send the watchdog signal, or it only 

caused a large number of incorrect results that were fixed by triple voting and the 

reset of the DSP was caused by an error in PC software.  

• 2 times “voting used” message was received (on 13.04 at 1:02 and at 8:19) – this 

means that one of the calculations produced wrong result, but triple voting 

managed to correct it and produced the right result. 

• 4 times single bit error was corrected by the 2-dimensional parity algorithm in the 

code of the program (it happened on 13.04 at 1:58, 6:02, 9:30 and 17:20). 

A graph showing the activity of the accelerator by means of the PIA current is shown on 

Figure 5.8 (the radiation induced events are marked in pink): 
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Fig.5.8 Linac II activity during the test (SEUs marked in pink) 
To sum up, during 48 hours of program execution there were 6 times when the 

implemented software radiation protection methods helped in keeping the DSP properly 

running and producing correct results. Four of them involved correction of the bits in 

memory that were flipped by radiation and two times triple voting helped in obtaining 

correct results. However, there was one time, when the software did not manage to keep 

the DSP running properly despite the effects of radiation and the board was reset by the 

watchdog. All of the events happened in the periods were the PIA current was above 0mA. 

In the times when the accelerator activity was much smaller, no events were reported. 

5.3.2. Convolution filter (without DSP/BIOS) 

Introduction 
In this test the example application that was running on the DSP was a simple filter. The 

program carried out the filtering by convolution calculation. The main difference compared 

to the previous program is that this time DSP/BIOS was not used and therefore the 

program code was considerably smaller. 

DSP program 
The main part of the program is the routine that calculates the convolution of the input 

signal with the filter’s unit impulse response. This function is written in assembly in such a 

way, that all the calculations are carried out twice in parallel. Whenever the two results are 

not equal to each other, the calculations are repeated and an appropriate message is sent to 

the PC. The block diagram is shown on Figure 5.9. Additionally, in the convolution 

calculation function, all important variables, such as pointers to filter coefficients and 
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buffers, are kept in registers with triple redundancy. During each loop iteration triple 

voting is performed on them. This solution gives even more protection, as the function can 

work correctly even if radiation induces changes in the internal registers. The main 

drawback of this approach is the loss in speed. The function execution time is higher than 

execution time of a simple unprotected convolution calculation function repeated 2 times, 

and voting performed afterwards. 

In this program, again the whole code that is placed in RAM is checked for errors before 

being executed. The error checking is done using the 2-dimensional parity algorithm which 

is executed before each interrupt service routine. However, because there is no DSP/BIOS, 

the size of the code in RAM that needs to be protected is only 6.5 KB. The small size of 

code is also caused by the fact that the algorithm used for filtering is much simpler than 

FFT. The most important problem with DSP/BIOS was that this system uses some areas of 

RAM for its own data and this was not protected in any way in the previous program. This 

time, when DSP/BIOS is not present, everything is under control and there are no areas of 

data or code that are not protected. Additionally, all the necessary data tables (e.g. filter 

coefficients) are protected by the Hamming code. 
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Fig.5.9 DSP program flow diagram 

PC program 
The PC program is the same as the one used in previous test. 

Performance in the radioactive environment 
The program was tested in the Linac II tunnel for about 29h.30min (from 17:42 13.04 to 

23:16 14.04). During this time the activity of the accelerator was very high. A total of 4 

events caused by radiation have been observed. Fig.5.10 shows the values of PIA current 

in the Linac II tunnel during the test with the events triggered by radiation shown by pink 

markers. 
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Fig.5.10 Linac II activity during the test (SEUs marked in pink) 
Here are more details about the events caused by radiation: 

• 13.04 at 21:30 - one bit error was corrected by the Hamming code. The error 

must have occurred somewhere in the data section of the program, as only the 

data was protected by Hamming code.  

• 13.04 at 21:48 - another error in memory was corrected. This time 1 bit-flip 

occurred in the code of the program and was corrected by the 2D parity 

algorithm.  

• 14.04 at 12:35 - 1 bit error was corrected by the 2D parity method 

• 14.04 at 21:57 - the PC received 1 byte of value 0x0 over the serial port. 

However, this value is not equal to any of the valid message codes. One second 

later, the watchdog timer expired and the DSK board was reset. This is clearly a 

situation, where radiation stopped the DSP from proper operation and the 

software protection methods failed. A 0x0 received on the serial port means that 

the serial port output of the DSP malfunctioned, because normally, in idle state, 

the serial port output is set to logical ‘1’. An example situation when the serial 

port output is equal to ‘0’ is when the DSP is turned off, or when it is just after 

reset. Probably, radiation caused the DSP to stop or even reset itself and this 

switched the serial port output to ‘0’ and prevented the watchdog signal from 

being sent.  

