
TESLA Report 2003-32

FPGA based TESLA cavity SIMCON
DOOCS server design, implementation and application

Piotr Rutkowski, Ryszard S.Romaniuk, Krzysztof T.Poźniak, Tomasz Jeżyński, Piotr Pucyk

ELHEP Laboratory, Institute of Electronic Systems, Warsaw University of Technology
Michał Pietrusiński, Institute of Experimental Physics, Warsaw University

Stefan Simrock, DESY, Hamburg

ABSTRACT

A concise overview of the laboratory solution of the FPGA based TESLA cavity simulator and controller (SIMCON) is
presented. The major emphasis is put in this paper on the high level part of the system. There were described the
following steps of the system design and realisation: solution choice, design of system components, implementing the
solutions, introduction of the application, initial analysis of the working application. The paper is a first description of
the working DOOCS server for the FPGA based TESLA cavity SIMCON (which is a part of the LLRF subsystem). The
data gathered from the work of the DOOCS server promise for the system optimisation possibilities. The server will be
supplemented with the GUI in the next step of this effort. Throughout the work we will refer to the debated system as to
the TESLA SIMCON DOOCS server or in short the “simcon server”. The hardware layer of the TESLA cavity
SIMCON (to which the designed software refers to) was realized in a single FPGA Virtex chip by Xilinx (XC2V3000
development board by Nallatech).

Keywords: TESLA, Free Electron Laser, X-Ray FEL, Superconducting cavity control, LLRF system, FPGA, DOOCS,

Internal Interface Middleware, virtual hardware control systems, C++,

1. INTRODUCTION

The X-FEL facility and TESLA accelerator (TTF II phase), which base on the
superconducting technology, is under construction in Deutsches Elektronen Synchrotron in
Hamburg. The accelerator is controlled by the Low Level Radio Frequency (LLRF) system.
The LLRF consists of the hardware and the software components. The hardware equipment
is controlled by the Distributed Objected Oriented Control System (DOOCS) [1]. In
general, the DOOCS is expected to control all the hardware components in the X-FEL
facility and TESLA experiment. Since 2002 the ELHEP Group [2] is attempting to build a
part of the new generation of the LLRF systems for TESLA basing on the FPGA
technology. These attempts base on the previous positive experiences of the Group to
introduce the FPGA solutions in the large, distributed, measurement, control and diagnostic systems for the ZEUS and
CMS experiments [3]. This work presents a next attempt in this direction to build a part of the DOOCS system destined
to operate with the TESLA FPGA based cavity controller and simulator. Precisely, this work is a presentation of the
software development for the FPGA based TESLA cavity SIMCON DOOCS server in respect to the existing
environment and the hardware base developed so far at DESY. The article tries to describe in a systematic way the
current stage of the work from a big picture to the details.

The work consists of the following parts: 1- system overview, 2- hardware-software environment, 3- DOOCS sever
description, and 4- initial tests of the server properties. In the first part of the paper, the general idea of the work is
presented in the form of the overall system overview. Three major communication layers of the system were presented:
starting from the access to the hardware functionalities, through the intermediate (middleware) communication with
hardware to the control of the hardware parameters. The aims and advantages of such a three layer approach were
debated. The properties of the middleware communication system with the hardware was described in the previous

TESLA Report [4]. The second part describes some relevant aspects of the hardware-software environment in which the
designed system is expected to work. Especially the interactions between the two essential system layers are
emphasized. The third part debates the process of DOOCS server design, implementation and application. There are
described the used tools, class specification, programming specifics, server properties. The fourth part presents the
results of initial tests of the server properties and its interaction with the SIMCON hardware.

The hardware and software dependencies get more and more complicated with the advent of the new generations of the
FPGA technology (equipped with DSP capabilities) [9]. The software is able to penetrate deeply into the electronics
structure shaping more precisely its functionalities. This paper shows also this tendency, as the applied FPGA chip has a
number of DSP blocks. The work concludes with some indications concerning the future directions of research. These
directions include: control of multichannel SIMCON [4] hardware, running of the full plant simulation, system
exception handling, serving the system via an intelligent GUI over the DOOCS and the WWW, etc.

