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Abstract

The beam impedance of monopole modes in a pipe with periodic, smooth and shallow
corrugation has been calculated. The approach uses an orthogonal TM field expansion
with Bessal functions and an impedance boundary condition, which takes into account
resistive wall effects. The approach is valid for corrugations with period lengths
larger, smaller and of the same order as the free space wavelength. The synergetic
effect of the surface resistivity and sinusoidal or non-sinusoidal corrugations has been
investigated. It is shown that these effects are nonlinear with respect to the beam
impedance but they are well approximated by a superposition of the equivalent
surface impedances. The concept of the equivalent surface impedance, which is
directly related to the beam impedance, is introduced. Wake functions and wake
potentials are calculated for several examples either by a pole expansion method (for
perfect conducting surfaces) or by a Fourier transformation. The convergence of the
approach is tested numerically and for one example the wake potentia is compared
with a direct numerical computation. The wake field effects due to surface roughness
and conductivity in the TESLA-FEL beam pipe are estimated. This estimation takes
into account statistical properties of areal measured surface.

1. Introduction

A new generation of accelerators, particularly linacs used as FEL drivers of for linear
colliders, pushes the single bunch peak current into the kilo-Ampere regime. For
example, in the TESLA SASE FEL the peak current is 5kA, the rms bunch length is
25 um and the normalized emittance is 1.6 mrad mm. The gain length is of the order
of 10...20 m and the undulator has a length of about 15 times the gain length. In small
beam pipes with aradius of afew mm induced wakefields may significantly increase
the beam energy spread or the emittance, and may interfere with the FEL process. A
larger beam pipe radius reduces the wakefields but it also reduces the achievable
undulator field strength so that the gain length, the undulator length and the costs are
increased. The sources of wakefields are the discontinuities of the beam pipe (e.g. for
diagnostics and the vacuum system) and the surface resistivity and roughness. Based
on the model of a periodically corrugated beam pipe we estimate the monopole wakes
caused by the resistivity and the surface roughness.

At present different models have been developed by K.Bane, C.Ng, A.Chao [1],
G.Stupakov [2], A.Novokhatski, M.Timm, T.Weiland [3] to study the effect of a
random surface roughness in a beam pipe, and by K.Bane, A.Novokhatski [4],
G.Stupakov [5] to calculate the wake in beam pipes with periodic surface structure.
These models are based on the assumption that all dimensions of the surface structure
(typical wavelength and amplitude) are small compared to the bunch length. This is
not necessarily fulfilled by real surfaces (e.g. [6]). Based on a ssimple TM field



expansion with Bessel functions we calculate the beam impedance for smooth and
shallow corrugations of any period length. Usually such approaches are made for
systems of cylindrical pipes with piecewise constant radius. Therefore the calculation
domain is split into several segments with a field expansion for each segment. The
matching conditions at the interface planes lead to an infinite equation system, which
Is usually truncated and solved numerically. For smooth and shallow corrugations this
approach can be significantly simplified because the boundary conditions at the pipe
surface can be fulfilled by only one field expansion for the whole domain. Even an
impedance boundary condition, which takes into account resistive wall losses, can be
considered without additional effort.

There are several methods to approximate the boundary condition by a truncated
Rayleigh expansion with 2N +1 basis fields. The 2N +1 unknown coefficients can
be caculated so that the rms error a the boundary is minimal (RMS-N
approximation) or that the lowest 2N +1 Fourier coefficients of the boundary error
vanish (Fourier-N approximation) or so that the Fourier coefficients of a linear
boundary approximation vanish (LB-N approximation). The beam impedance is
linearly related to one of these coefficients. Another useful quantity is the equivalent
surface impedance. It is defined by the quotient of the Fourier amplitudes of the
longitudinal electric field [E,(R,z)exp(jk,z)dz and the azimutha magnetic field
[H, (R 2)exp(jk,2)dz a the minimal pipe radius. There exists a simple
transformation that relates the beam and the surface impedance and there is aso a
matrix transformation (for the coefficients of the Rayleigh expansion) so that the
surface impedance is linearly related to one of the transformed coefficients. The

transformed equation system is more suitable for a 1% order matrix inversion by
which an explicit formulation for theimpedance is derived (LB-N,2"™ approximation).

For several examples the beam impedance, the wake function or the wake potential is
calculated for sinusoidal corrugations. The beam impedance calculated by the LB-1
approximation agrees well with the results of higher order approximations for
frequencies below c,/A (with A the corrugation wavelength). There is aso an

agreement at higher frequencies with the exception of numerous very weak additional
resonances which are missed by the LB-1 approximation. These resonances have
almost no effect to the short range wake. Therefore the wake potentials calculated by
the LB-1 method and the RMS-5 method agree well. A good agreement is also found
for a non-sinusoidal surface. In contrast to this, the direct superposition of the
resistive wall wake (without corrugation) and of the wakes of sinusoidal corrugations
(for perfect electric boundary conditions) gives a significantly different result.

The measured surface structure of a 720x720 um sample is used to estimate the
wakefield effects in an undulator beam pipe. Thisis possible with a formulation of the
LB-N,2" approximation that depends not explicitly on a surface periodicity but on the
spectral power density of the surface function. Therefore the 2D- and 1D-
autocorrelation functions are computed and extrapolated to determine the spectral
power density by a Fourier transformation. The wakes of gaussian bunches with rms
length 25 pum in copper plated beam pipes with radii between 3 and 6 mm are
approximately 23% larger than in a resistive pipe without surface roughness. A
similar result isfound for bunches with a more rectangular shape.