The most important fact is that during the whole test there was no situation when the two 

parallel convolution calculations would produce different results. Also, the triple voting on 

 71



Marcin Wojtczak 
Software Implementation of Mechanisms Improving the Reliability of DSP Systems in the Radioactive Environment 

internal registers of the processor did not report any changes in the values stored in 

registers. Therefore, the method of performing parallel calculations and using triple 

modular redundancy to protect the internal register values does not increase the reliability 

of a DSP.  
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6. Project results 

6.1 Memory protection 
In general, the tests performed at DESY showed that radiation has an important influence 

on the DSP and its internal RAM memory. The most frequently observed type of single 

upset event caused by radiation was a change in the internal memory of the processor. In 

all the tests only 1 bit errors were found in RAM. This means that to protect the system’s 

memory, 1 error correcting codes are sufficient.  

In this master's project two main memory protection methods have been implemented. 

First one is the 2D parity control which can correct 1 bit error in every 128 bytes. The 

second one is the (39,32) extended Hamming code which can correct up to 32 1-bit errors 

in a 128 bytes block if every error is introduced in a different “bit column”. Therefore both 

methods are sufficient to deal with the effects of radiation on the DSP’s memory. 

However, it is important to remember, that memory protection methods can be useful only 

if the program memory is scanned for errors each time before execution of a given code. 

For example, if some interrupt service routine (ISR) needs to be protected then the memory 

containing the ISR code has to be scanned each time the interrupt is triggered. This 

produces relatively high additional CPU load. Both memory protection methods 

implemented in this project require about 800 CPU cycles to scan a 1 KB memory region 

for errors. If a faster routine is needed, then simple parity control can be used. This method 

requires only about 280 CPU cycles to scan a 1 KB memory block, however it cannot 

correct errors. Therefore, when an error is detected the code needs to be copied from some 

other radiation immune source, for example the Flash memory. However, copying the code 

from Flash is dependent on the Flash memory speed and can be very time-consuming. On 

the other hand, the process of correcting 1 bit error using the 2D parity control method 

requires only about 20 extra CPU cycles. In the case of the Hamming code this process is a 

few times longer and depends on the location of the error.  

Another important factor which has to be taken into account is the fact that there is 

a probability that an error occurs in the memory checking function itself. Therefore the 

memory scanning function should also be checked for errors or its code copied from Flash 

prior to its execution. Because of this fact the 2D parity control function seems to be a 

much better choice than the Hamming function, because its code is much shorter. The 2D 

parity checking function code size is about 280 bytes, while the Hamming memory 
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checking function code size is over 1 KB. Therefore checking the code for errors or 

copying it from Flash is about 4 times faster in the case of 2D parity. If the function is not 

protected and not copied from Flash, the probability that an error occurs within its code is 

also 4 times smaller. Comparison of the code size and execution speed of all memory 

protection methods used in the test is presented in Table 6.1. The presented CPU cycles 

needed to scan 1 KB memory block are given for the case, when no errors are present. 

Table 6.1 Comparison of memory protection methods 

Method Code size 
CPU cycles 

needed to scan 
1 KB of memory 

Simple parity control 72 bytes 288 

2D parity control 280 bytes 771 

(38,32) Hamming code 934 bytes 750 

(38,32) extended Hamming code 1160 bytes 796 

Summarizing the presented data, it can be concluded that both methods implemented (2D 

parity and Hamming codes) are sufficient to provide radiation immunity. However the 2D 

parity control method is best suitable for protection of code which is frequently executed 

and its execution time is crucial for the system, for example the interrupt service routines. 

This is due to the small size of the 2D parity control function code and its very quick 

process of error correction. Methods based on the Hamming code can be used in all other 

cases and for protection of data due to their higher error correcting capabilities with 

approximately the same speed of execution as the 2D parity control. 

6.2 Protection against errors in calculations 
Another type of SEU’s caused by radiation is when the processor itself is influenced. As an 

effect of this, some calculations and other DSP operations yield incorrect results. This can 

be fixed by repetition of the calculations and using voting methods to choose the correct 

result. In the test of the FFT filtering program 2 times voting has prevented the DSP from 

obtaining incorrect result. However, the other method which was implemented, the method 

involving parallel calculations in two independent ALU’s of the DSP did not prove to be 

useful. There was no situation were the two parallel calculations would give different 

results. Of course, both methods introduce additional load to the processor and require 
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additional CPU power to provide radiation immunity. The case of triple voting is very 

simple. Repetition of calculations 3 times means that the DSP can perform 3 times smaller 

number of operations than in the case when no protection is implemented. The additional 

delay introduced by voting is very small and negligible compared to the calculations (e.g. 