2. OVERVIEW OF FPGA BASED TESLA CAVITY SIMCON SYSTEM SERVED BY THE DOOCS

Throughout this work, a specific kind of the systematic approach was introduced for the design process of the software
layer for the TESLA cavity SIMCON system (a part of the LLRF) [4,7]. The aim of this approach is to keep the
software to reflect the hardware functionality as much consistent as possible. Three layers communication model has
been applied in the design of the whole TESLA cavity control system (Fig.1).
• On the top, there is a high level software layer that interacts indirectly with the hardware functionalities.
• The second layer is a special, middleware type, communication interface enabling the hardware access via a well-

defined and efficient mechanism [3]. The mechanism gives very precise access to the hardware BIOS with the
accuracy to a single bit. This layer may also be called a virtual hardware one. The suggested name for this layer is
Internal Interface [4].

• The lowest level is occupied by the physical hardware with the expected functionality implemented in particular
chips, circuits, devices, boards, racks, etc.

Due to the standardization and high efficiency of the Internal Interface [4], the hardware
design is more efficient and well coordinated with the control software layer, which is
driving the physical hardware equipment. The designed software can be implemented in
different hardware and communications environments and for a variety of application
purposes, not only in the LLRF system.

The DOOCS server, which is controlling the FPGA chip, is situated in the top layer of the
system design. It creates the high level software of the system. There are some initial a
priori conditions for the system design. The DOOCS server for the TESLA cavity
controller must be well coordinated with the existing DOOCS infrastructure. This
infrastructure includes Solaris operating system, recent DOOCS libraries (updated by
CVS) and DOOCS C++ classes methodology (DOOCS native classes are the core that the
developer will inherit his classes from).

Fig. 1 Three layer functional communication model assumed for the system design
of the TESLA cavity controller and simulation (SIMCON) served by the DOOCS.
The whole control system is composed of the graphical user’s interface (GUI), the server,
the communication and virtual hardware, and the physical hardware realized in FPGA.

The other design requirements are as follows. The designed server is required to be flexible
for the future development and upgrades. Frequent upgrades will definitely occur during
the preliminary stage of its development, before the FPGA based TESLA cavity SIMCON
system solution is not yet finished to the commissioning stage and then ready for the

industrial exploitation with the X-Ray FEL. These boundary conditions put now the developer in the focal point for the
commissioning of the whole system. The DOOCS server, via the GUI (DOOCS and WWW), is a final product

HIGH LEVEL
SOFTWARE

object oriented - C++

COMMUNICATION
II (Internal Interface) -

hardware access
interface

FUNCTIONALITY
algorithms fitted into

hardware

combining all hardware functionality for the end-users, which are: experiment operators, scientists, service engineers
and other clients of the system parts (humans and machines) i.e. FSM [4] etc.

Fig. 2 presents the three layer model of the hardware-software interaction in the system under design. It is a logical
extension of the basic model presented in fig.1. In the assumed design approach, each layer is separated from another by
internal middleware layers. This picture presents the design approach by illustrating it with a particular example. The
example shows a method to change the value of a particular physical hardware register from the level of the Graphical
User Interface. The full path is shown form the system operator to the level of the hardware. The left panel of fig.2
shows the functional blocks and particular functionalities used by the system, while the right panel shows transition of
the software layer from the C++ code of the GUI, through C/C++ of the Internal Interface to the VHDL code of the
virtual and physical hardware [4].

VHDL

C/C++

C++

Specific hardware
application

Control, monitor, diagnose
applications.

Based on system application and
environment specifics

Core - II access library
Low level hardware access
(based on Internal Interface)
USB, LPT, Ethernet ...

Internal Interface (II)
Core - hardware independent
Registry, memory accessing

Hardware Input/Output

Write(”A12",”0xfff”)

WriteII(0x000B,14,0xff)

VHDL Write

A12 = 0xfff
Register - name: A12

GUI

Fig. 2 Three layer implementation example of the FPGA based TESLA cavity SIMCON served by the DOOCS.

The aim of the DOOCS server for the FPGA based TESLA cavity controller and simulator is to:

a) provide DOOCS users with the access to the hardware (registers, memory),
b) control hardware with respect to the requested and implemented algorithms.

In order to achieve these aims, one must be equipped with the possibility to access efficiently the hardware. Here, the
efficiency means speed and accuracy. Thus, the precise software interface to the physical hardware layer must be
crated. This interface should be flexible enough to deliver the access to all of the FPGA chips in the system via a few
different paths. Theses paths include (among others) the intermediate Windows server and the communication links
over the USB or LPT [5]. The flexibility means also that changing of the access method to the hardware from one to the
other should have practically no impact on the inner logic of the server. In order to meet this requirement the server
must be designed in the standardized Objected Oriented Programming (OOP) style.

