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Abstract

Model independent analysis (MIA) can be used in linear accelerators to analyse
large statistical samples of orbit data in order to address questions like number of
jittering variables that affect the beam, residual dispersion, and resolution of beam
position monitors. We describe the application of MIA to TTF and try to answer
some questions of practical interest.

1 Principles of Model Independent Analysis

A detailed description of the theory can be found in the paper by John Irwin et al. [1].
The basic principles will be described here as far as they are needed for the analysis of
the TTF measurements.

Due to rather general reasons position measurements at different beam position mon-
itors (BPM’s) in a beamline must be correlated in certain ways. For example a betatron
oscillation will result in well defined orbit amplitude ratios at the different BPM’s. The
correlations can be revealed just by applying statistical methods to a set of BPM mea-
surements, and without knowledge of the underlying physical model. In the simplest case
the accelerator is operated in stable conditions and orbits for a large number of pulses
are recorded. The “natural” beam jitter, for example caused by laser beam position jitter
in the gun, charge fluctuations and resulting wakefield effects, or RF power fluctuations
leading to dispersive orbit jitter, can be analysed in this way.

In order to perform model independent analysis a large set of BPM data vectors l;p
for each measured pulse p is needed. The average orbit is subtracted and the individual
vectors are normalized by the square root of M - P, i.e.

b, = (by— < b>)/VPM. (1)

These normalized difference vectors are arranged row-wise in an orbit matrix that
contains finally P rows according to the number of measured pulses, and M columns
according to the number of BPM’s in the beamline. Normally the number of pulses is
much larger than the number of BPM’s. From this BPM matrix B one can build a
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Figure 1: Schematic singular value decomposition of a BPM matrix (left).

quadratic matrix BTB with the dimension M. It is now possible to compute eigenvectors
and eigenvalues for the quadratic matrix.

(BTB)-V = Vo (2)

Here V contains the eigenvectors in columns and o is a diagonal matrix that contains
the eigenvalues.

It turns out that the eigenvectors of the matrix BTB point into the direction of
linear independent modes of orbit jitter. The M dimensional vector space is spanned by
the BPM’s. The eigenvalues are given by the mean squared jitter amplitudes averaged
over space (BPM’s) and time (pulses). The eigenvectors with the largest corresponding
eigenvalues are the prominent jitter modes. Numerical algorithms for the computation of
eigenvectors and eigenvalues commonly sort their output for descending eigenvalues [2].

The eigenvectors obtained in the described way are called spatial vectors since they
describe orbit patterns along the beamline. It is also possible to perform the same proce-
dure with the matrix BBT '. Here one obtains temporal vectors which describe the time
development of the corresponding orbit patterns.

Both types of vectors, the temporal and spatial ones can be obtained in one compu-
tational step by a singular value decomposition (SVD) of the BPM matrix B. The SVD
is shown schematically in Fig. 1.
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Comparing (2) and (3) it can be shown that the correct eigenvector matrices V (spa-
tial) and U (temporal) are obtained by computing BTB, BBT and using the properties
of V and U. Furthermore we identify the eigenvalue matrix ¢ = A2. The numbers in
A are called singular values and are equal to the rms jitter amplitudes of the individual
modes, averaged over BPM’s and pulses.

I Although the matrix BBT has P eigenvectors there are only M of them meaningful.



It is very important to realize at this point that the SVD produces orthogonal orbit
patterns which are not necessarily connected to the underlying physical processes. In
general each of the vectors is a linear combination of physical vectors. Very often, however,
one process is dominating, and so the first spatial vector can be identified as caused by
a unique physical process. An example for this situation are the measurements at TTF,
where the orbit jitter is dominated by energy jitter of the beam.

In the general case the individual jitter modes in the machine (transverse modes,
energy, phase etc.) are linear combinations of the orthogonal spatial vectors the SVD
produces. Nevertheless one important information is contained in the set of singular
values. The number of non-negligible values corresponds to the number of independent
jitter sources.

2 Experimental setup

The orbit measurements were taken at the TTF (TESLA Test Facility) linac [3] built by
the TESLA [1] collaboration. A schematic layout of the TTF linac is given in Fig. 2.

The undulator section consists of three modules 4.5 m long. Each module has in-
tegrated a FODO structure of 5 cells providing a phase advance of approximately 270°.
In total 30 BPMs are installed in the undulator section, that is, one per quadrupole.
The BPM’s of undulator module 1 and 2 are of the antenna type and their electronics is
described in [0]. In undulator module 3 there are 10 waveguide BPM’s [7]. The experi-
mental section downstream the undulator includes three stripline BPM’s [5] (one located
downstream the spectrometer dipole).

For the numerical examples presented in the next section we use only the 20 antenna
BPM’s in the modules 1 and 2, and one of the stripline BPM’s in the dispersive region
beyond the spectrometer dipole.
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Figure 2: Schematic layout of the TTF accelerator.



3 Singular Value Spectrum and Orbit Patterns

We consider now two examples for the analysis of real data from TTF. The two examples
cover different ranges of bunch charges. In the first example lower bunch charges in
the range of 1...1.5nC where used. The data of the second example were taken a few
months later with bunch charges of 2...3nC. In the meantime the BPM electronics was
equipped with attenuators, such that the optimal operating range of the electronics was
shifted towards higher charges. By applying charge filters the first data set was reduced
from 1601 pulses to 985, and the second one from 999 to 508. The SVD of the resulting
BPM matrix with an approximate dimension 1000 x 20 takes about half a second on a
500 MHz Pentium processor. Only horizontal orbit measurements are considered in the
examples.

