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ABSTRACT 
The cavity resonator modeling for the TESLA - TeV–Energy Superconducting Linear 
Accelerator project is initially introduced. The electromechanical model including 
Lorentz force detuning and beam loading is applied for analyzing the basic features of 
the plant. The continuous SIMULINK and digital MATLAB model implementation is 
developed as a reference for the hardware simulator based on the FPGA – Field 
Programmable Gate Array technology. The step operation mode has been applied for 
testing of the FPGA device coupled to the software control block. The FPGA signal 
processing has been verified according to the desired model of the real cavity plant. 
The numerical aspects have been investigated for the efficient design. Some 
experimental results have been presented for different cavity operational conditions. 
The following considerations have lead to the synthesis of the efficient algorithm for 
the cavity model, then implemented in the FPGA system. 
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1. INTRODUCTION 
The authors have recently studied the control problem, presented in this paper, in a series of previous documents, 
included in the references. The mentioned work concerns a modeling development of the TESLA cavity for the LLRF - 
Low Level Radio Frequency control system. The first part of the current paper attempts to order and recapitulate the 
achieved results in the concise manner. Consequently, the second part of the paper, presents some new results leading to 
the synthesis of the digital algorithm efficiently implemented in the FPGA system. Therefore, the paper establishes a 
self-contained design report from an abstract consideration to the final practical result.  

The TESLA project is based on the nine-cell super conducting niobium resonators to accelerate electrons and positrons. 
The acceleration structure is operated in standing π-mode wave at the frequency of 1,3 GHz. The RF oscillating field is 
synchronized with the motion of a particle moving at the velocity of light across the cavity (figure1). 

The LLRF cavity control system for the TESLA  project has been developed to stabilize the accelerating fields of the 
resonators. The control section, powered by one klystron, consists of four cryomodules containing eight cavities each. 
One klystron supplies the RF power of 10 MW to 32 cavities through the coupled wave-guide with a circulator. The 
cavities are driven with the pulses of 1.3 ms duration and the average accelerating gradients of 25 MV/m. The control 
feedback system regulates the vector sum of the pulsed accelerating fields in multiple cavities. The fast amplitude and 
phase control of the cavity field is accomplished by modulation of the signal driving the klystron. The cavity RF signal 
is down-converted to an intermediate frequency of 250 KHz preserving the amplitude and phase information. The ADC 
and DAC converters link the analog and digital parts of the system. The digital signal processing is applied for the field 
vector detection and filtering. The digital controller stabilizes the detected real (in-phase) and imaginary (quadrature) 
components of the incident wave according to the desired set point. Additionally, the adaptive feed-forward is applied 
to improve compensation of repetitive perturbations induced by the beam loading and by the dynamic Lorentz force 
detuning (figure 1).  
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Figure 1. Cavity environment and simplified block diagram of cavity control system. 

The cavity resonator modeling has been developed for the efficient testing of the control system and for the 
investigation of the optimal control method. The software models allow testing of the hardware controller by the step 
operation mode. The FPGA hardware implementation of the cavity model is intended for the real time operation. 

 

2. OUTLOOK OF CAVITY MODELING 

2.1 Electrical circuit modeling 
The equivalent representations of the chain of nine cells of the resonator are magnetically coupled resonant circuits. The 
following simplified considerations are limited to one cavity represented as a single LCR circuit coupled to the wave-
guide driven by the klystron. This simple version is quite sufficient for the purpose of the cavity control modeling. The 
simplified circuit model for the cavity environment is presented in figure 2. All the current (J) and voltage (U) 
quantities are represented in the Laplace  space.  

The RF current generator Jk, driving the wave-guide with circulator, models the klystron as a power amplifier. The 
wave-guide, as a transmission line, is parameterized by the characteristic impedance Z0 and time delay Tw. The cavity is 
represented as the resonant LCR circuit with impedance Zc coupled to the wave-guide. The beam loading can be 
modeled as a current sink Jb fed by the electromagnetic field of the cavity. The bunched beam current has typical ~2 ps 
pulse duration, 1 MHz rate and an average value of 8 mA.  

The forward wave, represented by voltage Uf and current Jf, drives the coupler, which converts the signals according to 
the transformation ratio 1:N. Superposition of the output coupler signals (represented by voltage U2 and current J2) and 
the beam loading results in the cavity current Jc and, related by impedance Zc, cavity voltage Uc. The reflected wave 
(represented by voltage Ur and current Jr) is isolated from the klystron output and dissipates in the circulator load, 
matched to the wave-guide.  
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Figure 2.  Circuit model of cavity environment. 