The SIMCON DOOCS server under consideration was designed in the OOP way, which gives the following
advantages:

a) Using the interface classes separates the users from the implementation specifics,
b) Server development is easier – the objects and their relations are easy to see and understand,
c) Debugging and bug fixing is faster because the system developer knows better what the C++ code does,
d) The understanding of the project by the team members can be much better, because the diagrams are used as

well as the common description language like UML is used.

The first version of the FPGA based TESLA SIMCON DOOCS server classes has been created. One should be able to
crate the server fitted to the exact needs of the user and equipped with the users’ control algorithm. The implemented
hardware interface has an access via the intermediate Windows server. The possibility to work over the direct access via
the LPT link from the Solaris environment is investigated and should bring the results soon.

3. HARDWARE-SOFTWARE SYSTEM ENVIRONMENT
FOR FPGA BASED TESLA CAVITY SIMCON SERVED BY THE DOOCS

The following section presents an overview of the SIMCON server system architecture. The architectural ideas were
realized and checked in operation in the real test environment. The software and hardware layers were checked
separately, as well as the interaction between them. In the end, the both layers create a unified and effectively working
environment.

VME crate

SUN

PC

FPGA Hardware logic

DOOCS server

Windows
Application

Hardware Software

USB

LPT

LPT
USB

LPT

Software communication path from the DOOCS server to the hardware via the Windows server

Software communication path from the DOOCS server to the hardware directly from SUN

Hardware communication path between system elements
Fig. 3 System overview of the FPGA based TESLA cavity SIMCON integrated with the dedicated DOOCS server. The signal paths

between various system blocks are indicated via different I/O ports.

The SIMCON DOOCS system under debate consist of two essential layers: the hardware and the software:

The hardware layer includes the following components:
1. VME crate situated in the Linac Hall,
2. FPGA development board (in the VME crate),
3. SUN – SunOS 5.8 (in the VME crate),
4. PC – Windows 2000, near the VME crate.

The software layer has the following components:
1. The DOOCS server (on the SUN),
2. Intermediate Windows Application with TCP/IP server (on the PC).

The system operation can be divided into two phases:

1. Accessing the hardware register via the intermediate Windows server (using the TCP communication
protocol),

2. Accessing of the FPGA registers directly from the Solaris environment (using LPT communication
interface) [4].

The data paths of these two operations phases were designated with the following abbreviation TCP and LPT
respectively, and presented schematically in fig.3.

Fig. 4 A photograph of the VME board used to construct the FPGA based TESLA cavity SIMCON system
components of the system were indicated.

Fig. 4 presents the FPGA board used in the experiments with the TESLA cavity SIMCON. The dev
the Virtex chip was mounted on a specially designed VME carrier board, fitting the classical VME
designed to work in the standard rack, near the accelerator. The major system functionality o
SIMCON is placed in the FPGA chip with the VHDL code. The board has the all I/O ports necess
the SIMCON function. These I/O ports are: USB, LPT and DAC/ADC. The DOOCS has interme
ports and to the FPGA (and other functionalities of the board) via these I/O ports.
USB
T
LP
DAC
Xilinx FPGA

. Location of the key

elopment board with
 crate. The board is

f the TESLA cavity
ary for realization of
diate access to these

4. OPERATION DESCRIPTION OF SIMCON DOOCS SYSTEM

According to the block diagram and signal paths presented in fig.3, there are two separate communication protocols
used by the system, the TCP and LPT. The TCP protocol based phase of the system operation can be described by the
following individual activities (steps):

Booting – The booting of the SIMCON system is performed via the USB link from the PC upon the operator’s request.
This starts all the other processes. The DOOCS server is exchanging data with the FPGA chip.

Read – The Doocs property on the SUN DOOCS server calls the application on the PC machine for the read process of
the relevant register value. The Windows application translates this call to the commands accessing the FPGA and
retrieving the data. The PC sends this data to the SUN. The DOOCS server converts the hardware hex value to the float
value, within the expected range.

