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Abstract

Numerical prediction of the performance of charged particle accelera-
tors is essential for the design and understanding of these machines. Meth-
ods to calculate the self-fields of accelerated particles, the so-called space-
charge forces, become increasingly important as the demand for high-quality
bunches increases.

We report on our development of a new 3D space-charge routine in the
General Particle Tracer (GPT) code. It scales linearly with the number of
particles in terms of CPU time, allowing detailed design studies with over
a million sample particles on a normal PC. The model is based on a non-
equidistant multigrid Poisson solver that has been constructed to solve the
electrostatic fields in the rest frame of the bunch on meshes with large aspect
ratio. Theoretical and numerical investigations of the behaviour of SOR re-
laxation and PCG method on non-equidistant grids emphasize the advantages
of the multigrid algorithm with adaptive coarsening.

Numerical investigations have been performed with a selected range of
cylindrically shaped bunches (from very long to very short) spanning a wide
range of recent applications. The application to the simulation of the photoin-
jector at the Eindhoven University of Technology demonstrates the power of
the new 3D routine.

AMS subject classification: 65N06, 65N55, 65Z05
Key words: trajectories of charged particles, non-equidistant mesh, finite differ-
ences, multigrid methods, Poisson solvers.

1 Introduction

Nowadays, charged particle accelerators play an important role for scientific re-
search as well as for medical and industrial applications. They typically accelerate
small bunches of charged particles in time varying electromagnetic fields. A com-
monly used figure of merit of the performances scales with the total charge per
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bunch divided by the area occupied in position-momentum space. Since particles
of equal charge repel each other due to space-charge forces, it is difficult to pack
a high charge in a small volume. For this reason, the calculation of space-charge
forces is an important part of the simulation of the behaviour of charged particles
in these machines. As the quality of the charged particle bunches increases, so do
the requirements for the numerical space-charge calculations.

Demanding applications such as high-energy linear colliders and self-amplified
spontaneous emission free electron lasers (SASE-FELs) require electron bunches
of a very specific shape, where any anomaly severely degrades the final perfor-
mance. The requirements of new machines like the linear accelerator TTF (TESLA
Test Facility) at DESY [2] are for example so tight that effects like non-uniform
emission from the photo-cathode and non-cylindrically symmetric fields caused by
side-coupled cavities have an effect on the output power. Studying these effects
requires 3D calculations with a precision matching the quality of the bunch. This
full 3D treatment is particularly challenging because the bunches typically have
varying shape during their path through the accelerator ranging form very short
(’pancake shape’) at instantiation to very long (’cigar shape’) after acceleration.

The discretization of Poisson’s equation necessary for the calculation of space
charge forces requires for those bunches either equidistant meshes with a huge
number of unknowns or non-equidistant meshes which have a high aspect ratio.
The aspect ratio of a mesh we define by Amesh � hmax�hmin, where hmax and hmin de-
note the global maximal and minimal step size, respectively. Most Poisson solvers
have serious problems with both discretization types.

In this paper we give a new approach of solving Poisson’s equation by a ge-
ometric multigrid technique for non-equidistant meshes. The adaptive coarsening
described in algorithm 1 is crucial for this method. The goal is that the numeri-
cal effort of the resulting algorithm scales linear with the number of mesh nodes
on non-equidistant grids as well as on equidistant grids. In section 3 and 4 we
work out how this property compares to the behaviour of other Poisson solvers on
non-equidistant meshes with large aspect ratio.

The numerical investigations of section 4 present tests with cylindrically shaped
electron bunches varying according to real life applications from ’cigar’ to ’pan-
cake’ shape. An application of the new 3D space-charge routine is given in sec-
tion 5 with the simulation of the photoinjector (also called: electron gun) developed
at the Eindhoven University of Technology.