2. Analytical Approach

We consider an infinite axially symmetric beam pipe with the z-dependent radius
R(z) =R,+d(2). R, isthe averaged radius, the surface function or(z) =odr(z+A)
describes a periodic perturbation of the pipe radius with the period length A. The
surface function has to be smooth (so that the EM fields are non singular) and it hasto
be shallow (so that the field expansion, described in the following, converges). For
0<r <R(2) the EM fields have to fulfil the wave equation

([0*+K2)E 6 +E8)=0, (0>+K2)H,&,)=0 (1)

and the conditions divE =0, divH = 0. An impedance boundary condition is used at
the surface of the corrugation: —E xfi = Zbﬁ . The boundary impedance Z, relates
the longitudanal electric field and the azimuthal magnetic field. In general Z,

depends on the EM fields which are unknown. Only for beam pipes without
corrugation can it be shown that Z, is quite well approximated by its asymptotical

valuefor R, — oo:

Z, () =(jawu)/lo + jwe), 2
with o the electric conductivity. In the following we use this approximation even for
corrugated pipes. The frequency dependent conductivity is o(w) =g,/ (1+ ja)r) with
0,=36.610°/Qm, r=0.7100"s for auminum and o,=57010°/Qm,
T =2.4610™"s for copper. This boundary condition is equivalent to:

OH, 0 = ~(jwez, + (& M)/RH, 3

with ¢(2) = arctan(d,& (z)) and A = -sin(¢(2))&, +cos(@(z))é . The source of the
EM fields is an ultrarelativistic beam on the z-axis (approximations. v - c,, no

transverse dimensions):
p(T,a) = 5(1 [&,)5( (&) exp(= jK,2) | (w)/c, 4
J(F,0) = o(F [8,)0(r [&,) exp(-jK,2)&,l (w) )

with the wavenumber k, = w/c, and the beam current | (c) in the frequency domain.

The electromagnetic fields are approximated by a truncated field expansion with
2N +1 basisfields:

Hy =Huw+ Y CH,,
ET = Era + ZCH Ern 1 (5)

E,=E.+3 C,E,

with



H¢a :I_exp(_ jkz,OZ)

2
r . .
gexp(— ijYOZ) ifn=0 , (6)
Ho = 00! (k1) .
ETap( szynz) otherwise
1Z
E,=—2ex K,z
ra 27_[ p( J z,0 )
%O%exp(— ik,02) if N=0 , )
Ern = |:| !
Dk—mmexp(— jkz]nz) otherwise
EFU‘SO kr,n
E, =
0o 1 : :
- ——expl- jk,,z) if n=0
- :E jwe, p( J z,O) (8)
D—LJ ok r)exp(— jkzynz) otherwise
H jws

and n=-N,..N, k =2m/A, k,,=k,+nk, k ,=,ki-kZ . The basis field
{E E. H¢a} fulfils Maxwell’s equations and the boundary condltion a r=0,the

ra’

other basis fields {E E,, H¢n} also fulfil Maxwell’s equations and the homogeneous

boundary condition at the origin. This field expansion converges for all
r <min(R(z)), but for smooth and shallow boundary perturbations it is even possible

to fulfil the outer boundary condition. Therefore the expansion coefficients C, have
to be chosen so that the error at the outer boundary is minimized:

d(2) = ha(2)+zcnm(2) -0, 9)
with

ha(z) :{DHqﬁ,a [ + (jCUEOZb + (ér [ﬁ)/R)Hﬂﬁ,a}R:R(Z)

. . (10)

h(2) ={0H, , i+ (jwgz, + 6 E)/RH, o n
or

h(2) = =ik, SN(@(2) + jweZ, Jexpl(- ik, o2)

a Zfﬂ( ) z,0 z,0

hy(2) = B:os(¢(z»+ ”(szosnw(z»nwsoz )Eexp( ik,z) . (1)

ho(2) = - EJO(K,”R(Z))COSW(Z)) +

+ B (g2 + jwsozb)%xp(- ik..2)

r,n



The beam impedance (per length) relates the z-averaged longitudinal electric field to
the beam current:

(12)

Zbeam(w):_<EZ(r’Z)ejoz>z_ : %.

I - jwe,
As we are considering only monopole modes, this quantity is independent of the

radial offset r of the integration. In this report the sign of the beam impedance is
defined so that the wake function

W) = [ Zo () XD 50/ ) (13)

is negative for infinitely small values of s. Therefore the negative beam impedance
has the properties of atwo-terminal network [7].
2.1. Solution of the Boundary Problem

One possibility to approximate Eqg. (9) is to minimize the RMS error at certain
boundary points (R(z),z) with1<i<| and 0<z <A:

S ld =d(z)]" - min. (14)
Thisis equivalent to the matrix equation

IMc+v| - min (15)
with

(M);s =h(z), (©); =C, and (v), =h,(z). (16)

The indices n and later m are shifted to Ai=n+N+1, M=m+ N +1 so that the
numbering of matrix rows and columns starts at 1. The mathematics to solve Eq. (15)
is well known so that it is not described here. In the following we denote the beam
impedance calculated by Egs. (12, 15) as RM S-N appr oximation. Another method is

to fulfil Eq. (9) for the Fourier coefficients d_ = F_{d(z} with m=-N,...N and

F {d(z} = %:Ed(z) exp(jmk,z)dz. (17)
This leads to the linear equation

Mc+V=0 (18)
with

(M) sq =Fufhy (2} and (9), =F.{n.(2} . (19)

In the general case the Fourier integration cannot be done analytically but it has to be
solved on adiscrete mesh 0< z < A. The beam impedance calculated by Egs. (12,18)

is denoted in this report as Fourier-N approximation.
For loss-free boundaries (Z, =0) and even surface functions (Jr(z) =dr(-z)) it can
be shown that the real parts of h, and h, are even and the imaginary parts odd



functions. Therefore the coefficients C, are real numbers and the beam impedance
Eq. (12) ispurely imaginary.