Write – The Doocs property on the SUN DOOCS server converts the float value to the hardware hex value and calls
the Windows application on the PC for the writing process to the proper register. The application translates this call to
the commands accessing the FPGA chip and writing data. To verify the process, the PC retrieves the data from the
register and sends the data back to the SUN. The DOOCS server checks the difference between the write and read
values and the logics (which is embedded in the server) reacts accordingly to the user expectations (i.e. server
shutdown or just writing the fact to the log file).

The LPT protocol based phase of the system activities can be described by the following individual activities (steps):

Booting – The booting is performed via the USB link from the PC1 machine upon the operator’s request. This starts all
the other processes. During this phase, the data is being exchanged between the DOOCS and the FPGA chip.

Read – The Doocs property on the SUN DOOCS server calls a method responsible for the read of the relevant register
value. Within this method, the commands accessing the FPGA and retrieving the data are executed. The conversion of
the hardware hex value to the floatvalue, within expected range is performed at the end of this operational step.

Write – The Doocs property on the SUN DOOCS server calls the method responsible for the write process to the
relevant register value. Within this method, the commands accessing the FPGA chip like writing, retrieving, and
verifying the data are executed. The conversion of the hardware hex value to the float value within the expected range is
performed at the end of this step of the process.

5. TESLA CAVITY SIMCON DOOCS SERVER – SOFTWARE DESCRIPTION

The software for TESLA cavity SIMCON DOOCS server was written in C++. Fig. 5 presents the SIMCON system
overview. The DOOCS client can access the FPGA chip hardware via the special classes (inherited from the DOOCS
native D classes). These classes access the FPGA chip hardware by the TCP/IP communication protocol with the
Windows application. The Windows application communicates with the FPGA via the LPT interface. The TCP/IP
communication layer protocol is hidden in the classes implementing the hardware access interface.

The provided D FPGA classes offer the log mechanism to the log file. Any unexpected, strange behaviour of the
SIMCON DOOCS server may be easily reported to the user. The basic exceptions, which are handled, are reported to
the log file automatically.

The server is supposed to provide the end-user, having access to the system via the DOOCS client, with the access to
the expected FPGA registers and the memory by more than a single path (i.e. via the TCP/IP or the LPT I/Os) but also
in the transparent manner for the DOOCS client. It means, that from the clients’ point of view, there is no difference

1 Nallatech (manufacturer of the used development board with Xilinx chip) doesn’t provide currently drivers for the
Solaris environment. – In the future, other method will be implemented. One of them is to use proprietary protocol and
to boot the FPGA directly from the SUN. However, the method may be difficult and have confined universality. That is
why this paper doesn’t include this as an option. This option needs further investigation.

between the underlying FPGA communication mode implementations. However, there can be a difference in the
performance. The write/read process time may differ for each of the communication methods.

5.1 Communication overview of the string TCP/IP based protocol
The communication between the D FPGA classes and the Windows application is implemented by the string commands
and exchange of the mutual responses. There is a set of commands that Windows server understands and can respond
to, in a well-defined way. The client connected to the Windows server may request writing, reading to the FPGA
registers and to the memory. Other commands, based on the users’ needs are (or easily can be) provided.

DOOCS ELHEP server

Appl ication,
TCP/IP server

T fpga_tcp
(implements
Ifpga_access)

Virtex
board

TCP/IP

LPT link

SOLARIS

WINDOWS

DOOCS cl ient

D_spectrum_fpga
(inheri ted from

D_spectrum)

D_name_fpga
(inheri ted from

D_name)

D_float_fpga
(inheri ted from

D_float)

T fpga_lpt
(implements
Ifpga_access)

LPT

fpga_server.log

Fig. 5 FPGA based TESLA cavity SIMCON DOOCS System - C++ overview. Two OS cooperate with the TCP/IP application server
residing on the MSW. The SIMCON board (with Virtex) has access to the MSW OS via the LPT link. The SIMCON DOOCS server,
residing in SOLARIS OS communicates with the SIMNCON board via the LPT link.

The description of the commands exchanging mechanism between all components of the system under design (Fig. 6) is
as follows:
• The client application sends the request to the Windows application, with the TCP/IP server running.
• The server receives the string command, parses it to get the information which one of the FPGA registers to read

or to write.

• The Windows application accesses the expected hardware register and performs the read or write operation.
• According to the result of the operations, during the above steps, the return string is prepared and is sent back to the

client application. This ends the exchange mechanism protocol.

TCP/IP connection

Matlab

DOOCS

...