 

Applying an equivalent parallel resistance connection    RL ≡ N2Z0║R,  
and  the cavity loaded impedance                                     ZL = (1/RL + sC+ 1/sL)-1, 
and substituting the generator  current                             Jg ≡  Jf /N,   
results in the cavity voltage                                               Uc = ZL·(2Jg - Jb) = ZL·J. 

Therefore, the cavity loaded impedance ZL(s) can be represented by the transfer function in the corresponding forms: 

ZL(s) = (1/RL+ sC+1/sL)-1 = ω0·ρs/(sω0/QL + s2 + ω0
2) = ω1/2·RL/(ω1/2 + (s2 + ω0

2)/2s), 

where, the following secondary parameters (derived from the primary LRC parameters) are applied: 
resonance frequency             ω0 = 2πf0 = (LC)-½, 
characteristic resistance  ρ = (L/C)½, 
shunt  impedance        RL ≡ R║N2·Z0,  
loaded quality factor QL = RL/ρ, 
half-bandwidth (HWHM)                               ω1/2 = 2πf1/2 = 1/2CRL = ω0/2QL.   

According to the stability of the RF generator pulsation ωg and due to a narrow resonator bandwidth, the cavity voltage 
can be modeled in time domain as an analytical signal represented as a vector or phasor in the complex domain: 

u(t) ≡  [ur, ui] ≡ ur + iui = a(t)·cos(ωgt + φ(t)) + i·sin(ωgt +φ(t)) = a(t)·exp(i·(ωgt +φ(t))), 

where, ur, ui – are the real and imaginary components of the RF oscillation; the amplitude a(t) and the phase φ(t) are 
slowly time-varying parameters relatively to the period of the RF signal carrier. 

The cavity current is modeled as an analytical signal j(t) = 2jg(t) - jb(t), where jb corresponds to ωg Fourier component 
of the beam loading current. The relation between the current and the voltage is given in the Laplace space: 

U(s) = ZL(s)·J(s), 

where, U(s) and J(s) = 2Jg(s) - Jb(s), are the Laplace transforms of the analytical signal for the voltage and current 
respectively. 

Alternative, more useful representation of the cavity signal in time domain is complex envelope derived by the complex 
demodulation (down conversion) of the analytical signal which applies the operator exp(-iωgt) for the given pulsation 
ωg. Vice versa, the complex modulation (up conversion) of the envelope applies the operator exp(iωgt) and yields the 
analytical signal for the given pulsation ωg. The complex envelope for the cavity current i(t) and voltage v(t) can be 
represented as a vector or phasor by its real I - in-phase, and imaginary Q - quadrature components as follows (for the 
voltage case): 

(I, Q)voltage ≡ v(t) ≡  [vr, vi] ≡  vr+ ivi ≡ u(t)·exp(-iωgt) = a(t)eiφ(t) ≡ [a(t)cosφ(t), a(t)sinφ(t)]. 

The comprehensive signal relation is modeled by the signal-flow graph according to figure 3. 
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Figure 3. Cavity signal-flow graph for complex envelope and analytical signal. 

The successive operations, presented by the signal-flow graph in figure 3, yield the direct relation between the cavity 
input and output complex envelope in the Laplace space as follows: 

V(s) = ZL(s+iωg)·I(s), 

where, V(s) and I(s) = 2Ig(s) - Ib(s), are the Laplace transforms of the complex envelope for the voltage and the current 
respectively. 

Thus, the resultant cavity transfer function is transformed to the low-pass filter. The analytical form of the impedance 
can be effectively simplified for signals with a narrow spectral range relative to the generator frequency close to the 
cavity resonance pulsation, then for |s| << ωg ≈ ω0 yields:  

ZL(s+iωg) ≈ ω1/2·RL/(s +ω1/2 – i∆ω), 

where, cavity detuning  is 2π∆f = ∆ω ≡ ω0–ωg. 

Therefore, the complex envelope relation for the cavity signals can be written in the Laplace space as follows: 

(s +ω1/2 – i∆ω)·V(s) = ω1/2·RL·I(s). 