2.2. Equivalent Surface I mpedance

Originally the boundary impedance Z,(jw) is defined as the ratio of the longitudinal

electrica field to the azimuthal magnetic field on the surface of a pipe with constant
radius R,. For corrugated beam pipes we define a similar quantity, the equivalent

surface impedance, as the quotient of the Fourier amplitudes of the longitudinal
electrical field and the azimuthal magnetic field at the minimal pipe radius:

) <Ez(min(R),z)ejk°Z>z

Z\w)= . . 20
S( ) <H¢(m|n(R),Z)eJkOZ>Z ( )
By substitution of Eq. (6) and (8) it follows immediately that
B 'cis S
_ | W&,
Z@)=— _min(R) _ 2

2rmin(R) 2

For simplicity we use in the following: min(R) =R, + min(Jr) = R,. The equivalent
surface impedance and the beam impedance Eq. (12) are related by

— _ Zbeam (Cu)
=R ez, o) 0
Zl)= L 2 (22b)

2R 14 g, 22, (w)

The equivalent surface impedance can be calculated directly from a transformation of
the matrix equation (19) as

Z(w) = —ﬁ% , (23a)
with

C,=®;

&=-27R,M WV . (23b)

~ AM).. - (V). zR2/1if n=0
M)as =01 . 0/
M) ;. otherwise
It isinteresting to notice that the negative beam impedance can be written as a paralel

connection of the capacitance C = £,7R? and the impedance Z(w)/27R, (cf. Fig. 1a).
The energy loss per length of a point particle with the charge q is

2

1q
~W(0+)q? =k 0> == 24
(0+)g” =kuQ 2C, (24)



with k,, the total loss-parameter and C, the maximal parallel capacitance which can
be extracted from —Z, .., so that the residual impedance still has the properties of a
two-terminal network. Supposing no parallel capacitance can be extracted from Z_,
the total loss-parameter is

1 1
ktot - - 2"
2C &, 21R

For example this is the case if Z_ can be expressed as a series connection of a two-
terminal network with an inductance jalL or asan infinite sum of parallel LC circuits
Z jwa,/ (a);fn - wz) where the sum of pole coefficientsis divergent (cf. Fig. 1b):

ZO'n — 00, (26)

(25)

2.3. Linear Boundary Approximation

The boundary functions h,(z) and h,(z) can be linearized with respect to & by a
substitution of the following approximation

cos(¢(2) =1
3o (K sR(2) = Iy (K, ,R) = Iy (K, ,Ro K, 1 (2)
3,(k R@2)SN(@(2)) = I, (K, ,R)&'(2) (27)
3,(k nR@)Z, = (3,(k, R L= F (2)/R) K, I (23 (K, o R))Z,
R,/R=1-4&/R,

into Eq. (11):

h(2) = 7'R0 (jk, o'+ (1- &/R))jwe,Z, Jexpl- ik, 2)

h(2) = EHszoRO& i Rl &J(Ufoz EEXp( szoz) .(28)

hyvol2) = —E%(kr,n%)(lmjweozb%Jl(kr,nRo)><
x E, %&' —k, OF +—(1_3/R0) jweZ, %p(— i, ,2)

r,n r,n

<<1. The last
condition is fulfilled if 27rmax(ndr|) << A. Therefore this approximation can be used
for field expansions that converge with N <<A/max(271&[). To avoid the
exp(—jk,,2) term in h,(z) and hy(z) we multiply the inverse factor (which is
exp( jk,z)) with the boundary Eq. (9) and get

This approximation is vaid if & <<R,, &'=




d(2)=h,(2+3 C,h,(2) - 0

d(2) = d(2)exp(jk,2) _ 29)
h, (2) = h,(2) exp(jk,2)
h,(2) = h,(2) exp(jk,2)

For these modified boundary functions the Fourier coefficients, which are identical to
the matrix elementsin Eqg. (19), are explicitly given as:

FiR 2} =4, 27%0 ez, + zmo Enkk 1z, E
Fm{ﬁo(z)} EL+J&)£O I:\)"H+F Romklk +jweZ,) , (30)

jw&Z,

Fiho@) = -a, E%(k,an

m

Jl(kr,nRo)E

Fodd} otk R sz, + 2

X Em+ n)k k, +nmk —%%

with 9, ,, the Kronecker delta function. The beam impedance calculated with the
linear boundary approximation and by Egs. (12,18) is denoted as LB-N

approximation.
2.4. Pipewith Sinusoidal Corrugation and Perfect Electric Conductivity (PEC)

The Fourier coefficients of the surface function & =acos(zk,) of a pipe with
sinusoidal corrugation are:

m . (31)
otherwise

Therefore the matrix equation (18) has the following form for N =1 and a beam pipe
with perfect electric conductivity (Z, =0):

O
~Jo(k. 4R) klk—OROE 0 0 0 lkk, al
akk ? akk, 0 TR 20
K, L —3kaR)S +0 70 H=0.(32
gn(r RS (kRS %@CE N
k1koF‘)o a _ N ' g 2R 2 g
D 0 > o Jo(k1Ry) g
The equivalent surface impedance follows with Eq. (23) as
(akl) E’ Ji(k 4R) + Jy(k ,R) H
s : : (33)
Zoee )= B2 Rk Ttk K



Eq. (22b) with Eqg. (33) is the LB-1 approximation of the beam impedance for PEC
corrugations.