C++ Aplication
"#A22 11 $"

"#S A22 11 #G A22 #RUN $"

FPGA

LP
T

1

4

3

2

text strings

Fig. 6 The string communication mechanism between the Windows application and all of its possible clients in the FPGA based
TESLA cavity SIMCON DOOCS server under design.

The string exchange method of communication has its clear advantages and disadvantages. The main disadvantage in
the string communication method is the large amount of data that needs to be transferred via the TCP/IP link. The need
of transmission of the binary messages could reduce the amount of the data. On the other hand, a simple method string
exchange makes it feasible to connect the different applications to the Windows server, which is directly commanding
over the FPGA hardware. In this project, this feature was broadly applied [6][7]. The second reason for application of
string communications was the fact that intermediate Windows server is a temporary solution, in comparison to the
direct communication between the DOOCS and the FPGA via the LPT port and link. The crucial factor for making the
operation with the FPGA from the DOOCS possible via the LPT was tight time schedule of the system application.
Further work is carried to use other ports and protocols for the purposes of the internal system communications.

5.2 Overview of the DOOCS server classes for the TESLA cavity SIMCON system

The (FPGA based TESLA cavity) SIMCON DOOCS classes design diagram is presented in the Fig. 7. To make the
diagram more comprehensible the following presentation colours were applied:

• D classes are filled with the blue colour.
• Interface classes are filled with the green colour.
• Exception classes are filled with the orange colour.

Fig. 7 Class diagram showing all interdependencies between the TESLA cavity SIMCON DOOCS classes.

6. CLASSES DETAIL

Below, there is a description of the all classes used in the server designed for the FPGA based TESLA cavity
SIMCON. The classes are in the alphabetic order with some comments. Some of the descriptions may be
trivial, but they are included for the instruction and documentation purposes. The class description include the
following items: Class name, inherits from (extends), field summary, comment, and method summary.

Class D_float

class D_float

DOOCS native D class. It enables writing and reading float
value from the DOOCS server

Class D_float_fpga

D_float
 |
 +--D_float_fpga

class D_float_fpga

Extends:
D_float, Tlog_name

Extended DOOCS D class with fpga access via the
IFpga_acess interface.
In order to allow log warnings and exceptional situations this
class inherits from Tlog_name also

Field Summary

Private
Ifpga_access

Fpga_access

private Iu2_str U2_str

Class D_name

class D_name

DOOCS native D class. It enables writing and reading char*
value from the DOOCS server

Class D_name_fpga

D_name
 |
 +--D_name_fpga

class D_name_fpga

Extends:
D_name, Tlog_name

Extended DOOCS D class with fpga access via the
IFpga_acess interface.

In order to allow log warnings and exceptional situations this
class inherits from Tlog_name also

Field Summary

private
Ifpga_access

Fpga_access

Class D_spectrum

class D_spectrum

DOOCS native D class. It enables writing and reading table
of float values from the DOOCS server

Class D_spectrum_fpga

D_spectrum
 |
 +--D_spectrum_fpga

class D_spectrum_fpga

Extends:
D_spectrum, Tlog_name

Extended DOOCS D class with fpga access via the
IFpga_acess interface.
In order to allow log warnings and exceptional situations this
class inherits from Tlog_name also

Field Summary

private Ifpga_access Fpga_access
private Iu2_str Iu2_str

Method Summary

public
void

fill_spectrum_buf(Tbuf_values)
Additional method to basic D_spectrum methods'
set. Gets values from the fpga hardware and
writes to D_class spectrum storage

Class Efpga

class Efpga

Exception class.
Exceptions generated by the classes implementing
Ifpga_access.

Class Efpga_diff

Efpga
 |
 +--Efpga_diff

class Efpga_diff

Extends:
Efpga

Message - "requested value different from returned"

Class Efpga_empty

Efpga
 |
 +--Efpga_empty

class Efpga_empty

Extends:
Efpga

Message - "no data retrieved from the server"

Class Efpga_srv

Efpga
 |
 +--Efpga_srv

class Efpga_srv

Extends:
Efpga

Message from the server - "unknown server error"

Class Efpga_wait

Efpga
 |
 +--Efpga_wait

class Efpga_wait

Extends:
Efpga

Message from the server - "waiting for the data"

Class Emat

class Emat

Exception class.
Mathematical convertion operation exception.
Example - value exceeds defined maximal range