Although we consider in this paper the special problem of space-charge calcu-
lations of charged particle bunches, discretizations with large aspect ratio are al-
ways required, where structures with small details are involved. Usually the aspect
ratio is restricted to ensure the convergence of the implemented iterative solvers:
this affects the creation of Finite Element meshes as well as grids generated by the
Finite Integration Technique [15] (see section 2). Here a rule of thumb is to choose
Amesh � 10. In our application we allow much higher values for Amesh (see sec-
tion 4) in order to realize an appropriate resolution of the charged particle bunch
with a relatively small number of mesh lines.
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2 3D Space-Charge Calculation Based on a Multigrid
Poisson Solver Adapted for Non-Equidistant Meshes

The space-charge calculations are performed within the tracking procedure, where
the trajectories of M macro- or sample particles are computed by means of the
relativistic equations of motion given by [10, 12]

dγivi

dt
�

q
m
�Ei � vi�Bi��

dxi

dt
� vi �

γivi�
γiv2

i �c2 �1
� i � 1� � � � �M�

(1)

Here, xi and vi are the position and the velocity of the macro-particle i, q and m
are the charge and the mass of an elementary particle, where the macro-particles
represent the distribution of all particles in a bunch. Further γi :� �1� v2

i �c2��1�2

denotes the Lorentz factor and c the speed of light. The electric field Ei and the
magnetic flux Bi are the superposition of external and self-induced fields (the so-
called space-charge forces) at the position of the i-th macro-particle. The same time
the positions of the particles change also the space-charge field changes and has to
be recomputed in each time step of the numerical integration of the relativistic
equations of motion (1). Space-charge fields of an accelerated bunch have both an
electric and a magnetic field component. A useful picture is that the electric part
is caused by Coulomb repulsion, where the magnetic part is caused by the fact that
moving particles represent a current. A convenient numerical method to calculate
these fields is to determine them in a frame traveling with the same velocity as the
charged particle bunch (rest frame). In this frame, the magnetic fields are negligible
as long as the velocity differences are below the speed of light. The resulting
electric field in the rest frame denoted by E� is then accurately described by an
electrostatic potential ϕ in the form of E� � �gradϕ. This electric field can be
transformed to yield both the electric and the magnetic fields required in (1) by
means of a Lorentz transformation [10].

The focus of this paper is the efficient calculation of these space-charge fields,
i. e. the electrostatic potential ϕ in the rest frame of the bunch. Therefore we
developed a geometric multigrid method adapted to non-equidistant grids. The
determination of the potential requires the solution of Poisson’s equation of the
form

�∆ϕ �
ρ
ε0

in Ω� �
3 �

ϕ � g on ∂Ω�
(2)

where ε0 denotes the dielectric constant. The charge density ρ is determined on
a non-equidistant grid with mesh lines distributed according to the distribution of
the particles in the bunch (see Figure 1). More precisely, this mesh is generated
on a box Ω � �ax�bx�� �ay�by�� �az�bz�. The x-coordinate is discretized by Nx

subintervals hx�0, hx�1, � � � , hx�Nx�1 with bx� ax � ∑Nx�1
i�0 hx�i. Analogously, the y-

and z-coordinate are discretized by Ny and Nz subintervals, respectively. Further
we introduce

h̃x�i �
hx�i�1 �hx�i

2
� i � 1� � � � �Nx�1
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(h̃y�i, i � 1� � � � �Ny and h̃z�i, i � 1� � � � �Nz in the same way) which is known as mesh
spacing on the dual grid. The discretization of Poisson’s equation with second
order finite differences on the above described non-equidistant mesh leads to the
following system of equations

h̃y� j h̃z�k

�
� 1

hx�i�1
ϕi�1� j�k �

�
1

hx�i�1
� 1

hx�i

�
ϕi� j�k�

1
hx�i
ϕi�1� j�k

�
� h̃x�ih̃z�k

�
� 1

hy� j�1
ϕi� j�1�k �

�
1

hy� j�1
� 1

hy� j

�
ϕi� j�k�

1
hy�i
ϕi� j�1�k

�
� h̃x�ih̃y� j

�
� 1

hz�k�1
ϕi� j�k�1 �

�
1

hz�k�1
� 1

hz�k

�
ϕi� j�k�

1
hz�k

ϕi� j�k�1

�
� h̃x�ih̃y� j h̃z�k fi� j�k

for i � 1� � � � �Nx � 1, j � 1� � � � �Ny � 1, k � 1� � � � �Nz � 1. The same system of
equations is obtained in the field of computational electrodynamics with the ap-
plication of the Finite Integration Technique (FIT) which has been introduced by
Weiland [15].