Thetotal loss-parameter: Using the relation
(X _o 2

= , 34
Jo(¥x &g, X 59
with j, therootsof J,(X), Eq. (33) can be expressed as a pole expansion
ZsPEC(w) = Z jwan/(wsz,n - wz)’ (35)
with the pole frequencies and pole coefficients
=4,
’ 2 " 2R%k,
(36)

a,=— %g +EL°’” éﬁ
&R 02 OF DROH
It is easy to see that the criterion Eq. (26) is fullfiled which means the total loss-
parameter Kk, is1/g,2mR: .

Wake function and wake potential: As the equivalent surface impedance can be
described by a LC network the negative beam impedance has the same propperty (cf.
Fig. 1b,c). Therefore the beam impedance can be written in the following form:

Zbeam,PEC (w) = _22 Jakn/ (w§ - wz)’ (37)

with the loss-parameters k, and the pole frequencies w,. The pole parameters k.,
w, haveto be calculated numerically from Egs. (22b, 35). The wake function is

N [Ofors<0
W(s) = —Z K, cos(swn/co)afor s=0 (38)
" [P otherwise

and the wake potentia for a Gaussian bunch with the rms length o is given by the
convolution

WO (s) = []IJW(s—x)@dx (39)

with g(x) the Gaussian normal distribution. In a numerical analysisit is not possible

to calculate the infinite series of pole parameters and to perform the infinite
summation, but one can take into account so many resonances that the truncated sum
of loss-parameters approaches

00

Z K, =Ko =1/&,27R2 . (40)



Another possibility is to calculate only the pole parameters in the spectrum of the
beam | («) and to split the beam impedance into two parts

Z,(w)= —zz jak,/(@? - o?),

Z, (w) = Zyeampec (w) -4 (w) '

which can be evaluated numericaly (Z,..qc is given by Egs. (22b, 33)). The
contribution of the first part to the wake potential can be computed as before (inverse
Fourier transformation of Z,, convolution). Z,(w) is smooth and non-singular for all
freguencies in the beam spectrum. Therefore the contribution of the second part can
be calculated by the inverse Fourier transformation of Zz(a))l (). In many cases the
second contribution is negligible.

It isinteresting to compare Eqg. (33) with the equivalent surface impedance of a planar
corrugation

Zs,PEC,pIane(j C()) = J kOZO @ J + ki E (41)

This formulais derived in [5] with similar approximations as used for Eq. (33). Both
formulas are in excellent agreement for w< /A =: w, . For one example the beam

impedances calculated by the LB-1 approximation and by Egs. (22b,41) are compared
in Fig. 2. The first pole of the beam impedance is well approximated, but it can be
seen in Fig. 3 that there are many further poles above w,. Approximation Eq. (41)

can be used for the calculation of the wake function W (s) if the bunch spectrum is

negligible for frequencies above w,. The polesum K, = k. isplotted in Fig. 4 as

function of the pole frequencies. For the given geometry parameters the higher poles
(n>1) contribute significantly to the impedance and the wake functionin Fig. 5.

2.5. Pipewith Sinusoidal Corrugation and Finite Conductivity

For finite surface conductivity the matrix equation (18) has the following form

a . O
.0 %(_ kiko = Jwgozb/Ro)D
L

(M, +aM, + jwg,Z,M, ), e jwe,Z, =0
EVN= Eg(klko - ngozb/Ro) 5

& Jy(k ,R;) O 0 0
Mo=g O 1 0 - (422)

@ 0 0 _Jo(krlRo)a

0 0 -R 0 0O
M, ==l 0 22

H O R e
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_ Jl(kr,flpo)

U a 0 U
O - R J (k Ro) : J (k Ro) o
M =Er%(J (k Ry) - 2] & sy (i R)— Al )D (42b)
a 1(kr1R{))
E O Z - kr,lp()

Eqg. (12) with C, calculated by Eq. (42) is the general formulation of the LB-1

approximation. The equivaent surface impedance can be written as the sum of the
boundary impedance, the equivalent surface impedance for PEC boundary conditions

and aresidual term of the order a°Z, :

Z,(@) = Z,(w)+ Zypec () + Ol2°Z, ).
For an auminum beam pipe with radius R, =5mm and sinusoidal corrugation
o (z) =acos(2rz/A), a=1um, A =50um the normalized boundary error, defined as

[Me-+vi/lv].

Is calculated by the RMS-5 approximation. In Fig. 6 this error can be seen in the
frequency range O... f, . For frequencies close to the first resonance (= 0.86f,) the

error is of the order of 107, for the rest of the frequency range it is well below this
value. Thisissimilar in Fig. 7 with the error in a narrow frequency range around one
of the next resonances. In Fig. 8 and 9 the beam impedance is calculated for the same
frequency ranges by the RMS-5 and LB-1 method. Both methods are found to be in
excellent agreement.