Class Ifpga_access

abstract class Ifpga_access

Interface class to the fpga hardware. It enables all methods
required to access fpga registers and memory. Interface has
the least method list needed - in order to keep class' methods
easily understandable. This interface is expected to be
implemented as:
1. TCP/IP intermediate Windows server.
2. LPT interface
3. Ethernet (connection from SUN to PCs on llrf board)
Interface should report abnormal operation as exception
from well defined set of exceptions - derived from E_fpga

Method Summary

public abstract
void

BootFile(std::string)
Possibility of booting fpga with
specified field name

public abstract
std::string

Read()
Reading value from fpga register

public abstract
Tbuf_values

ReadBuf()
Reading values from fpga
buffer/memory. Tbuf_values is a user
defined type - collection of strings.

public abstract
void

Write(std::string)
Writing value to fpga register

public abstract
void

WriteBuf(Tbuf_values)
Writing values to fpga
buffer/memory. Tbuf_values is a user
defined type - collection of strings.

public abstract
std::string

WriteRd(std::string)
Writing and Reading value to fpga
register. In one method full read-
write path is executed. Data
validation should be performed and in
case of difference between written
and read values than proper exception
should be thrown (Efpga_diff)

Class Iu2_str

abstract class Iu2_str

Convertion between float value and hex value (in u2 code)
in string form. This convertion is needed by the hardware

access interface - Ifpga_interface communicates with
underlaying fpga in hex format.

Method Summary

public abstract
long double

GetFloat(std::string)

public abstract
std::string

GetString(long double)

Class Tfpga_clnt

class Tfpga_clnt

TCP/IP connection basic handling (open, close). One object
of this class is expected to handle connection for all objects
of Tfpga_tcp.

Class Tfpga_tbuf

Ifpga_access
 |
 +--Tfpga_tcp
 |
 +--Tfpga_tbuf

class Tfpga_tbuf

Extends:
Tfpga_tcp

Full Ifpga_access implementation. Access to memory.
Methodes ralated to fpga registers throws exceptions (they
are not implemented in this class)

Class Tfpga_tcp

Ifpga_access
 |
 +--Tfpga_tcp

class Tfpga_tcp

Extends:
Ifpga_access

First implementation of the Ifpag_access - via the TCP/IP
intermediate Windows server. Basic methodes to access
fpga. Needs to be inherited from and to implement main
Ifpga_access interface methodes. It is not a full interface - it
contains workhorse methods for basic operation in TCP/IP
communication.
Field Summary

private Tfpga_clnt Fpga_clnt
protected std::string Name

Method Summary

protected
std::string

Recv()

protected void Recv0()
protected

Tbuf_values
Recvs()

protected void Send(std::string)

Class Tfpga_treg

Ifpga_access
 |
 +--Tfpga_tcp
 |
 +--Tfpga_treg

class Tfpga_treg

Extends:
Tfpga_tcp

Full Ifpga_access implementation. Access to hardware
register. Methodes ralated to fpga buffers throws exceptions
(they are not implemented in this class)

Class Tlog_name

class Tlog_name

Log writnig class. Enable logging to specified file. It
automatically adds name and date in each entry written to
file
Method Summary

public void WriteLog()

1.1.1. Class Tu2_str

Iu2_str
 |
 +--Tu2_str

class Tu2_str

Extends:
Iu2_str

Implementation of Iu2_str. Convertion of hex code to float
within expected range.

7. CODE EXAMPLE

The basic operation of the application with the described classes is presented below. There is shown a process of
creating the two objects of classes accessing the FPGA register - named “SI” - and the FPGA memory named -
“VOUT_I_B”.

Table 1. Declaration examples
C++ code Comment

FILE *log_file_; log file handler
Tu2_str* U2_str; float->hex convertion

Tfpga_clnt* Fpga_clnt; TCP/IP conn handling
Tfpga_treg* Fpga_treg_SI; fpga register access
D_name_fpga* Name_fpga_SI; reg access – D class
Tfpga_treg* Fpga_treg_SQ; fpga register access

D_float_fpga* Float_fpga_SQ; reg access – D class

Tu2_str* U2_str_dac; float->hex convertion
Tfpga_tbuf* Fpga_tbuf_voutI; fpga memory access
D_spectrum_fpga* Spectrum_buf; memory access – D class

Table 2. Initialisation of variables - examples with comments.