Making use of the Kronecker product for matrices ’�’ (defined e. g. in [7])
these equations read in matrix vector notation as

Aϕ� H̃z� H̃y� H̃x f �

with
A � H̃z� H̃y�Ax � H̃z�Ay� H̃x �Az� H̃y� H̃x (3)

and further

H̃x :� diag�h̃x�1� h̃x�2 � � � � h̃x�Nx�1��

Ax :�

�
�������

�
1

hx�0
� 1

hx�1

�
� 1

hx�1

� 1
hx�1

�
1

hx�1
� 1

hx�2

�
� 1

hx�2

. . .

� 1
hx�Nx�2

�
1

hx�Nx�2
� 1

hx�Nx�1

�

�
������	

�

The diagonal matrices H̃y and H̃z are defined analogously to H̃x and the finite dif-
ference matrices Ay and Az analogously to Ax. Note the different dimensions of
the matrices corresponding to the number of mesh lines in every coordinate direc-
tion. The vectors f � � fi� j�k�

Nx�1�Ny�1�Nz�1
i�1� j�1�k�1 and ϕ � �ϕi� j�k�

Nx�1�Ny�1�Nz�1
i�1� j�1�k�1 contain

the values of the right hand side and the potential at the mesh points, respectively.

Figure 1: Mesh line positions ((x�y)–plane) for a Gaussian charge density. The
vertical axis shows the total charge in each mesh box.
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Generally, multigrid algorithms work on a certain number of grids getting
coarser and coarser. Operating on equidistant meshes the coarser grids are ob-
tained by removing every second mesh line. This strategy can also be applied for
non-equidistant meshes with step sizes which do vary not too much [1]. On grids
with large aspect ratio Amesh this scheme would completely fail because the aspect
ratio on the coarser grids would not be reduced but maintained or (as in our appli-
cation) enlarged. Hence the convergence would be slowed down considerably [8].

Detailed descriptions of the multigrid technique can be found for instance in [1,
4]. Here, we explain only our newly developed coarsening strategy. The objective
of the coarsening is to obtain a nearly equidistant grid on a certain coarse level.

Algorithm 1 Coarsening for Non-Equidistant Meshes

Input: Mesh lines of the discretization of Poisson’s equation.

While the number of mesh lines on a certain level is greater than a fixed number
(� 3) do

� For δ � 	1�4�1�6�1�7�2�0
 do:

For every coordinate direction: Consider two neighboring step sizes
hj and hj�1.
If δhj � hmin or δhj�1� hmin, the mesh line between this two step sizes
is removed and the next step sizes to be considered are hj�2 and hj�3,
else the mesh line between these steps is not removed and the next steps
to be considered are hj�1 and hj�2.

� The mesh with the smallest Amesh is chosen as the next coarser level.

Output: Sequence of coarser levels with decreasing aspect ratios. Exceptions,
where the aspect ratio increases on some level in between are possible.

Remark: Numerical studies have shown that δ chosen as δ � 1�6 or δ � 1�7 pro-
vides the best multigrid convergence. Since some discretizations require a more
rigorous coarsening strategy to get mesh lines removed the range for δ is consid-
ered more widely. The factor δ can differ from one level to the next. �

The multigrid scheme applied for the numerical studies has been performed
as V-cycle with the following components: two pre-smoothing steps of red-black
and two post-smoothing steps of black-red Gauss–Seidel relaxation, further full-
weighting restriction and trilinear interpolation as grid transfer operators. This
special choice ensures the multigrid scheme to be a positive and symmetric oper-
ator which is required for the construction of multigrid preconditioned conjugate
gradients (MG-PCG) [6, 5]. The multigrid preconditioner is applied with two V-
cycles. The MG-PCG has no advantage compared to MG if the coarsening has an
optimal result, that is, if it provides coarser meshes with strictly decreasing aspect
ratio. Otherwise MG-PCG has a stabilizing effect [9]. Numerical investigations
for space-charge calculations with other multigrid components can be found in [9].
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3 Comparison with other Poisson Solvers for High Mesh
Aspect Ratio

In this section we compare our multigrid Poisson solver to widely used relaxation
schemes like Gauss–Seidel iteration or the SOR method and (preconditioned) con-
jugate gradient ((P)CG) algorithms under the special aspect of meshes with high
aspect ratio.

It is well known for equidistant grids that the multigrid method provides opti-
mal convergence rates while relaxation and CG methods considerably slow down
the same time the step size of the discretization decreases [4]. The effect of slow
convergence is enforced on meshes with large aspect ratio.

The study of the convergence behaviour of the mentioned Poisson solvers re-
quires the knowledge of the eigenvalues of the system matrix A. Since we cannot
calculate these eigenvalues for a general mesh spacing we consider a mesh with
different mesh sizes in each coordinate direction given by

hx �
1
Nx

� hy �
1
Ny

� hz �
1
Nz

� (4)

In this setting we regard an anisotropic mesh with

hx �
1
N

� hy �
1
N

� hz � α
1
N

� (5)

as mesh with large aspect ratio, where α is assumed to be small with α� 1. Thus
the aspect ratio yields Amesh �

1
α . Although the anisotropic mesh is a special case

for a mesh with high aspect ratio if α becomes small, the following investigations
demonstrate the main effect of a large aspect ratio on the convergence. The nu-
merical experiments will show that the convergence behaviour is similar on more
general non-equidistant meshes.

The eigenvalues of the system matrix A can be conveniently derived from the
tensor product representation (3) [7]. On the mesh (4) the matrices Ax, Ay and Az

achieve the well-known representation of second order finite differences. Taking
for example Ax we obtain

Ax �
1
hx

�
������

2 �1
�1 2 �1

. . . . . . . . .
�1 2 �1

�1 2

�
�����	

�

which has the eigenvalues

λx�i �
4
hx

sin2
�π

2
hxi
�

� i � 1� � � � �Nx�1�

Hence the whole system matrix A has the eigenvalues

λi� j�k � 4



hyhz

hx
sin2

�π
2

hxi
�
�

hxhz

hy
sin2

�π
2

hy j
�
�

hyhz

hx
sin2

�π
2

hzi
��

�

i � 1� � � � �Nx�1� j � 1� � � � �Ny�1� k � 1� � � � �Nz�1�

(6)
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taking into account that h̃x � hx, h̃y � hy and h̃z � hz on the grid given by (4). Analo-
gously to the equidistant case we have the following estimation for the eigenvalues

λ1�1�1 � λi� j�k � λNx�1�Ny�1�Nz�1

with
λ1�1�1 � 12hxhyhz (7)

and

λNx�1�Ny�1�Nz�1 � 4
h2

yh2
z �h2

xh2
z �h2

xh2
y

hxhyhz
� (8)

On the anisotropic mesh (5) these inequalities verify to

λ1�1�1 � 12αh3 (9)

and

λN�1�N�1�N�1 � 4
2α2 �1

α
h� (10)

3.1 Relaxation Methods

The effect of meshes with large aspect ratio will be demonstrated here only for the
Jacobi relaxation. Results for the Gauss–Seidel iteration or SOR method can be
obtained following the explanations in [3].

Denoting by I the identity matrix and by D the diagonal matrix containing the
main diagonal of the system matrix A then the iteration matrix of the Jacobi method
is given by

T J � I�D�1A�

The convergence of the Jacobi relaxation is determined by the eigenvalue µ1�1�1 of
the relaxation matrix TJ corresponding to the lowest eigenmode. It is given by

µ1�1�1 � 1�
1
d
λ1�1�1�

where

d � 2
h2

yh2
z �h2

xh2
z �h2

xh2
y

hxhyhz

the diagonal entries of D. Thus, we get the estimation

µ1�1�1 � 1�
3π2

2

h2
xh2

yh2
z

h2
yh2

z �h2
xh2

z �h2
xh2

y
(11)

using
λ1�1�1 � 3π2hxhyhz�

The convergence of the Jacobi iteration slows down quadratically with decreasing
step sizes. For the anisotropic case estimation (11) provides

µ1�1�1 � 1�
3π2

2
α2h2

2α2 �1
� (12)

If α � 1 we obtain the well-known estimation for equidistant grids [3]. The same
time α becomes small (as for meshes with large aspect ratio) the eigenvalue µ1�1�1
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becomes larger, i. e. it tends to one as α tends to zero. Hence the convergence
becomes worse.
Remark: It is shown in [4] that the smoothing property on anisotropic grids and
hence also on non-equidistant grids with large aspect ratio is lost. Since the smooth-
ing property of relaxation algorithms is crucial for the performance of a multigrid
scheme one has two possibilities to adapt the multigrid scheme in order to get the
optimal convergence rate: One possibility is to adapt the relaxation scheme, the
other one is to adapt the coarsening strategy. In our application we have adapted the
coarsening scheme. The adaptation of the relaxation scheme has been suggested
in [11] with the choice of an alternating zebra line smoother for a non-equidistant
mesh based on the Gauss–Lobatto–Legendre points. Yet, in contrast to the dis-
cretization shown in figure 1 that mesh has the small step sizes near the boundary
and the large step sizes inside the domain Ω. �

3.2 Preconditioned Conjugate Gradient Methods

The convergence of CG methods is determined by the condition number of the
coefficient matrix A which for the Poisson case is given by

condA :�
λmax

λmin
� N2

for an equidistant mesh with h � 1
N [3], where λmax and λmin denote the maxi-

mal and minimal eigenvalue of the matrix A, respectively. Hence, for the Poisson
equation the condition number grows quadratically with the number of mesh lines.
Making use of (7) and (8) mesh (4) provides the following estimation for the con-
dition number

condA �
1
3
�N2

x �N2
y �N2

z �� (13)

Considering further the anisotropic mesh (5) we obtain

condA �
1
3



1�

1
α2

�
N2� (14)

Thus the condition number growths the same time the mesh aspect ratio Amesh

growths.
Preconditioners for CG methods improve the condition number. For our nu-

merical studies we applied the diagonal of the matrix A as preconditioner. Al-
ready this simple PCG method provides better convergence results than the SOR
method applied on non-equidistant grids (see sections 3.3 and 4). While ILU-
preconditioners reach a condition number of condA � O�N�, a multigrid precondi-
tioned CG method provides the optimal condA �O�1� [3]. Nevertheless it has to be
emphasized that this optimal condition number can be achieved on non-equidistant
meshes with large aspect ratio only with the coarsening scheme of algorithm 1.

3.3 Numerical Test with a Spherical Bunch

Electrons with a spherically symmetric Gaussian density distribution served as test
case for the theoretical results of (11) and (14). For the numerical test 50,000
electrons have been distributed in a sphere with a radius of 1 mm. The different
algorithms have been performed until the relative residual was smaller than 10�2

in the maximum norm.
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Figure 2: Performance of MG-PCG, SOR and PCG compared on an equidistant
mesh for an electron bunch with a spherically symmetric Gaussian density distri-
bution.
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Figure 3: Performance of MG-PCG, SOR and PCG compared on a non-equidistant
mesh for an electron bunch with a spherically symmetric Gaussian density distri-
bution. The aspect ratio of the mesh increases from Amesh � 2�3 for N � 20 to
Amesh � 5�7 for N � 60, where N is the number of mesh lines in every coordinate
direction.
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The performance of the multigrid preconditioned CG method versus SOR re-
laxation and PCG with the diagonal of A as preconditioner is shown in figures 2
and 3 for an equidistant and a non-equidistant mesh, respectively. The CPU time
has been measured for a number of mesh lines increasing from 20 to 60 for each
coordinate which is related to a total number of mesh points increasing from 8,000
to 216,000. Although the aspect ratios of the non-equidistant meshes are not yet
very large the convergence of the SOR and PCG method already considerably slow
down (see Figure 3). The same time the MG-PCG algorithm keeps the convergence
also for the non-equidistant mesh spacing.

4 Investigations for Bunches with Cylindrical Shapes

Charged particle bunches ranging from very short to very long play an impor-
tant role in accelerator design. The aspect ratio Abunch for cylindrically shaped
bunches is defined as Abunch � R�γL where R denotes the radius of the cylinder,
L the length and γ the Lorentz factor by which the bunch will be stretched in the
transformation from the laboratory frame to the rest frame. The particles in the
cylinder are assumed to have a uniform distribution. The performance of the 3D
space-charge routine was tested within a range of aspect ratios Abunch � 10k with
k ��3��2� � � � �2�3 which covers many real life applications. From the numerical
point of view, it can be considered a worst-case scenario because the fields near the
hard edges have singularities (see [14]) which are typically not present in physical
bunches with relative smooth boundaries.
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Figure 4: Performance of MG, MG-PCG, SOR and PCG compared for an electron
bunch with Abunch � 1. The aspect ratio of the mesh increases from Amesh � 6 for
N � 20 to Amesh � 19 for N � 40.

Figures 4, 5 and 6 show the behaviour of the MG and MG-PCG algorithm
compared to SOR and PCG applied to different stretched cylindrical bunches. Ac-
cording to the adaptive coarsening strategy there is nearly no difference between
the two multigrid algorithms. SOR and PCG slow down considerably the same
time the aspect ratio of the bunch and thus the aspect ratio of the mesh increases.
All algorithms have been performed until the relative residual was less than 10�2 in
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Figure 5: Performance of MG, MG-PCG, SOR and PCG compared for an electron
bunch with Abunch � 10�3 (’cigar’ shape). The aspect ratio of the mesh increases
from Amesh � 1�525 for N � 20 to Amesh � 3�666 for N � 40.

the maximum norm. Although the aspect ratio of the mesh for the pancake shaped
bunch is much smaller than for the cigar shaped bunch convergence is harder to
achieve because the longitudinal electric field of the pancake shaped bunch tends
to a constant value as Abunch becomes larger [14].

5 Application: The ’Eindhoven’ DC/RF1 photoinjector

After the electrostatic field tests presented in the previous section, we verified
the accuracy and applicability of the described space-charge model for a relevant
practical application. The simulated device is the ’Eindhoven’ DC/RF photoinjec-
tor [13], designed to be used as injector for a future plasma wake field accelerator.
Such a plasma-based accelerator can reach much higher electric fields than con-
ventional accelerators, but it sets extreme conditions on the injector. To start with,
the electron bunches to be injected into the plasma channel need to be shorter than
a fraction of one plasma-wavelength, typical in the order of 100 fs. Furthermore,
they need to be focused into the plasma channel being only several tens of mi-
cron wide. Finally, to be useful for practical applications, they need to carry a
total charge in the order of 100 pC. All constraints combined are very difficult to
achieve because space-charge effects will both lengthen the bunch and prevent it
from being focused into the plasma channel. A solution is to start with a very long
bunch, hereby lowering the charge density and thus all space-charge effects, fol-
lowed by acceleration and magnetic compression. At the Eindhoven University of
Technology a project is started trying to create such bunches without downstream
acceleration and without compression in one compact device. In this DC/RF gun,
electron bunches are created by photo-emission from a metal cathode and acceler-
ated to 2 MeV in a 1 GV/m semi-DC pulsed electric field, as shown schematically
in Figure 7. This extremely high field is used to achieve relativistic velocities as
quickly as possible, to reduce space-charge induced emittance growth and bunch

1DC: direct current, RF: radio frequency.
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Figure 6: Performance of MG, MG-PCG, SOR and PCG compared for an electron
bunch with Abunch � 103 (’pancake’ shape). The aspect ratio of the mesh increases
from Amesh � 22 for N � 20 to Amesh � 686 for N � 40.

2 MV

rf

50 fs 

Figure 7: 3D schematic of the ’Eindhoven’ DC/RF photoinjector. The DC part,
shown not to scale on the left, pre-accelerates a photo-excited 50 fs electron bunch
to 2 MeV in a 1 GV/m field. Subsequent RF acceleration to 9.5 MeV is provided
by a coaxial coupled 2.6 cell standing wave RF cavity.

lengthening at non-relativistic energies as much as possible. The bunches are fur-
ther accelerated in a state-of-the-art standing wave 2.6 cell RF cavity to 9.5 MeV.

A crucial issue in the design of this system is space-charge, as 1 kA peak cur-
rent is transported from the cathode to relativistic energies without compression. A
known limitation of the rest-frame approach of the described space-charge model
is its inability to model bunches with large energy spreads. Clearly the simulation
method breaks down when a large fraction of the sample particles have relativistic
velocities in the average momentum frame. However, if this is not the case, it is
far from trivial to predict how the small errors made by the rest-frame assumption
propagate into the final simulation results.

To verify the accuracy of the rest-frame approach for the Eindhoven DC/RF
set-up, we compared the fast 3D mesh-based model with GPT’s relativistically
correct 2D point-to-circle scheme [12]. In these 2D calculations all particles are
tracked in 3D but represented by uniformly charged circles for the space-charge
calculations. To be able to model energy spread properly, velocity differences of
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Figure 8: Comparison between a 100,000 particle simulation calculated with the
new space-charge model (right) with a 1000 particle relativistic 2D point-to-point
model (left). Both plots are simulated snapshots at the exit of the setup shown in
Figure 7.

every circle-circle interaction are taken into account resulting in a O�N2� scaling in
CPU time. Without energy spread, the two methods produce identical results as all
electromagnetic fields of the DC/RF scheme are cylindrically symmetric and the
simulations are started with a cylindrically symmetric initial particle distribution.

Figure 8 shows a snapshot of the simulated energy-position projection of 6D
position-momentum space for both schemes at the end of the RF cavity. The agree-
ment between the 3D and 2D calculations is near perfect despite the energy spread
in the end result. Furthermore, as the CPU time for both simulations is about
2 hours on a standard PC, the new 3D model yields much more detail due to the
larger number of particles that can be included. The very good agreement with
the 2D method and the high level of detail of the 3D results pave the way to the
next step in our simulation efforts, modeling non-cylindrically symmetric initial
conditions.

6 Conclusion

A new 3D space-charge routine implemented in the tracking code GPT has been
investigated in this paper. The new method allowing 3D simulations with a large
number of particles on a common PC is based on a multigrid Poisson solver adapted
to non-equidistant meshes for the calculation of the electrostatic potential in the
rest frame. Numerical results of the 3D routine show that the optimal conver-
gence known for the multigrid method on equidistant grids is maintained on non-
equidistant meshes with large aspect ratio. The simulation of the ’Eindhoven’ pho-
toinjector has shown the efficiency and capability of the new 3D space-charge rou-
tine.
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[9] G. Pöplau, U. van Rienen, S.B. van der Geer, and M.J. de Loos. Fast cal-
culation of space charge in beam line tracking by multigrid techniques. In
Proceedings of the 4th Conference on Scientific Computing in Electrical En-
gineering (SCEE–2002), Mathematics in Industry. Springer-Verlag, to appear.

[10] M. Reiser. Theory and Design of Charged Particle Beams. Wiley, New York,
1994.

[11] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press,
San Diego, 2001.

[12] S.B. van der Geer and M.J. de Loos. The General Particle Tracer Code.
Design, implementation and application. Phd thesis, TU Eindhoven, 2001.

[13] S.B. van der Geer, M.J. de Loos, O.J. Kiewiet, O. J. Luiten, and M.J. van der
Wiel. A high-brightness pre-accelerated RF-photo injector. In Proceedings
of EPAC 2002 (Paris), pages 1831–1833, 2002.

[14] S.B. van der Geer, M.J. de Loos, O.J. Luiten, G. Pöplau, and U. van Rienen.
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