FFT). Also the code of the voting routine is very short. Therefore the probability that an 

error occurs during voting is much smaller than the probability that it occurs during the 

process of calculations. In the case of parallel calculations, the analysis is much more 

complicated. At first, one can think that performing calculations 2 times in parallel should 

take the same amount of time as normal process of calculations. However, this is not 

exactly true. When operations are not performed twice in parallel, all the CPU resources 

can be used for optimization of the calculation process and therefore the result may be 

obtained much faster. The exact additional CPU power needed by this radiation protection 

method is difficult to estimate and is different for every type of calculations algorithm. 

This method also needs additional CPU power to protect the values of the internal 

registers, for example by triple voting. This protection may be crucial for some types of 

algorithms. For example, if an error is introduced in the register holding the data address 

on the "A" side of the DSP, then the data loaded for calculations will be incorrect and 

therefore the "A" and "B" side results will be different. If the calculations are repeated 

without correcting the error in the register, then the two results will be always be different 

and the program will enter an infinite loop. To avoid such situations, the register value 

needs to be protected from errors. Another approach is to use the same register for data 

address for both calculations. This will avoid infinite loop possibility, but will not ensure 

radiation immunity, as the error introduced in the register will influence the results of 

calculations but will be undetected. In this project, the parallel calculations method was 

used for protection of convolution calculation. Table 6.2 presents the amount of CPU 

cycles needed by the normal (optimized) convolution routine and "twice in parallel" 

calculation function with and without triple voting on internal registers. 
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Table 6.2 CPU cycles needed by parallel calculations method 

Method of convolution calculation CPU cycles 

normal C function, optimized by compiler 464 

"twice in parallel" without additional register protection 765 

"twice in parallel" with triple voting on all internal registers 2403 

It can be seen from the Table 6.2 that the parallel calculation method is much slower than 

the normal calculation process; however it is not two times slower. Therefore, this solution 

is still faster then the case where the calculations would be simply repeated and then the 

two results compared. Another important fact is that if the calculations were just repeated 

and later compared, then additional memory (vulnerable to SEUs) would be needed for 

storing the results of both calculations. This memory is not needed if the parallel 

calculations approach is used. However, when additional protection of registers is used, the 

total execution time increases dramatically. In the case of the function used in this project, 

the number CPU cycles needed is 6 times bigger than in the case of no protection. 

However, this is in the extreme case when all internal registers are protected. Usually, the 

optimum solution requires protection of only some limited number of registers and then the 

number of CPU cycles needed is smaller. Another drawback of the parallel calculations 

method is the fact that the functions must be written in assembly and therefore the software 

development time is much longer. However, the most important disadvantage of this 

method is the fact that during the tests at DESY there was no occasion when the two 

parallel results would be different, or the internal register value changed. Therefore, the 

method is ineffective in real radiation environment. 

6.3 Serial transmission 
One very important observation made during the tests is that the EIA 485 serial 

transmission can be used as a reliable medium in a radioactive environment. During all the 

tests, which lasted over a week, no error in the serial transmission has been reported. This 

means that the EIA 485 transceivers are immune to radiation and this standard may be used 

in future, further research. The standard is well known for its interference immunity. This 

is mainly due to the fact that the signals are transmitted as voltage difference between two 

transmission wires rather than a single voltage value with respect to a common ground. 

Therefore, when some interference is introduced, it affects both wires in almost the same 
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manner so the voltage difference between the wires is not changed and the signal can be 

read correctly. This feature is important also in the accelerator tunnel, because there is a 

large number of different kinds of electronic equipment placed in the tunnel and all these 

devices can interfere with the transmission. 
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7. Conclusions 
The main goal of this project was to analyze the influence of radiation (mainly Gamma 

radiation and neutrons) on a DSP system and investigate if the reliability of the system can 

be increased by means of purely software methods. The processor used in the experiments 

was a C6713 DSP from Texas Instruments. 

For the purposes of the research a communication system between the DSP placed in the 

radioactive environment (accelerator tunnel) and a PC located outside the radioactive area 

has been designed and fabricated. The system has been used in all the tests that have been 

conducted in DESY in April 2005. 