Moving to the time domain yields the state space equation with v(t) as a state vector of  the cavity electrical model: 

dv(t)/dt = Ae·v(t) + ω1/2·RL·i(t) 

where, v(t) and i(t) = 2ig(t) - ib(t) are the time dependent complex envelope for the voltage and current respectively and 
phasor Ae = -ω1/2+i∆ω for the complex representation or matrix Ae = [-ω1/2, -∆ω; ∆ω,-ω1/2] for the vector representation 
(according to the MATLAB description). 

Thus, the resultant state space equation for the complex envelope depends on the cavity bandwidth and detuning only. 
The simplified relationship for the cavity envelope allows for the control system modeling within the low-level 
frequency range. 

2.2.  Electromechanical modeling. 
The super-conducting resonator has an extremely high loaded quality factor QL ~ 3·106 and the narrow bandwidth of 
about 430 Hz (FWHM). Hence, the cavity is very sensitive to the mechanical distortion caused by microphonics and  
the Lorentz force, changing the resonator's frequency. Due to the Lorentz force, the cavity resonance frequency changes 
with the rising field gradient. The mechanical model of the super-conductive cavity describes the Lorentz force 
detuning, which is a function of the square of time varying field gradient. It is based on the heuristic relationship for the 
independent mechanical modes of the cavity with the resonance frequency fm and the mechanical quality factor Qm for 
the given mode. Each of the mechanical modes is driven by square of the cavity field gradient v2 according to the 
equation, as follows: 

dαm(t)/dt  + 2πfm·αm(t)/Qm + (2πfm)2·∆ωm(t)  = - (2πfm)2·2π·Km·v2(t)     with        αm(t) = d(∆ωm(t))/dt,  

where, the time-varying detuning ∆ωm(t) and its time derivative αm(t) are two state-variables for the m-th mode, 
and parameter Km is the Lorentz force detuning constant.  



 

Applying the vector-matrix format of the state space equation for the m-th mechanical mode yields: 

dwm(t)/dt = Am·wm(t) + Bm·v2(t),             where, 

state vector wm(t) = [∆ωm(t); αm(t)],      system matrix Am = [ 0,1; -(2πfm)2, -2πfm/Qm], 
input matrix Bm = [0; - (2πfm)2·Km],     square of the cavity gradient = v2(t).  

The resultant cavity detuning is ∆ω(t) = ∑∆ωm(t) + ∆ω0, where  ∆ω0 – initial predetuning. The initial predetuning is a 
mechanically biased component, which attempts to compensate the EM forced detuning factor, during operational 
condition of the cavity. 

Three dominating resonance frequencies are considered in the cavity model presented below and the superposition of all 
modes yield the resultant detuning. 

2.3  SIMULINK modeling. 
The continuous model of the cavity is composed applying the SIMULINK – dynamic system simulation for MATLAB 
according to figure 4. 

 
 

Figure 4. Cavity SIMULINK model. 

The electrical part of the cavity model consists of the arithmetical function block driven by the current generator and the 
beam loading. The integrator output feeds the input according to the state-variables relation. Additionally, the non-
stationary detuning modulates the object feature. The square of the cavity field gradient drives the mechanical part of 
the model resulting in the Lorentz force-detuning component for each mode. The multi-mode state space block puts the 
detuning together with the initial predetuning as a superposition of all modes. 

The comprehensive model of the cavity control system has been developed in the SIMULINK Toolbox to investigate 
different operational conditions (figure 5). The system operates as a continuous model with fixed micro step of 0.1 µs 
duration. The control block subsystem generates signals of the beam, feed-forward, set point and gain according to the 
system requirements.  Additionally, it applies the information of the cavity detuning. The proportional controller 
amplifies the error signal and closes the feedback loop. The transducers match properly signals level of the cavity 
subsystem to the controller circuit. The channel distortion simulates the amplitude attenuation and phase shifting of the 
transmission line. The intermediate frequency modulator converts the cavity output vector to the signal of frequency 
250 kHz. Therefore, the data samples, like from the down-converter, can be conveyed to the outer digital controller. 



 

The cavity model can be driven by the SIMULINK controller or by the outer one applying the Matlab workspace data. 
In the latter case, the constant I_Q vector drives the cavity during simulation step of the process, and all resulting data 
are sent to the Matlab workspace. 

 
 

Figure 5. Cavity control system SIMULINK model. 

The main parameters of the model, for simulation examples, are available from the MATLAB file and are combined in 
the table below. 

CAVITY ELECTRICAL parameters CAVITY  MECHANICAL  modes parameters 

f0 = 1300 …………………resonance frequency [MHz] 

ρ = 520 …………………..characteristic resistance [Ω] 

QL = 3·106………………………..loaded quality factor 

RL = QL·ρ = 1560………………..load resistance [MΩ] 

f1/2 = f0/2QL  = 216……………….half band-width [Hz] 

∆f = 431 …………………………….pre-detuning [Hz] 

f = [280, 340, 420]……resonance frequencies vector [Hz] 

 

Q = [100,100,100]…… quality factors vector 

 

K = [0.4, 0.3, 0.2]……Lorentz force detuning constants 
vector [Hz/(MV)2] 

 
The step response of the cavity model is considered as a reference performance for the comparison of different 
implementations of the cavity signal processing algorithm.  The step response of the pure electrical model with steady 
detuning, for different values of the cavity detuning, illustrates figure 6. 

 



 

 

 

 
 

Figure 6. Step response of cavity electrical model for driving current of ig = 16 mA for different detuning. 

The pure mechanical model is weakly damped. But one can excite dynamic ponderomotive instability for the 
sufficiently high field gradient for the resultant electromechanical model of the cavity (figure 7). 

 

 
 

Figure 7. Step response of cavity electromechanical model for driving current of ig = 16 mA. 



 

3.  DIGITAL IMPLEMENTATION OF CAVITY MODEL 

3.1 MATLAB implementation of cavity model 
The discrete processing of the cavity algorithm has been developed for digital implementation of the cavity model. The 
continuous model of the cavity behavior can be estimated by the arithmetic procedure realized iteratively in the finite 
number of steps.  

The continuous state-space model is presented for the electrical and mechanical parts, respectively: 

dv(t)/dt = Ae·v(t)  + ω1/2·RL·i(t),   where i(t) = 2ig(t) - ib(t), 
dwm(t)/dt = Am·wm(t) + Bm·v2(t). 

Applying the Euler approximation (or the Matlab discretization) for the time derivative of a general variable x: dx/dt ≈ 
(xn - xn-1)/T, for successive (n-1)-th and n-th samples, with time interval of T, and with identity matrix I, yields the 
recursive equations: 

for the electrical model   vn = (I + T·Ae)·vn-1  + T·ω1/2·RL·in,  where in = 2(ig)n –(ib)n, 
for the mechanical m-th mode  (wm)n = (I + T·Am)·(wm)n-1  + T·Bm·v2

n. 

Applying the MATLAB notation, with omitting time indexes and providing new symbols, yields: 
for the electrical model:   v  = E*v + v0 – Beam, 

where, discrete system matrix E = [1-T·ω1/2, -T·∆ω; T·∆ω, 1-T·ω1/2] and unified input signals v0 = T·ω1/2·RL·2(ig)n for 
the current generator, and Beam = T·ω1/2·RL·(ib)n,  for the beam loading: 

for m-th mechanical mode:  wm = (I + T·Am)·wm + T·Bm·v2. 

Applying the common state vector w and discrete matrix A and B, for the resultant mechanical model, yields:    

w = A*w + B*v2, 

where, partial state vector for m-th mode: w(2m-1:2m) = wm, 
partial system matrix for m-th mode: A(2m-1:2m, 2m-1:2m) = [ 1, T; -T·(2πfm)2, 1-2πfm·T/Qm], 
 partial input matrix for m-th mode: B(2m-1:2m) = [0; -T·(2πfm)2·Km], 

The resultant detuning of the cavity is ∆ω = ∑w(2m-1) + w0, where  w0 – initial predetuning. 

The discrete cavity algorithm, for the parallel electrical and mechanical iterative processing, has been implemented 
applying MATLAB code with time interval T= 1µs, according to the schematic diagram presented in figure 8. 
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Figure 8. Schematic diagram of discrete processing for one step of cavity algorithm. 



 

3.2 DSP modeling and numerical optimization. 
The hardware implementation of the cavity discrete model requires the numerical care due to the integer processing and 
limited resolution of the parameters and variables values involved in the digital signal processing (DSP). The proper 
scaling procedure may provide the top potential precision by utilizing the full range for every operation what can be 
compared to the floating-point arithmetic. The main arithmetic processing, for each variable xi, is a linear combination 
of the corresponding variables xk, with parameter aik, for every step of the algorithm, as follows: 

xi = . ∑
κ

kik x*α

The three stages of the algorithm synthesis, for the DSP modeling, are distinguished in the following considerations. 

