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Abstract 
 

The modified analytical form for the longitud inal and transverse 
resistive wake potentials of point- like charge moving parallel to the axis 
of round pipe with frequency independent walls conductivity is 
obtained. The short range wake potentials are presented by uniformly 
converged series. 

For the frequency dependent conductivity, the resonator term of the 
longitudinal monopole wake potential is presented in analytical form. 
The diffusion term of the potential is modified to simple integral form. 
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1. INTRODUCTION 
 

The longitudinal and transverse impedances of infinitely resistive round pipe with frequency 
independent conductivity have been obtained by Chao [1]. The further treatment of the impedances 
both for frequency independent (DC-direct current) and frequency dependent (AC-alternate current) 
conductivities has been performed in Ref. [2].  

In particular, the analytical extension of longitudinal impedance (monopole term) to the complex 
plane has been derived as [2]: 
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where b  is the pipe radius, 312

0 )2( πσcbs =  is the characteristic distance, c  is the velocity of  

light, σ  is the conductivity of the walls and 0ks=κ  is the complex dimensionless wavenumber. 
    For the DC conductivity, σ  is the static quantity and the parameter λ  is given by 
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For the AC case, the conductivity is given by )1(0 ωτσσ i−=  with 0σ  the static conductivity, ω  
the frequency and τ  the relaxation time of the metal. The parameter λ  is then given by [2]: 
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The complex plane has a brunch cut on the negative imaginary axis. The function confined to the 
Riemann sheet 232 πθπ <<−  and parameter λ  has different signs in opposite sides of the 
brunch cut. 
    The wake potential is given by the inverse Fourier transformation of the longitudinal impedance: 
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For the DC case, the integration of (5) in the complex plane results on the sum of resonator (given 
by elementary functions) and diffusion (given in the integral form) terms [2]. For the AC 
conductivity, the wake function is given by the numerical integration of (5) [2,3]. The numerical 
integration of the resonator term in addition implies the numerical determination of impedance 
function poles.  

In this paper, the further treatment of the wake potentials for both DC and AC conductivities has 
been performed. For the DC conductivity, the analytical form of the diffusion term has been 
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obtained for both longitudinal and transverse wake potentials. For the AC conductivity case, the 
analytical form for the resonator term and the simple calculating integral for diffusion term of the 
longitudinal monopole wake potential is derived. 

2. DC CONDUCTIVITY 
 

2.1 Point-Charge 
The longitudinal and transversal wake potentials for the point driving charge may be presented in 

the form of expansion over the longitudinal )( .nzw  and transversal )( .nrw
r

 multipole moments [1,2]: 
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where 100 == γδ , 20 =>nδ , ( ) 210 +=> nnγ , 11, rφ  and r,φ are the cylindrical coordinates of 
driving and test particles respectively, ree

rr
,φ  are the unit vectors. The argument nu  is equal to 

0
32 ssnγ .  

The representation (7) allows express the dependence of the potentials from longitudinal coordinate 
s  for any multipole moments via the longitudinal )(uf z  and transverse )(uf r  wake functions with 
modified argument nuu =  for n-th multipole. The wake functions rz ff ,  for any multipole 
moments are given by the sum of resonator and diffusion terms [2] 
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with the diffusion integrals rz II ,  given as  
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   To transform integrals (9) to analytical forms, the integrands can be rewritten as: 
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After integration, the wake functions rz ff ,  can be presented as: 
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where ( ) ( )iserfcss −−= )exp( 2ξ  is the complex error function [4].  
The analytical form of the wake functions )(sf z  and )(sf r  can be modified by expanding the 
expressions (11) into the series [5]: 
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The expansions (12) are uniformly converged at the interval ∞<≤ s0  and are the Laibnitz series, 

i.e. the consecutive terms of series (12) have alternative signs ( 0,0,0 1 <>< +kkk dcd ) and 
decrease by the module with the term number. Fig.1 presents the longitudinal )(uf z  and transverse 

)(uf r  wake functions given by (11) that are exactly coincide with the integral representation (8) 
(solid curves). The dashed curves show the wake functions approach by series expansion (5, 10 and 
15 terms in series). Note, that the argument of the wake functions for n-th multipole moment is 
given by 0

33 ssuu nn γ== .  
 

2.2. Gaussian Bunch 
For the arbitrary longitudinal distribution of the driving bunch, the wake potentials are given by 

the convolution of the point-charge wake potentials and bunch distribution. In particular, for the 
Gaussian bunch wake function )(, zF rz  we get: 
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where 0

23
00

~,/~,/~,~ ssszzss zzzn σζσσγ ====  and zσ  is the bunch rms length. The 
expansions of the wake functions for the Gaussian bunch may be then obtained by putting the point- 

 

 
 
Figure 1. Wake functions )(uf z  (top) and )(uf r  (bottom). Solid lines are the results of numerical 
integration. Dashed lines are the serial approach with 5, 10 and 15 terms of expansion.  
 
charge wake function series (12) into expression (14). The longitudinal wake function of Gaussian 
bunch is then expressed as 
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where ( )xaU ,  is a function of parabolic cylinder [4]. The several first terms of this expansion give 
a good coincidence with the directly integrated expression (14) for the case of comparatively small 
ζ  ( )1<ζ . Fig.2 presents the approximation of the Gaussian bunch wake function (solid line) by the 
serial expansion (5, 10, 15 terms, dashed lines) for 5.0=ζ . Actually, the approximation curves 
detached from the exact solution at different distance behind the bunch depending on the number of 
terms in series. 
 

 
 

Figure 2. The longitudinal resistive wake function for Gaussian bunch with 5.00 =szσ . The solid 
curve is an exact solution; the dashed curves are the wake functions computed by expansion (15) 
for various numbers of first terms in the sum.  
 
   For 1~

0 >= σς s , the solution may be obtained by substituting (11) into (14). After successive 
partial integration, the result is given in a series expansion by positive degree of zs σ0

~ : 
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with positive sign for 0~ >z  and negative one for 0~ <z ; ( )zI 41±  are the modified Bessel functions 
[4]. In power of parameter ζ  the wake function )(zF  can be presented as: 
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The first term of this expansion coincides with the well-known Piwinski formula [6] for the 
longitudinal wake function in low frequency approximation, i.e. 
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The next three terms in expansion are given below.  
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Fig.3 presents the longitudinal wake functions for the Gaussian bunch for 5.2=ζ  obtained by 
exact integration and series expansion given by (16), (17).  
 

 
 

Figure 3. The longitudinal wake function for 5.2=ζ . Exact solution (solid line) and its 
approximation by first (dashed line) and two (dotted line) terms of expansion (17) are shown. 
 
 
A good convergence is observed already with two terms of series expansion. Thus for 5.2≥ζ , the 
two first terms of (17), i.e. the Piwinski formula plus the second term of expansion, with high 
accuracy describe the Gaussian bunch wake function: 
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For more precise calculation of wake potential the next terms may be used. On Fig.4 in enlarged 
scale the consecutive convergence of the expansion (17) to the exact solution by using 2, 3 and 4 
terms of expansion are given. 
 

 
 

Figure 4. The convergence of approximation  (17) to the exact solution for 5.2=ζ . 
 
 

3. AC CONDUCTIVITY 
 

   The longitudinal impedance (1) for the AC conductivity after change of variables λλ i−=
~

, 
)~2(~ 22 Γ−= λλκ i  and 0scτ=Γ , may be rewritten as: 
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The denominator of (22) has four roots given by: 
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The first two roots 2,1

~
λ  are real while 4,3

~
λ  are complex (the term +e  is imaginary for arbitrary 

0>Γ ). In DC limit ( )0=Γ : −∞=1
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negative imaginary part for the wavenumber k : 
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where uw4=α , −+ −Γ= ff 22β  with 22 wuf ±=±  and 2244 +− Γ+Γ−= ffM . 
 

 
 

Figure 5. The contour of integration. 
 

       The integration contour for inverse Fourier transformation to obtain the longitudinal wake 
potential is presented in Fig. 5. Similar to the DC conductivity, the wake function is presented by 
the difference of resonator and diffusion terms. The resonator term is given by the integration over 
the complete contour (sum of the residues), while the diffusion term is given by the integral along 
the cut of.  The resonant term of the longitudinal wake potential, given by the sum of two residues 
at 3κκ =  and 4κκ = , is then presented as  
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In terms of real variables the resonator term (28) may be rewritten as: 
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where  
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( ) ( ) ( )−+−++ Γ−+−Γ−−ΓΓ= ffwfuffuFc 2328132 23 ,     (30) 

                     ( ) ( ) uwfufwffwFs +−++ Γ−+Γ−+ΓΓ= 628132 23 . 
 
Thus in AC conductivity case, the resonator term (29) of the longitudinal wake potential is the 
superposition of two waves shifted by the quarter wavelength.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The waves amplitude versus Γ . 
 
The dependence of the waves amplitude on the parameter Γ  is given in Fig. 6. The main (cos- like) 
wave amplitude distribution for small Γ  is presented separately. The sin- like wave amplitude 
reaches the maximum at 4.0≈Γ  and vanishes for small and high Γ . For 0=Γ , the cos- like item 
gives the resonator term of monopole longitudinal wake potential for dc case [2]: 
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Note, that the AC wake potential resonator term amplitude (29) contains both the contribution from 
cos and sin- like waves and the retarding potential seen by the driving charge has non-zero phase.  
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Figure 7. Longitudinal monopole wake potential for AC conductivity case.  
 

     To obtain the diffusion part of the longitudinal wake potential, we note, that during the 
integration along the brunch cut (Fig.5) the values of parameter λ  (3) are the same at both cut off 
sides when Γ−< 1)Im(κ  and the integral along this part of cut off is equal to zero. The diffusion 
part of the longitudinal wake potential is then given by the integration over κ along of both sides of 
cut from 0=κ  to Γ−= iκ  (Fig.5) and is given by:  
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that tends to the corresponding diffusion term of wake function for dc conductivity if 0→Γ . The 
complete wake function is a sum of resonator (28) and diffusion (32) terms: 
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  Figure 7 presents the point charge monopole longitudinal wake potential for various Γ . Note, that 
for both limiting cases, ( 0→Γ ; ∞→Γ ), the results are strive to well known performance of the 
wake potentials [2].  
 

4. SUMMARY 
 

The analytical presentations fo r the wake potentials produced by point and Gaussian bunches are 
obtained for the AC and DC conductivity of the pipe walls.  

For DC conductivity case, the integral presentation of the point wake potential is transformed to 
analytical form for any multiple modes of both longitudinal and transverse wake potentials. An 
obtain results are further expanded into fast converged series that gives pictorial view of excited 
short range wakes and allow to evaluate the correction terms with respect to existing approximation 
(see Piwinski formula [6]).  

For AC case, the inverse Fourier transformation of the longitudinal impedance is obtained in 
analytical form. The resonator term of the longitudinal wake potential is derived in the form of 
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superposition of two waves shifted by 2/π . The amplitude of the resonator term is defined by 
contribution of both waves and is greater than in single mode approximation (see [2]). The diffusion 
term is presented in simple integral form. 
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