In this project numerous software methods have been implemented in C and assembly 

language. The tests performed in DESY confirmed that radiation causes single effect 

upsets (SEU) in the digital signal processor. Most of the SEUs were connected with 

changes in the internal memory of the processor. The most important observation was that 

all of these changes are only 1 bit memory bit-flips. The main two methods of memory 

protection implemented in this project (2D parity control and Hamming codes) are able to 

correct all such errors. Another type of SEUs observed was a change of the DSP operation 

causing for example incorrect calculation results. This kind of errors have also been 

detected and corrected by triple voting. Another implemented method that was suppose to 

correct such errors was based on performing all DSP operations twice in parallel (utilizing 

the DSP modular architecture). However, this method did not produce satisfactory results. 

There was no situation during the tests, when the two parallel results would be different, 

therefore the method did not have any influence on improving reliability of the DSP. 

Another important aspect of the research was that the EIA-485 serial transmission standard 

used in the communication system proved to be reliable and immune to radiation. During 

over 1 week of testing there have been no errors in the serial transmission reported. This 

gives optimistic perspective for any future research. 

However, there have been a few occasions (a total of 4 during all the tests) when the 

implemented methods have not managed to detect and correct errors caused by radiation. 

Probably these situations occurred when the radiation particles hit the DSP core and 

stopped its normal operation. In these cases the DSP no longer executed its code and 
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therefore all the software methods became useless. In such cases watchdog reset was 

performed. 

Overall, this project proved that the reliability of a DSP system in a radioactive 

environment can be improved significantly by means of pure software methods. During the 

tests at DESY there were numerous occasions when the implemented methods detected 

and corrected errors induced by radiation. However, the improved reliability comes at a 

cost of performing additional operations like memory checking, repeating of calculations 

and voting. Therefore, during development of an application that will be running in a 

radioactive environment, detailed calculations must be performed to estimate how much 

processor power will be available for the implementation of the radiation protection. If 

only a small amount of CPU cycles are available, then only the simplest methods (e.g. 

simple parity control) can be used and errors can be only detected. If more CPU resources 

can be used for radiation protection, then more sophisticated methods (e.g. 2D parity 

control, Hamming codes, triple voting) can be used and errors caused by radiation will be 

corrected. However, all the software methods have a limit of their performance. When 

radiation particle hits the core of the CPU it can cause the processor to stop executing its 

software and then only an external method (e.g. a watchdog) or a hardware protection 

method can help. 
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Appendix A: Schematic of the DSP module 
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Appendix B: Schematic of the PC module 
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Appendix C: Main part of the DSP bootloader code 
 
#define CHIP_6713 1 
 
#include <csl.h> 
#include <csl_gpio.h> 
 
#include "dsk6713.h" 
#include "dsk6713_flash.h" 
 
#include "crc32.h" 
 
// ########  macro definitions  ############### 
#define BUFFER_SIZE 2048 
#define ACK 0xF0 
#define VOTE_FAILED 0x01 
#define FLASH_FAILED 0x0F 
 
#define COPY_CODE_FROM_FLASH \ 
 memcpy( (void *)&run_fast, (void *)&load_fast, (int)&size_fast ) 
 
#define VOTE(a,b,c) \ 
 if (!( a ^ b )) c = a;\ 
      else if (!( b ^ c )) a = b;\ 
          else if (!( a ^ c )) b = c;\ 
              else failure( VOTE_FAILED ); 
 
#pragma CODE_SECTION (ReadBlock,"fast"); // put func.ReadBlock into "fast" section 
 
char buffer[BUFFER_SIZE]; // data buffer 
unsigned int serial_speed[3]; // serial transmission speed 
 
GPIO_Handle hGpio; // for GPIO (PC-parallel connection) 
 
extern int load_fast; // load address of "fast" section 
extern int run_fast; // run address of "fast" section 
extern int size_fast; // size of "fast" section 
 
unsigned int crc32_received,crc32_temp; 
 
volatile unsigned int *LED_ptr = (volatile unsigned int*)(0x90080000); // on-board LEDs 
 
// #######################  functions   ########################### 
 
void send_msg(char val) 
{ 
SoftUartOutchar( serial_speed, val ); // send the message 3 times 
SoftUartOutchar( serial_speed, val ); 
SoftUartOutchar( serial_speed, val ); 
} 
 
void ReadBlock(void) // function reads a block of data & its crc32 through serial port 
{ 
int i; 
char *ptr; 
 
// read the block of data 
i = BUFFER_SIZE; 
ptr = buffer; 
while ( i-- )  
 *ptr++ = SoftUartInchar( serial_speed[0] ); 
  
// read crc32 of the block 
i = 4; 
ptr = (char *)&crc32_received; 
while ( i-- ) 
 *ptr++ = SoftUartInchar( serial_speed[0] ); 
 