1. The preliminary scaling, with change of the parameters and variables, simplifies the equations and unifies 
the factors. The primary range of the parameters extends up to 107 for the raw algorithm. 

2. The best numerical accuracy can be achieved for the advanced scaling maximizing the fractional values 
within the given secondary range and common for all the partial values. After multiplication, the gained product should 
be rescaled to preserve its proper value. The most appropriate values for scaling coefficients are the power of two, for 
the binary arithmetic. Thus, the resultant equation term Rik as a product of three factors is as follows: 

Rik = Aik·Xk/Sik, 

where, scaled parameter Aik = sik·aik, scaled variable Xk = sk·xk, rescaling coefficient Sik = sik·sk/si, 

sik – scaling factor for parameter aik,  sk – scaling factor for variable xk,   si – scaling factor for variable xi. 

Consequently, the scaled parameters and maximum values of the variables may be contracted within one-decade range 
only. The values of the parameters and variables have been matched to the secondary real range (-64, +64) 
corresponding to the cavity envelope voltage [MV]. The step response of the modified discrete cavity model is shown in 
figure 9, for all scaled variables. 

3. The modified discrete cavity model, with scaled parameters and variables, within the secondary real range (-
64, +64), has been finally adapted to the features of the hardware implementation with the N-bit resolution. Therefore, 
the advanced, integer model of the cavity has been implemented in the MATLAB system for a given N-bit resolution. 
Consequently, the real range (-64, +64) has been extended to the integer one, applying a global scaling factor of J = 
2^(N-7) for all parameters and variables of the cavity algorithm. 

The numerical accuracy of the final integer model has been tested for the cavity envelope step response, for different bit 
resolutions, and diverse scaling factors. The modified discrete cavity model, with scaled parameters and variables 
within secondary real range (-64, +64), has been considered as a reference. The relative mean error of the envelope 
Err(N) for N-bit resolution, has been calculated according to the expression: 

Err(N) = ∑|(VN)n - (Vref)n| / ∑|(Vref)n |, 

where (Vref)n – the sample of the reference envelope for n-th step, (VN)n  - the sample of the N-bit resolution envelope 
for n-th step. 

The experimental results are presented in figure 10 for chosen variables and parameters. 

Two options of the resolution have been considered for the final FPGA realization and relative errors for the MATLAB 
integer model have been estimated respectively, as follows: 

Err(32) = 3.6532e-006 -  for 32-bit resolution, and  Err(18) = 0.0533-  for 18-bit resolution. 

 

 

 

 



 

 
 

 

 
 

Figure 9. Step response for scaled variables of modified discrete cavity model. 



 

 

 
 

 
 

Figure 10. Relative mean error of envelope versus bit resolution for diverse scaling of chosen variables and parameters. 



 

 

 

3.3 Cavity simulator based on FPGA technology. 
The MATLAB, integer model of the cavity, with scaled parameters and variables, has been considered as the reference 
pattern for the hardware implementation. 

The discrete algorithm, describing the cavity, was realized in the VHDL - Very_High_Speed_Integrated_ 
Circuit_Hardware_Description_Language. The algorithm has the form of a fully parameterized behavioral and self-
contained description. This way assures a simple possibility to choose the resolution and the position for the fixed point. 
It is achieved by setting the proper parameters for the compilation process. The compiler automatically selects the 
logical and DSP resources and performs the optimization. For example, the 32-bit resolution of the cavity model with 
three mechanical modes requires 96 multipliers. The 18-bit resolution requires only 24 multiplying circuits. 

To realize the processing, a synchronous pipeline bus was applied, clocked at 40MHz. The system flexibility, obtained 
in this way, gives the possibility to choose arbitrarily the number of clock periods necessary to do successive, partial 
calculations by the DSP blocks. 

The application, which was practically used, and is described here, is performed during the time of eight 40MHz clock 
periods, this means in 200ns. The described implementation was realized for the VirtexII of 3000 series, with the use of 
"Leonardo Spectrum 2002d" compiler and XILINX ISE Integrated Environment. 