The impedance and wake function of a corrugated pipe with PEC boundary and finite
conducting boundary are compared in Figs. 10, 11 and 12. The wake potential of a
gaussian bunch with g, =25 um is shown in Fig. 13 for the same example. (In this
report all wake potentials of pipes with finite conductivity are calculated by the
inverse Fourier transformation of Z, . (w)l (w) .) For this setup the wake potential of
a corrugated surface with finite conductivity is only roughly described by the sum of
the wake potential of a surface with PEC boundary condition and the resistive wall
wake potential of a pipe without corrugation. This can also be seen in Fig. 14 with the
wake potentials of a surface with different corrugation.

2.6. Non-sinusoidal Corrugations

The beam impedance of periodic, non-sinusoidal corrugations can be calculated with
the RMS-N, Fourier-N or LB-N approximation. In the following an epr|C|t 2" order
approximation of the |mpedance is derived. Therefore the matrix M in Eq. (23) is
split into adiagonal matrix D with main diagonal of M and aresidual matrix W :

A~

M=D+W, (43)

11



if n=0

(f))ﬁ’ﬁ - E_Jo(krnRO) Jw‘goz

K
. [Fid}iwgz, ifn=0
W) = E— F..{0} X, otherwise

® J, (k. ,R,) otherwise

m

- (44)

T e L

The side bands of M are proportional to the Fourier components of J&r. After a
normalization of the main diagonal DM the matrix is diagona dominant if

KiJi (k. x Ry)
R

(for smplicity the terms proportional to Z, are neglected). Thisis usually the case for
shalow corrugations, low order expansions and frequencies with J (k. ,R;) # 0,

|F,_{dT} k,| <<1. We use a 1% order approximation to invert the matrix:

m+n)k, + nmkl)( <<1,

c= —ZERO(E) + W)_lv = _2”Ro(6_l -DWD™

éo = _27[R0 (V)N 1 2r ZNZZJ(E)_lw )N +1,k (f)_lv)k

(45)

As the vector V scales with the Fourier components of & the result is a 2™ order
approximation (with respect to & ). The equivaent surface impedance follows from
Eq. (234) as

2w =z, -1 & XodFuld}[ (ki - jweZ, /R)

) ’ Jwgo n=- ‘JO(kr,nRO)+ ja)EOZb ‘Jl(kr,nRO)/krn

The beam impedance calculated by Egs. (22b46) is denoted as LB-N,2"
approximation. For sinusoidal corrugations with PEC boundary conditions it is

identical to the LB-1 approximation (which was derived with an exact matrix
inversion).

(46)

As the LB-N,2" approximation is a linear function of the squared Fourier amplitudes
|Fn{5r} |2 of the surface function, we can find another formulation that depends on the

spectral power density S (k) of Jr. The autocorrelation function and the spectral
power density are defined by:

R.(8)=lim< J’Jr(X)Jr(x s)dx, (479)
S.(k) = }Rc(s) exp(— jks)ds. (47b)

12



JR.(0) isthermsvaueof & and S.(0) =0 because the mean value of the surface

function Jr vanishes. The spectral power density of a periodic surface function is a
series of dirac pulses:

S.(k) = 27'[2 F,(dr)o(k-nk). (48)

Only terms with |n| < N are taken into account by the LB-N,2" approximation. The
equivalent surface impedance can be expressed by an integral

1 (o]
Z(@)=2,+ [S(@Z (@k)ds, (49)
with the kernel
Bliee BH
Z (@K) = jkgZy=——— >3 -,
Jo+ jky 222
Z, k.

k =k =(ko +k)* . 3= Jo(kR), J, = L (KR)). (50)

As the side bands of the matrix M (Eg. (19)) are adso proportional to the Fourier

components of & one can use a similar method to approximate M ™ and to obtain
directly a 2™ order approximation of the beam impedance. The result is -1/21R,

times the equivalent surface impedance given by Eq. (46). This direct approximation
is less accurate than the LB-N,2™ approximation: e.g. the resonances found by the

LB-1 method are not estimated sufficiently and the sum of loss-parameters an
diverges. There are two reasons why the method with the equivalent surface
impedance produces better results: M fulfills the diagona dominance better than M
although these matrices differ only in column N, and M is singular at the poles of
Z, ... Therefore the 1% order inversion of M isin principle not possible at the pole

frequencies, but the 1% order inversion of M can be possible because Z, isfinite at
these frequencies. E.g. the LB-N,2" approximation is identica to the LB-1
approximation of a sinusoidal corrugation with PEC boundary.

For one example the LB-N,2" method is compared with the RMS-9 and LB-9
method. The wake potential of a gaussian bunch with o = 25um is calculated for an

aluminum beam pipe with the radius R=5mm and the surface function & (z) =
0.6 umcos(27z/60um) + 0.18 m cos(27z/ 20um) . For al methods and for both signs

in the or -function the wakes are almost plotted along the same curve, see Fig. 15.
The deviation between the RMS-9 calculations with different sign in the Jr -function

is less then 700" V/(Cm). For these parameters the LB-N,2™ method is quite

sufficient, but not the direct superposition of the wakes of sinusoidal PEC surfaces
and the resistive wall wake. The deviation of the direct superposition to the RMS-9

approximation is of the order of 410" V/(Cm).