C++ code Comment

if ((log_file_ = fopen("fpga_server.log","a+")) ==
NULL)
{
 fprintf(stderr,"Cannot open log file
 fpga_server.log!");
 exit(-1);
}

opening fpga log
file: fpga_server.log

U2_str = new Tu2_str(-1,1,18); convertion float ->
hex for 18 bits

Fpga_clnt = new Tfpga_clnt("131.169.149.195",10024); TCP/IP connection
handling

Fpga_treg_SI = new Tfpga_treg("SI",Fpga_clnt);
Name_fpga_SI = new D_name_fpga("TEST.SI text",
 dynamic_cast<Ifpga_access*>(Fpga_treg_SI),
 log_file_);

operations to deliver
D class for the fpga
register

Fpga_treg_SQ = new Tfpga_treg("SQ",Fpga_clnt);
Float_fpga_SQ = new D_float_fpga("TEST.SQ float",
 dynamic_cast<Ifpga_access*>(Fpga_treg_SQ),
 U2_str,log_file_);

operations to deliver
D class for the fpga
register with
float -> hex
convertion

U2_str_dac = new Tu2_str(-1,1,14);
Fpga_tbuf_voutI = new
Tfpga_tbuf("VOUT_I_B",Fpga_clnt,1000);
Spectrum_buf = new D_spectrum_fpga("OUT_I buffer",
 1000,this,Fpga_tbuf_voutI,U2_str_dac
 log_file_);

operations to deliver
D class for the fpga
memory with
float -> hex
convertion

8. RESULTS

The first versions of the DOOCS servers for the TESLA cavity SIMCON hardware control have been developed. The
initial tests of the server properties have been investigated. The VME – FPGA board with the Virtex chip to be
controlled via the server contains the full models of the cavity controller and simulator (SIMCON). The controller is in
its basic version and single-channel. Both of these functionalities (simulation and control) have to be operated
efficiently by the DOOCS server. Below, we describe these features separately and then together.

8.1. DOOCS server for the TESLA cavity Simulator
In the Fig. 8 below, the result of the working DOOCS server for the TESLA cavity simulator is presented. The
RPC_TEST client application is connected to this server. The server provides the user with the access to the simulator
parameters that are embedded in the FPGA registers. One can easily change the desirable cavity simulator parameter
within the DOOCS system environment. This is done by the choice of the parameters in the standard DOOCS window.

Access to the
fpga registers
Manipulation
on cavity
simulator
parameters
possible

Fig. 8 The

8.2. DOOCS server for the TESLA
Fig. 9 visualizes the FPGA readout from
controller output, there is a buffer imp
step, after the DOOCS server startup
purposes, the shape of the written sign
property, reflecting the FPGA buffer c

Fig. 9 T

The next figure 10 presents the result o

Parameters of the cavity simulator
model
 example of the TESLA cavity simulator DOOCS server.

cavity Controller
 one of the chosen buffers. The write and read operations are performed. On the

lemented which can be accessed for the write and read operations. In the first
, an exemplary signal envelope is written to the buffer. For the illustration
al is sine wave. When running, the server updates periodically by the DOOCS
ontent.

he example of the TESLA cavity controller server.

f DOOCS server operation with the real signal from the real TTF II cavity.

Fig. 10 DOOCS server window for the real signal operation example.

8.3. DOOCS server for the TESLA cavity SIMCON
In the Fig. 11 below the result of the TESLA cavity SIMCON is presented. Through the RPC_TEST the user can read
and write the SIMCON parameters simultaneously. In a single DOOCS server, the TESLA cavity simulator and
controller functionalities are combined.

Cavity
simulator
parameters.
Controller
tables (set
points, feed
forward etc.

Fig. 11 DOOCS server window for the TESLA SIMCON operation example.

This server is being tested and is prepared as a main solution for the end user. It gives a great opportunity to work with
the bundled simulator-and-controller in the various configurations: only simulator active, only controller active,
simulator and controller in the loop. A choice of the number of different loops is possible, what is described in [7].

Fig. 12. The SIMCON window for the readouts presented below in fig. 13.

Fig 13. a) „Fish like” signal before detection (internal parameter - MUX_DAQ4 = 1); b) Cavity output I (MUX_DAQ4
= 3); c) Cavity output Q (MUX_DAQ4 = 4) ; d) Cavity detuning (MUX_DAQ4 = 2).

Fig. 14. MatLab window [10] showing the same signals as presented in the DOOCS server window in fig.13.