} 
void failure(char val)  // function is called when triple voting or flash crc32 fail 
{ 
send_msg( val ); 
while(1); 
} 
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// #################  MAIN  ###################### 
void main (void) 
{ 
unsigned int flash_dest_addr[3]; 
 
// GPIO configuration 
GPIO_Config   MyConfig = {    
   0x00000000,  // gpgc 
       0x000000F0,  // gpen pins 4-7 are set to read mode 
         0x00000000,  // gdir     
         0x00000000,  // gpval    
         0x00000000,  // gphm     
         0x00000000,  // gplm      
         0x00000000   // gppol 
         }; 
          
hGpio = GPIO_open(GPIO_DEV0,GPIO_OPEN_RESET); 
GPIO_config(hGpio,&MyConfig); 
  
/* Initialize the board support library */ 
DSK6713_init(); 
 
*LED_ptr = 0x1; 
DSK6713_rset(DSK6713_MISC, 0x1); // switch McBSP0 to peripheral expansion connector 
 
// copy the "fast" functions from flash to internal RAM 
COPY_CODE_FROM_FLASH; 
 
serial_speed[0] = SoftUartSpeedDetect(); // detect the serial transmission speed 
serial_speed[2] = serial_speed[1] = serial_speed[0]; 
send_msg( ACK );  // send ACK 
 
*LED_ptr = 0x9; 
// erase the flash and set the start address of flash to be written 
flash_dest_addr[2] = DSK6713_FLASH_BASE+0x8000; 
flash_dest_addr[0] = flash_dest_addr[1] = flash_dest_addr[2]; // used for triple voting 
DSK6713_FLASH_erase(flash_dest_addr[0], DSK6713_FLASH_PAGESIZE*7); 
*LED_ptr = 0x1; 
 
send_msg( ACK ); // inform about flash erased 
 
while (1) { 
 // read block of data 
 if ( !((GPIO_read (hGpio,0x00F0) >> 4) & 0x01) ) break; //check if GPIO bit 4 is set 
 
 COPY_CODE_FROM_FLASH; 
 *LED_ptr = 0x03; 
 VOTE(serial_speed[0],serial_speed[1],serial_speed[2]); // voting on serial_speed 
 ReadBlock(); 
  
 // calculate crc32 
 crc32_temp = crc32_calc( buffer, BUFFER_SIZE ); 
  
 if ( crc32_temp == crc32_received ) { // if ok then write to the flash 
  *LED_ptr = 0x5; 
  // voting on flash_dest_addr 
  VOTE(flash_dest_addr[0],flash_dest_addr[1],flash_dest_addr[2]); 
   
  DSK6713_FLASH_write((Uint32)buffer, flash_dest_addr[0], BUFFER_SIZE); 
  crc32_temp = crc32_calc( (char *)flash_dest_addr[0], BUFFER_SIZE ); 
  if ( crc32_temp != crc32_received )   
   failure( FLASH_FAILED ); 
    
  send_msg( ACK ); // send acknowledgement 
   
  flash_dest_addr[0] += BUFFER_SIZE; 
  flash_dest_addr[2] = flash_dest_addr[1] = flash_dest_addr[0]; 
  } 
 } 
 
GPIO_close(hGpio);   // the end 
*LED_ptr = 0xf;   // light up all the diodes 
while (1) ;  // infinite loop 
} 
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Appendix D: Hamming code function in assembly 
This function detects and corrects errors in a memory block. The argument of the function 

is a pointer to a structure Thamm that describes the protected memory block. 

Thamm declaration in C: 

typedef struct { 
int *data; 
int *parity_bits; 
int no_of_blocks; 
} Thamm; 
 

Function code in assembly: 

 
N  .equ  38 
K  .equ 32 
 
 
  .sect "fast" 
    
COSET:  .byte 48, 24, 12, 6, 3, 40, 20, 10 
  .byte  5, 36, 18, 9, 34, 17, 33, 56 
  .byte 28, 14, 7, 52, 26, 13, 44, 22 
  .byte 11, 60, 30, 15, 42, 21, 45, 51 
  .byte  1, 2, 4, 8, 16, 32    
    
_hamm_check_asm: 
  stw   a10, *b15-- ; push a10 to stack 
  ldw  *a4++,a0 ; a0 = pointer to data 
  ldw  *a4++,a5 ; a5 = pointer to parity bits 
  ldw  *a4,a1  ; a1 = no_of_blocks 
  mvk  64,b4 
||  mvk  0x0,a3  ; a3 = total errors    
  mvk  0x0,a2 
  add  b4,a0,b0 ; a0 -> data[0], b0 -> data[16]  
    
  add  12,a5,b5 ; a5 -> parity[0], b5 -> parity[3] 
 [!a1]  b  end   ; if (no_of_blocks == 0) return 0 
     
loop:     
  ;load parity bit values    
  mv  a0,a6  ; a6 -> data[0] 
||  mv  a5,b6  ; b6 -> parity[0] 
  ldw  *a5++,a7 ; a7 = temp_S[0] 
||  ldw  *b5++,b7 ; b7 = temp_S[3] 
  ldw  *a5++,a8 ; a8 = temp_S[1] 
||  ldw  *b5++,b8 ; b8 = temp_S[4] 
  ldw  *a5++,a9 ; a9 = temp_S[2] 
||  ldw  *b5++,b9 ; b9 = temp_S[5] 
  ldw  *b5++,a10 ; a10 = temp_S[6] - additional parity 
  nop 
  xor  a7,b7,b4 
  xor  a8,b8,a4 
  xor  a4,b4,b4 
||  xor  a9,b9,a4 
  xor  a4,b4,b4 
  xor  b4,a10,a10 
       
  ldw  *a0++,a4 ; load data[0] 
||  ldw  *b0++,b4 ; load data[16] 
  nop  3 
  ldw  *a0++,a4 ; load data[1] 
||  ldw  *b0++,b4 ; load data[17] 
  ; a4 = data[0], b4 = data[16] 
  xor  a4,b8,b8 
||  xor  b4,a9,a9 
||  xor  a4,a10,a10 
  xor  a4,b9,b9 
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||  xor  b4,b7,b7 
||  xor  b4,a10,a10 
  xor  b4,b8,b8 
  ldw  *a0++,a4 ; load data[2] 
||  ldw  *b0++,b4 ; load data[18] 
  ; a4 = data[1], b4 = data[17] 
  xor  b4,a8,a8 
||  xor  a4,b7,b7 
||  xor  a4,a10,a10 
  xor  b4,a9,a9 
||  xor  a4,b8,b8 
||  xor  b4,a10,a10 
  xor  b4,b7,b7 
  ldw  *a0++,a4 ; load data[3] 
||  ldw  *b0++,b4 ; load data[19] 
  ; a4 = data[2], b4 = data[18] 
  xor  b4,a7,a7 
||  xor  a4,a9,a9 
  xor  b4,a8,a8 
||  xor  a4,b7,b7 
||  xor  b4,a10,a10 
  xor  b4,a9,a9 
||  xor  a4,a10,a10 
  ldw  *a0++,a4 ; load data[4] 
||  ldw  *b0++,b4 ; load data[20] 
  ; a4 = data[3], b4 = data[19] 
  xor  a4,a8,a8 
||  xor  b4,b8,b8 
||  xor  a4,a10,a10 
  xor  a4,a9,a9 
||  xor  b4,b9,b9 
||  xor  b4,a10,a10 
  xor  b4,a9,a9 
  ldw  *a0++,a4 ; load data[5] 
||  ldw  *b0++,b4 ; load data[21] 
  ; a4 = data[4], b4 = data[20] 
  xor  b4,a8,a8 
||  xor  a4,a10,a10 
  xor  b4,b7,b7 
||  xor  a4,a7,a7 
||  xor  b4,a10,a10 
  xor  b4,b8,b8 
||  xor  a4,a8,a8 
  ldw  *a0++,a4 ; load data[6] 
||  ldw  *b0++,b4 ; load data[22] 
  ; a4 = data[5], b4 = data[21] 
  xor  a4,b7,b7 
||  xor  b4,a9,a9 
||  xor  a4,a10,a10 
  xor  a4,b9,b9 
||  xor  b4,a7,a7 
||  xor  b4,a10,a10 
  xor  b4,b7,b7 
  ldw  *a0++,a4 ; load data[7] 
||  ldw  *b0++,b4 ; load data[23] 
  ; a4 = data[6], b4 = data[22] 
  xor  b4,a9,a9 
||  xor  a4,b8,b8 
||  xor  a4,a10,a10 
  xor  b4,b7,b7 
||  xor  a4,a9,a9 
||  xor  b4,a10,a10 
  xor  b4,b9,b9 
  ldw  *a0++,a4 ; load data[8] 
||  ldw  *b0++,b4 ; load data[24] 
  ; a4 = data[7], b4 = data[23] 
  xor  a4,a8,a8 
||  xor  b4,b8,b8 
||  xor  a4,a10,a10 
  xor  a4,b7,b7 
||  xor  b4,a8,a8 
||  xor  b4,a10,a10 
  xor  b4,a9,a9 
  ldw  *a0++,a4 ; load data[9] 
||  ldw  *b0++,b4 ; load data[25] 
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  ; a4 = data[8], b4 = data[24] 
  xor  b4,a7,a7 
||  xor  a4,a9,a9 
  xor  b4,a8,a8 
||  xor  b4,a10,a10 
  xor  b4,b7,b7 
||  xor  a4,a7,a7 
||  xor  a4,a10,a10 
  ldw  *a0++,a4 ; load data[10] 
||  ldw  *b0++,b4 ; load data[26] 
  ; a4 = data[9], b4 = data[25] 
  xor  a4,a9,a9 
||  xor  b4,b8,b8 
||  xor  a4,a10,a10 
  xor  a4,b9,b9 
||  xor  b4,a9,a9 
||  xor  b4,a10,a10 
  xor  b4,b7,b7 
||  xor  b4,b9,b9 
  ldw  *a0++,a4 ; load data[11] 
||  ldw  *b0++,b4 ; load data[27] 
  ; a4 = data[10], b4 = data[26] 
  xor  b4,a8,a8 
||  xor  a4,b8,b8 
||  xor  a4,a10,a10 
  xor  b4,a9,a9 
||  xor  a4,a8,a8 
  xor  b4,b7,b7 
||  xor  b4,b8,b8 
||  xor  b4,a10,a10 
  ldw  *a0++,a4 ; load data[12] 
||  ldw  *b0++,b4 ; load data[28] 
  ; a4 = data[11], b4 = data[27] 
  xor  a4,a7,a7 
||  xor  b4,b7,b7 
||  xor  a4,a10,a10 
  xor  a4,b7,b7 
||  xor  b4,a7,a7 
||  xor  b4,a10,a10 
  xor  b4,a8,a8 
||  xor  b4,a9,a9 
  ldw  *a0++,a4 ; load data[13] 
||  ldw  *b0++,b4 ; load data[29] 
  ; a4 = data[12], b4 = data[28] 
  xor  b4,a8,a8 
||  xor  a4,b9,b9 
||  xor  a4,a10,a10 
  xor  a4,a8,a8 
||  xor  b4,b7,b7 
||  xor  b4,a10,a10 
  xor  b4,b9,b9 
  ldw  *a0++,a4 ; load data[14] 
||  ldw  *b0++,b4 ; load data[30] 
  ; a4 = data[13], b4 = data[29] 
  xor  a4,a7,a7 
||  xor  b4,b8,b8 
||  xor  a4,a10,a10 
  xor  a4,b8,b8 
||  xor  b4,a7,a7 
||  xor  b4,a10,a10 
  xor  b4,a9,a9 
  ldw  *a0++,a4 ; load data[15] 
||  ldw  *b0++,b4 ; load data[31] 
  ; a4 = data[14], b4 = data[30] 
  xor  b4,a7,a7 
||  xor  a4,b9,b9 
||  xor  a4,a10,a10 
  xor  b4,a9,a9 
||  xor  b4,b9,b9 
||  xor  b4,a10,a10 
  xor  b4,b7,b7 
||  xor  a4,a7,a7 
  nop 
  ; a4 = data[15], b4 = data[31] 
  xor  a4,b7,b7 
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||  xor  b4,a7,a7 
||  xor  b4,b9,b9 
||  xor  a4,a10,a10 
  xor  a4,b8,b8 
||  xor  b4,a8,a8 
||  xor  b4,a10,a10 
  xor  a4,b9,b9 
||  xor  b4,b8,b8 
   
  or  a7,a8,a2 
||  or  b7,b8,b2 
||  mvk  64,a4 
  or  a2,a9,a2 
||  or  b2,b9,b2 
||  add  a0,a4,a0 ; a0 points to data[0] of next block 
||  add  b0,a4,b0 ; b0 points to data[16] of next block 
  or  a2,b2,a2 ;  
  or  a10,a2,a2 ; check if any temp_S != 0 
||  add  a5,16,a5 ; a5 points to parity[0] of next block 
||   add  b5,12,b5 ; a5 points to parity[3] of next block 
  
 [a2]  b  correct_errors 
  sub  a1,1,a1  ; decrease loop counter 
  nop   4 
end: 
 [a1]  b  loop 
 [!a1]  b  b3     
||[!a1]  ldw  *++b15,a10 ; pop a10 from the stack  
   nop  4 
   mv  a3,a4    
 
     
correct_errors 
   ; first calculate S[i] 
  mvk  31,a0  ; i = 31 
||  mvk  31,b0 
syndrome_loop: 
  shru   a7,a0,a5 ; temp_S[0] >> i 
||  shru  b7,b0,b5 ; temp_S[3] >> i  
  and  a5,0x1,a5 ; a5 & 0x1 
||  and  b5,0x1,b5 ; b5 & 0x1 
  shl  b5,3,b5  ; b5 << 3 
  or  a5,b5,a2 
  shru   a8,a0,a5 ; temp_S[1] >> i 
||  shru  b8,b0,b5 ; temp_S[4] >> i  
  and  a5,0x1,a5 ; a5 & 0x1 
||  and  b5,0x1,b5 ; b5 & 0x1 
  shl  a5,1,a5  ; a5 << 1 
  shl  b5,4,b5  ; b5 << 4 
  or  a5,b5,a4 
  or  a4,a2,a2 
||  shru   a9,a0,a5 ; temp_S[2] >> i 
||  shru  b9,b0,b5 ; temp_S[5] >> i  
  and  a5,0x1,a5 ; a5 & 0x1 
||  and  b5,0x1,b5 ; b5 & 0x1 
  shl  a5,2,a5  ; a5 << 2 
||  mvk  0x0,b1 
  shl  b5,5,b5  ; b5 << 5 
  or  a5,b5,a4 
||  mvk  0x1,b2    
  or  a4,a2,a2 ; a2 = S[i] 
||   shl  b2,b0,b2 ; b2 = (0x1 << i)    
   
  and  a10,b2,b2  
 [a2]  mvk  0x1,b1  ; b1 = 1 if (a2>0), b1 = 0 if (a2 == 0) 
  shru   b2,b0,b2 ; b2 = corresponding parity_bit   
  and  b1,b2,b1 
||  xor  b1,b2,b2 
 [b1]  b  find_coset ; if ((S[i]>0) && (parity_bit>0)) correct 1 error 
 [b2]  b   b3     ; if ((S[i]>0) && (p==0)) || ((S[i]==0) && (p>0)) 
 [b2]  mvk  -1,a4  ;    then return -1 (can't correct the errors) 
||[!a2]  sub  a0,1,a0 
||[b2]  ldw  *++b15,a10 ; pop a10 from the stack 
 [!a2]  sub  b0,1,b0 
   cmplt  b0,0x0,b1 
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  nop   2 
 [!b1]  b  syndrome_loop 
syndr_loop_end:     
   mvk  28,a2 
   add  b6,a2,a5 ; a5 -> parity[0] of next block 
 [b1]  b   end 
   add  12,a5,b5 ; b5 -> parity[3] of next block 
   mvk  128,b1 
   add  a6,b1,a0 ; a0 -> data[0] of next block 
||  mvk  192,b2 
  add  a6,b2,b0 ; b0 -> data[16] of next block 
  mv  a0,a6  ; a6 = a0 
||  mv  a5,b6  ; a5 = b6 
 
find_coset: 
  mvkl  COSET,b1 
||  mvk  0x0,a5 
  mvkh  COSET,b1 
  mvk  -1,b5 
  mvk  N,b0  ; number of cosets 
coset_loop: 
  ldb  *b1++,b2 ; load coset 
  sub  b0,1,b0 
 [b0]  b   coset_loop    
  nop  2 
  xor  a2,b2,b2 ; compare coset with S[i] 
 [!b2]  mv  a5,b5  ; b5 = index of matching coset 
   add  a5,1,a5   
  
   cmplt  b5,0,b2   ; check if b5<0 
 [b2]  b  b3   ; if yes then return -1 
||[b2]  ldw  *++b15,a10 ; pop a10 from the stack 
 [b2]  mvk  -1,a4 
   mvk  K,a2 
    cmplt  b5,a2,b2  ; check if (found index < K) 
 [!b2]  sub  b5,a2,b5 
  shl  b5,2,b5  ; multiply by 4, because int = 4 bytes 
   
 [b2]  add  a6,b5,b4 
 [!b2]  add  b6,b5,b4 
  ldw  *b4,b2  ; load value to correct 
||  sub  a0,1,b0    
   mvk  0x1,a2 
  cmplt  b0,0x0,b1 
 [b1]  b   syndr_loop_end 
 [!b1]  b  syndrome_loop ;next syndrome    
   shl  a2,a0,a2 ; a2 = 0x01 << i 
   add  a3,1,a3  ; total_errors++  
  xor  b2,a2,b2 ; repair the error 
  stw  b2,*b4  ; store corrected value 
  mv  b0,a0    
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