13



2.7. Higher Order Effects

Higher order approximations (RMS-N, Fourier-N and LB-N with N>1) find
resonances of the beam impedance for frequencies above 2f, (with f,:=c;/21)
which are not observed by N = 1 approximations or by the LB-N,2" method. Such
very sharp resonances can be seen in Fig. 16 with the beam impedance in a narrow
frequency range around 2f, of a pipe with sinusoidal corrugation. In this figure we
can distinguish broad resonances (at 1.99135f, ,2.0013f, ) which are calculated even
by the LB-1 method and sharp resonances (at 1.99997f,, 2.00003f,, 2.00008f,,
2.00016f,, ...) which are seen only by the higher order method. These resonances
are related to poles of the equivalent surface impedance with a strength proportional
to a® (the broad resonances) and a* (the sharp resonaces), with a the amplitude of
the sinusoidal corrugation. At higher frequencies above nf, appear further poles with
astrength proportional to a*".

A comparison of wake potentials computed by the RMS-5 and LB-1 method for a
period length A =50um and a gaussian bunch with ¢ = 6um can be seenin Fig. 17.
For this example f, is approximately 38% of the rms frequency of the bunch

spectrum. Therefore higher order resonances can be excited. Neverthel ess the wakes
calculated by both methods differ by less then 1.2[10™ VV/(Cm). For this example the
contribution of the loss-parameters of the higher order resonancesis negligible.

3. More Examples

3.1. Comparison with MAFIA [8]

A completely different calculation method for wake potentials is the numerical field
integration in time domain [8]. To avoid an extreme numerical effort for this method,

theratios A/a, g/a and R;/a should not be too large. Therefore wake potentials are
calculated for a PEC beam pipe with R, =5mm, Jr(z) =10umcos(27z/Imm) and
gaussian bunches with the rms lengths o =250 um, A =1mm. They are compared in
Fig. 18 and 19 with wake potentials cal culated by the LB-1 method.

3.2. Corrugation Wavelength

The wake potential of a gaussian bunch with the rms length o =25um in a PEC
beam pipe with the radius R, =5mm can be seen in Fig. 20 for different sinusoidal
corrugations & (z) = acos(2rz/A) with a/A =0.02 and A = 3,6,12,25,50,100,200
um. The wake is normalized to az/ (Raz)lgo). In the given parameter range the
normalized wake is of the order 0.1[&°/ (RJZ)Iso). The shape changes from inductive

for small values of A to resonant for A <= o . The wake has its largest magnitude if
the corrugation wavelength is approximately equal to the rms bunch length. For larger
corrugation wavel engths, multiple resonances of the beam impedance are excited. As
these resonances are very dense they have a similar effect to a continuous spectrum:
they cause a decaying contribution to the short range wake. Only the very first
resonance can be isolated and contributes to the wake with an undamped oscillation.
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4. TESLA FEL Beam Pipe

The measured surface structure [6] of a 720x720 um sample of a steel pipe can be
seen in Fig. 21 as grayscale picture. The x,y,z coordinate system is cartesian with x
perpendicular to the surface and z parale to the beam axis. The resolution in X,z
direction is 1.4 um. The scaling of the x-axis can be seen in Fig. 22 with the two cuts
X(0,2), X(y,0). The strongest contribution to & comes from the curvature of the

pipe (y-direction) and atilt in z-direction. Therefore we extract the curvature and tilt
to get the surface function o (y,z) = &(y, 2) - (q0 +qy+ qy2y2 + qzz). The parameters
0o, d,,0y,,0, are chosen so that the mean value of & is zero and the rms value is

minimal. The grayscale picture of o can be seen in Fig. 23 and two 1D plots with
a(0,2), o(y,0) are shown in Fig. 24. The y-axis corresponds to the azimuthal ¢-
coordinate. The 2D autocorrelation function (ACF) is calculated by

1 ~ A A A R
a(y,2(y-vy,z—-z)dydz.
Ay, 2) A({,z)
Due to the limited sample size the integration area A(y, z) depends on the arguments

of the ACF. For large distances 4y’ +2z* from the origin, A is smal and R, ,,
uncertain. Therefore the domain of the grayscale picture of R ,,(y,2) in Fig. 25is

Rc,ZD (v,29)=

limited to points with 4/ y* +z* <500um . The amplitude of R, ,, can be seenin Fig.
26 with a 1D cut of R ,, along the z-axis. The square root at the origin is the rms
value of the roughness &, . = /R, ,5(0,0) =0.58m. As the theory of this report is
developed for axialy symmetric structures we use R, (0,2) instead of the 1D ACF
R.(2) defined by Eq. (47a). For smplicity we write R.(2) =R ,,(0,2) . As R (2) is
also uncertain for larger arguments we use three types of extrapolation, which are
plotted together with R in Fig. 26. These extrapolations start from z=500um
(extrapolation 1), z=300um (extrapolation 2) and z=200um (extrapolation 3).
The extrapolation functions are chosen so that the mean value of the ACF vanishes.
The spectral power density S (k) is calculated by Eq. (47b). The integrated and
normalized power density

k
IS(K) = = [S,(K)ck
d.rms -k
describes the fractional contribution of wave numbers below k to the total roughness
(cf. Fig. 27). About 80% of &2 =R (0) is caused by the spectrum below

k=2.6010"m™ or by wavelengths larger then A =240um, only 10% of &2, is

caused by the spectrum above k=4.70010"m™ or by wavelengths shorter than
A=134um. This means a bunch with the rms length g =25um is not short
compared to the typical wavelength of the surface structure. On the other side one
may doubt that the sample size of 720x720 um is large enough to obtain a significant
surface description. To see the effect of the arbitrary extrapolation of the ACF we
calculate the wake potentials for al three extrapolations for a gaussian bunch with the
rms length o =25um in a copper plated beam pipe with different radii by the LB-
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N,2" method. Figs. 28 and 29 show two results of such calculations together with the
resistive wall wake of a pipe with perfect surface. As the curves for different
extrapolations are amost identical we assume the wake potential is insensitive to the
type of extrapolation. Some characteristic parameters of the wake potential (for
extrapolation 3) are sumarized in the following tables:

resistive (cu) min(W?) | max(W¢) < °’> rms(W?)
gaussian bunch V/pCm V/pCm vipcm | V/pCm
R, =3mm 111 54.1 449|567

R, =4mm -85.7 43.4 -34.9 44.1

R, =5mm -70.3 38.0 -29.0 36.5

R, =6mm -59.8 34.8 -25.2 31.3
resistive+rough min(W?) | max(W?) < 0’> rms(W?)
gaussian bunch V/pCm V/pCm vipcm | V/pCm
R, =3mm -129 69.6 -47.9 68.7

R, =4mm -99.7 58.2 -37.7 54.0

R, =5mm -82.0 52.6 -31.7 45.1

R, =6mm -69.8 48.8 -27.9 38.7

Similar calculations are done for a more rectangular bunch. The precise bunch shape
is calculated as the convolution A%.(s) =A%, (s) O (g(s/o,)/0,) of a rectangular

distribution A%, (s) :]/(2\/_30) for |q<\/_3a and a gaussian distribution g(x) with

o=25um and o0,=3um. Again the results are amost identicad for al

extrapolations of the ACF. The bunch shape, the resistive wall wake and the wake in
a pipe with rough surface are shown in Figs. 30 and 31 for beam pipes of different
radii. The following tables list some characteristic parameters of the wake potential
(for extrapolation 3):

resitive (cu) min(W¢°) | max(Ww?) < °'> rms(W¢)
“rect.” Bunch V/pCm | V/pCm vipcm | V/pCm
R, =3mm -235 219 -55.0 72.9

R, =4mm -159 133 -40.7 50.9

R, =5mm -117 98.7 -334 38.2

R, =6mm -91.1 814 -28.7 29.8
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resistive+rough min(We°) | max(W¢) < 0> rms(W?)
“rect.” Bunch V/pCm | V/pCm Vipcm | V/pCm
R, =3mm -264 228 586 | 885
R, =4mm -178 152 -45.2 62.0
R, =5mm -131 124 -38.1 45.7
R, =6mm -102 97.0 -32.0 35.8

5. Condlusion

Three different methods (RMS-N, Fourier-N, LB-N) have been developed to calculate
the monopole impedance and wake potentia in beam pipes with periodical, smooth,
shallow corrugation and finite conductivity. The numerical effort determined by a
linear equation system of the dimension 2N + 1 and the number of frequency points
which are needed for the inverse Fourier transformation. For all examples in this
report a good convergence was achieved for N < 10 or even N = 1. The LB-N,2™
method uses a first order approximation for the solution of the equation system. It is
of 2" order accuracy with respect to the impedance. This method is explicit. In this
approximation, the contributions of different Fourier components of the surface
structure to the equivalent surface impedance can be calculated independently from
each other. For various examples low order calculations where found in good
agreement with higher order calculations or with a time domain computation method.
Based on the statistical properties of a measured surface structure the wake fieldsin a
copper plated undulator beam pipe have been investigated. For the investigated
parameters the short range wake was increased by approximately 23% compared to a
resistive pipe without roughness.
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Fig. 1. Network description of the beam impedance and the equivalent surface
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Fig. 2: Beam Impedance: comparison of the LB-1 approximation (solid line) and Egs.
(22b, 41) (dashed line). Configuration: PEC pipe, R, =5mm, & (z) =acos(2rz/A),
a=1lum, A=50um.
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Fig. 3: Thefirst higher resonances of the beam impedance: comparison of the LB-1
approximation (solid line) and Eqgs. (22b, 41) (dashed line, only for f24/c, <1).
Configuration: same parametersasin Fig. 2.

1
MW‘
A 0.6 /
o
Y4
E 0.4
g ° e
0.2
0
0 1 2 3 4 5
f*2*lambda/cO --->
Fig. 4: Loss-parameter sum K, = k. asfunction of pole frequency w, for the LB-
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1 approximation. Configuration: same parametersasin Fig. 2.
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Fig. 5: Wake function calculated by the LB-1 approximation (solid ling), contribution
of the first resonance (dashed line). Configuration: same parametersasin Fig. 2.
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Fig. 6: Normalized boundary error [Mc+ v|/|v| of the RMS-5 approximation.
Configuration: same parameters asin Fig. 2, but with finite conductivity (aluminum).
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Fig. 7: Normalized boundary error [Mc+ v|/|v| of the RMS-5 approximation for one

of thefirst resonances above ¢,/24 . Configuration: same parametersasin Fig. 2, but
with finite conductivity (aluminum).
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Fig. 8: Beam Impedance calculated by the RMS-5 and LB-1 approximation.
Configuration: same parameters asin Fig. 2, but with finite conductivity (aluminum).
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Fig. 9: Beam Impedance calculated by the RMS-5 and LB-1 approximation for one of
the first resonances above ¢,/24 . Configuration: same parametersasin Fig. 2, but

with finite conductivity (aluminum).
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Fig. 10: Beam impedance cal culated by the LB-1 approximation for perfect
conductivity (imaginary part: thick dashed line) and finite conductivity (real part:
solid line, imaginary part: dashed line). Configuration: same parametersasin Fig. 2,
but with PEC boundary or finite conductivity (aluminum).
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Fig. 11: One of the first resonances of the beam impedance above ¢,/24 caculated

by the LB-1 approximation: perfect conductivity (imaginary part: thick dashed line),
finite conductivity (real part: solid line, imaginary part: dashed line). Configuration:
same parameters asin Fig. 2, but with PEC boundary or finite conductivity
(auminum).
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Fig. 12: Wake function calculated by the LB-1 approximation for perfect conductivity
(solid line) and finite conductivity (dashed line). Configuration: same parameters asin
Fig. 2, but with PEC boundary or finite conductivity (aluminum).
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Fig. 13: Wake potential calculated by the LB-1 method (dotted line) and the RMS-5
method (thick dashed line) for a pipe with finite conductivity. Wake potential in a
PEC pipe (LB-1, thin dashed line) and the sum of this wake and the resistive wall

wake (solid line). Configuration: aluminum pipe, R, =5mm, & (z) =acos(27z/A),
a=1um, A =50um, gaussian bunch with g =25 um.
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Fig. 14: Same curves asin Fig. 13 but for the configuration: aluminum pipe,
R, =5mm, &r(2) =acos(27z/A), a=2um, A =10um, gaussian bunch with
o =25um.
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Fig. 15: Wake potential of a non-sinusoidal corrugation calculated by the RMS-9, LB-
9 and LB-N,2™ method. All curves are plotted almost along the same line. The curves
labeled with ‘Odeg’ and *180deg’ correspond to the two signsin the Jr -function.
Superposition of the resistive wall wake and the PEC wakes of individual sinusoidal
corrugations (dashed line). Configuration: aluminum pipe, R=5mm, & (2) =

0.6 mcos(27z/60um) + 0.18 umcos(27z/ 20um) , gaussian bunch with o =25 um.
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Fig. 16: Higher order effects: beam impedance cal culated by the RMS-5 and LB-1
method. Configuration: same parametersasin Fig. 13.
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Fig. 17: Wake potential calculated by the RMS-5 and LB-1 method, resistive wall
wake of a pipe without corrugation. Configuration: same parameters asin Fig. 13 but
for abunch with thermslength o = 6um.
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Fig. 18: Wake potential calculated by MAFIA and by the LB-1 method.
Configuration: PEC pipe, R, =5mm, & (z) =acos(27z/A), a=10 ym, A =1mm,
gaussian bunch with g =1mm.
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Fig. 19: Wake potential calculated by MAFIA and by the LB-1 method.
Configuration: PEC pipe, R, =5mm, & (z) =acos(27z/A), a=10 um, A =1mm,
gaussian bunch with o = 250um.
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Fig. 20: Normalized wake potential of a pipe with various corrugation parameters
calculated by the LB-1 method. The wake is normalized to a%/(Ro?Ae, ).

Configuration: PEC pipe, R, =5mm, & (z) =acos(27z/A) with a/A =0.02 and
A =3,6,12, 25,50,100, 200 um .
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Fig. 22: 1D cuts ox(0,z), ox(y,0) of the measured surface functionin Fig. 21.

29



-ann 1] 200 — ﬁ

Fig. 23: Surface function & (y, z) = (Y, z) - (q0 +0,y+0,y° + qzz) after extraction
of the curvature (in azimuthal direction) and slope (in z direction). The gray scale
ranges from -2 to 2.8 um.
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Fig. 24: 1D cuts or(0,2), o (y = Ry¢,0) of the corrected surface functionin Fig. 23.
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Fig. 25: 2D autocorrelation function R ,, (y = R,¢,2) for pointswith
A\ Y? + 7% <5004m . The gray scale ranges from —(0.34 pm)? to (0.58 pm)?.
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Fig. 26: 1D cut R.(2) = R ,,(0,2) of the ACFinFig. 25 (thick line) and three
different extrapolations for large arguments.
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Fig. 28: Wake potential calculated by the LB-N,2™ method for three extrapolations of
the ACF (thin lines), resistive wall wake (thick line) of a perfect pipe. Configuration:
aluminum pipe, R, =3mm, random surface, gaussian bunch with g =25 um.
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Fig. 29: Wake potential calculated by the LB-N,2™ method for three extrapolations of
the ACF (thin lines), resistive wall wake (thick line) of a perfect pipe. Configuration:
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aluminum pipe, R, =5mm, random surface, gaussian bunch with o =25 ym.
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Fig. 30: Wake potential of a more rectangular bunch (solid line) calculated by the LB-
N, 2" method (dot dashed line) , resistive wall wake (thick line) of a perfect pipe.
Configuration: aluminum pipe, R, =3mm, random surface, bunch shape see text.
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Fig. 31: Wake potential of a more rectangular bunch (solid line) calculated by the LB-
N, 2" method (dot dashed line) , resistive wall wake (thick line) of a perfect pipe.
Configuration: aluminum pipe, R, =5mm, random surface, bunch shape see text