The step operation mode has been applied for testing the FPGA device coupled to the MATLAB system via the 
communication interface. The FPGA signal processing has been verified according to the desired algorithm. Two 
adaptations of the cavity simulator: 32-bit and 18-bit resolution has been considered for the FPGA realization. The 
numerical accuracy of the FPGA cavity simulator has been estimated as follows: Err(32) = 7.5830e-006 for the 32-bit 
resolution and Err(18) = 0.0532 for the 18-bit resolution, in relation to the MATLAB scaled model of the full-
resolution. The evaluation of the FPGA cavity simulator step responses is presented in figure 11 for these two 
performances. 

The MATLAB integer model has been compared to the FPGA implementation of the equivalent resolution and mutual 
numerical errors have been estimated as follow: Err(32) = 8.1083e-006 for 32-bit resolution and Err(18) = 9.0818e-4 for 
18-bit resolution. 

The 18-bit resolution version of the FPGA cavity simulator is expected to be quite sufficient for the simulation purpose. 
The limited validity of the cavity mechanical model and 12-bit resolution of the preferred analog-to-digital converter do 
not require a resolution of better quality. 

The simulation results of the step mode, for the real operational condition, are presented in figure 12 for the 18-bit 
resolution of the FPGA cavity simulator. In this case, the cavity is driven in the pulse mode forced by the control 
feedback supported by the feed-forward. During the first stage of the operation, the cavity is filling with constant 
forward power, resulting in an exponential increase of the electromagnetic field, according to its natural behavior, in the 
resonance condition. When the cavity gradient has reached half of the final value, (no reflection for ideal condition) the 
beam loading current is injected, resulting in the steady-state flattop operation. Turning off both, the generator and the 
beam current yields an exponential decay of the cavity field.  

The main parameters of the FPGA simulator are combining in the table below. 

 

DSP resolution Equivalent 
output range 

Maximum 
carrier frequency 

Minimum 
Processing time 

DAC and ADC 
Resolution 

18 [bit] ±64 [MV] 1.25 [MHz] 200 [ns] 14 [bit] 
 

 

 



 

 

 

 

 
Figure 11.  Step responses comparison for 32-bit and 18-bit resolution of FPGA cavity simulator implementation. 



 

 

 

 
 

Figure 12.  FPGA cavity and MATLAB controller output for real operation condition (average beam=8mA). 



 

 

 

4. REAL TIME TESTS 

The real time tests have been carried out according to the schematic block diagram in figure 13. The FPGA 
controller drives the FPGA cavity simulator via internal digital connection (18-bit data resolution). The alternative 
connection with the MATLAB system allows for the step operation mode as well. The MATLB system loads 
parameters and data to the FPGA memory tables before the simulation test. Subsequently the FPGA system can run 
itself cyclically according to the given data tables. The digital-to-analog converter (DAC) conveys data from the 
FPGA cavity simulator or from the FPGA controller to the oscilloscope. The simulation results, for the real 
operational condition, are presented in figures from 14 to 17. The cavity is driven in the pulse mode forced by the 
control feedback supported by the feed-forward. 
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Figure 13. Functional diagram for one chip FPGA system. 

 



 

 
 

Figure. 14. Matlab windows recording data of FPGA cavity simulator output for real time one pulse operation. 

From upper side: 1 - modulated signal of 250 kHz, 2 – I - component, 3 – Q - component,  4 - detuning. 

 



 

 
Figure 15. Oscilloscope picture (DPO mode) for cavity envelope: I and Q components.  

 

 
Figure 16. Oscilloscope picture (DPO mode) for cavity modulated signal and resultant detuning. 



 

 

 
Figure 17. Oscilloscope picture (DPO mode) for controller output ( I and Q components) equal to cavity input. 

 

 

5. CONCLUSION 

The TESLA cavity simulator has been successfully implemented applying the very fast FPGA technology for the 
control system purpose. The efficient algorithm for the digital signal processing has concluded in the comprehensive 
cavity modeling. The proper parameters and variables scaling has provided the top potential numerical precision. The 
FPGA cavity simulator has been carefully investigated for different operational conditions. The step operation method 
has been proven as very efficient for the testing of the FPGA device coupled to the MATLAB system. The FPGA signal 
processing has been verified according to the required algorithm of the reference MATLAB cavity. The FPGA 
implementation with 18-bit resolution only is quite sufficient for the simulation purpose and the control system testing. 
The cavity simulator can be adopted for super-conductive and normal conductive resonators models applying diverse 
parameters.  

The resources occupied by the 18-bit resolution model allows for very optimistic predictions concerning the simulation 
and control of numerable cavities by a single FPGA chip.  
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