The first five temporal and spatial vectors are shown for the first data set in Fig. 3.
The vectors are sorted according to descent singular values. Consequently the first mode
is the strongest one and it is obviously dominated by energy jitter in the machine. The
amplitude of this mode is small at all BPM’s, except at the last one which has the
strongest dispersion. The vectors produced by the SVD are normalized in length and
therefore the amplitude at the last BPM is close to 1. The time averaged jitter amplitude
of the mode at the individual BPM’s is obtained by multiplying the corresponding singular
value with the spatial vector. The typical singular value spectrum is shown in Fig. 4. For
the first mode we find Az, ~ 350 um at the last BPM. With a dispersion function of
n. = 1.3m we obtain a relative energy jitter (or drift) of 3-107%. Tt is interesting to
look at the first temporal vector which contains basically the time evolution of the first
mode, and as we now know this reflects the beam energy. The vector shows a systematic
drift of the energy. In order to analyse the effect of the energy jitter in more detail the
calculation was performed with and without this BPM in the matrix. For both cases the
singular values are plotted in Fig.4. For the case without the dispersive BPM one notes
for both data sets that indeed the number of significant singular values above the noise
floor is reduced by one. The spectrum of the other (non-dispersion) modes is slightly
affected when the dispersive BPM is removed. Some fraction of the energy jitter has been
attributed to other modes when the last BPM is missing. This is not surprising since the
dispersion function in a bend-free section behaves exactly like a free betatron oscillation.
The algorithm separates the effects better with the stronger energy signal contained in
the data.

In this context it is also interesting to take a closer look at the orbit pattern of the
first spatial vector in the undulator region. The orbit pattern of the first mode can be
converted into residual dispersion by scaling it such that the known nominal value is
reached at the last BPM. The curve is shown in Fig. 5.

The other singular values of data set 1 are already smaller by more than an order of
magnitude as compared to the first one. The interpretation of the corresponding orbit
patterns is not obvious, although the vectors 2 and 5 look like betatron oscillations.

For data set 2 the energy jitter deduced from the first eigenvalue seems to be much
smaller (< 3-107°). We note from the eigenvalue spectrum there are only three values
above the noise level. Furthermore the first value is not significantly larger than the
other ones which means that the corresponding vector does probably not represent a
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Figure 3: The first five temporal (left) and spatial (right) vectors.

pure dispersion function but is a linear combination of dispersion function and betatron
oscillations.

The last singular value for data set 2 is remarkably small which is a result of the fact
that one BPM was not connected to the electronics, such that we see only electrical noise.
It demonstrates, however, that such kinds of failures can easily be identified by examining
the singular value spectrum.

4 Resolution of the BPM’s

The total measured RMS orbit jitter, averaged over pulses and BPM’s is given by the
quadrature sum of all singular values. As discussed above the dominating singular values
are caused by the jitter of underlying physical variables. This jitter is simultaneously
observed at different BPM’s, i.e. correlated beam motions are detected. Noise from the
BPM’s themself, or the BPM electronics is usually uncorrelated. The noise amplitude can
be extracted by quadratically summing up the insignificant singular values (noise floor)
from Fig.4. Since the number of significant values is normally small compared to the
number of BPM’s it holds approximately for the BPM resolution:

1/2 .
Ores — (Z Alnmgnfct) ~ \/M : )\insignfct (4)
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Figure 4: Singular value spectrum with and without the BPM in the dispersive region.
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Figure 5: Residual dispersion function (deduced from the first spatial vector) in the
undulator region.
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Figure 6: Computed BPM resolution as a function of the sample size.

Note that in equation (1) we normalized all BPM - vectors by v MP and now we
multiplied the singular values back by v/M to obtain the resolution of a (typical) BPM.
If this normalization is correct we should obtain the same BPM resolutions for different
sample sizes. In Fig.6 the above procedure has been performed for randomly selected
sub-samples with different sizes. We find that the estimated BPM resolution does not
vary significantly with the sample size, as expected.

A different question is how the BPM resolution depends on the bunch charge. Since
the bunch charge varies significantly within the measured data sample one can filter out
different charge bins and repeat the analysis for those bunch charges. The result is shown
in Fig. 7.

Indeed we find some correlation of the BPM resolution with the bunch charge. For
data set 1 the resolution for charges below 0.9nC is about 50% lower than for charges
above 1.1nC. Note that the second data set was taken with stronger signal attenuation
as discussed above. For charges above 3nC the resolution becomes worse again, an effect
which is related to saturation of the BPM electronics.

5 Identification of Erroneous or Saturated BPM'’s

BPM’s that show an unusually large uncorrelated noise will cause the appearance of a
spatial vector that is close to 1 at the noisy BPM and practically zero elsewhere. Such an
eigenvector is often a clear indication for a bad or saturated BPM. As an example we show
measurements from the 20’th BPM in Fig. 8. This BPM saturates for bunch charges above
~ 3nC (which were filtered out in the previous examples) and shows “random” readouts
above this value. The figure shows beam position vs. charge and the corresponding
eigenvector.
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6 Conclusion

Using Model Independent Analysis (MIA) it is possible to analyze the natural orbit jitter
in TTF to extract data of practical interest. As an example we show the determination
of the residual dispersion function in the undulator region. We obtain typical values
of n, < 15mm. By determining the uncorrelated part of measured orbit jitter at the
individual BPM’s in the undulator, one can extract the noise limited resolution of the
BPM’s. For the present electronic setup and bunch charges above 2.5nC the resolution
is better than 5 um.
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