9. CONCLUSIONS

The first FPGA based TESLA cavity SIMCON DOOCS servers have been created and preliminary test have been
accomplished. Basing on this initial experience, a trial to enclose the debated server development in the standardised
development procedures of the existing DOOCS environment was successfully demonstrated. A three layer based
design approach to the server development and its interaction with the FPGA hardware was assumed. These layers are:
high-level software layer, communication layer and hardware layer. This approach provide the system designer with the
following advantages:

• Design of each layer is independent from the other (with established interfaces between layers),
• Task are divided between the experts in each area,
• Development can be performed for each layer independently,
• Responsibility for each level development is well defined.

The optimal server design for a complex control system is an iterative and long lasting process. The knowledge and
understanding gathered from the first implementation can lead to a continuous process of the software upgrade. The
current aim is to enrich the functionalities of the electronics, what has been offered recently by the new series of the
FPGA chips, equipped with DSP blocks. The DOOCS control server should keep up with these advances of the
electronics and photonics systems. The DOOCS server should also react to the changing needs of the system operators.
The DOOCS server should add to the system reliability and ease the system maintenance.

The FPGA based TESLA cavity SIMCON system performance and reliability tests are now being performed. The
DOOCS server participates in these tests. The new system functionalities are considered to be added like: multiple
cavity control and simulation, cavity parameter identification, exception handling, cavity microphonics control, FSM,
etc. The designed DOOCS server works now continuously with the FPGA based TESLA cavity SIMCON and the
measurement and behaviour data are gathered. The results will be presented in the next TESLA Report.

10. REFERENCES

[1] http://doocs.desy.de
[2] http://tesla.desy.de/~elhep
[3] Proceedings of SPIE, Bellingham, WA,USA, Vol. 5125, 2003 [www.spie.org]
[4] K.T.Poźniak, et. Al., Parameterized control layer of FPGA based TESLA cavity SIMCON, TESLA Report 2003-30;

http://tesla.desy.de/new_pages/TESLA_Reports/2003/pdf_files/
[5] http://tesla.desy.de/doocs/doocs_gen/fsm.html
[6] http://tesla.desy.de/~elhep/home/prutkows/FPGA_DOOCS.pdf
[7] T. Czarski, et. Al., Cavity Digital Control Testing System by Simulink Step Operation Method for TESLA Linear

Accelerator and Free Electron Laser, TESLA Report 2003-20
[8] T.Czarski, et. al., Cavity Control System, Advanced Modelling and Simulation for TESLA Linear Accelerator,

TESLA Report, 2003-06
[9] K.T. Poźniak, et al., Functional analysis of DSP blocks in FPGA chips for application in TESLA LLRF system,

TESLA Report 2003-29
[10] T.Czarski et al., TESLA cavity modelling and digital implementation with FPGA technology solution for control

system, TESLA Report 2003-28

	ABSTRACT
	1.INTRODUCTION
	2.OVERVIEW OF FPGA BASED TESLA CAVITY SIMCON SYSTEM SERVED BY THE DOOCS
	3. HARDWARE-SOFTWARE SYSTEM ENVIRONMENT
	FOR FPGA BASED TESLA CAVITY SIMCON SERVED BY THE DOOCS
	4. OPERATION DESCRIPTION OF SIMCON DOOCS SYSTEM
	5. TESLA CAVITY SIMCON DOOCS S�
	5.1 Communication overview of the string TCP/IP based protocol

	�
	6. CLASSES DETAIL
	
	Class D_float
	Class D_float_fpga
	Class D_name
	Class D_name_fpga
	Class D_spectrum
	Class D_spectrum_fpga
	Class Efpga
	Class Efpga_diff
	Class Efpga_empty
	Class Efpga_srv
	Class Efpga_wait
	Class Emat
	Class Ifpga_access
	Class Iu2_str
	Class Tfpga_clnt
	Class Tfpga_tbuf
	Class Tfpga_tcp
	Class Tfpga_treg
	Class Tlog_name
	Class Tu2_str

	CODE EXAMPLE
	RESULTS
	DOOCS server for the TESLA cavity Simulator
	DOOCS server for the TESLA cavity Controller
	DOOCS server for the TESLA cavity SIMCON

	CONCLUSIONS
	REFERENCES
	[2] http://tesla.desy.de/~elhep
	[4] K.T.Poźniak, et. Al., Para�

