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Abstract

The modified analytical form for the longitudinal and transverse
resistive wake potentials of point-like charge moving parallel to the axis
of round pipe with frequency independent walls conductivity is
obtained. The short range wake potentials are presented by uniformly
converged series.

For the frequency dependent conductivity, the resonator term of the
longitudinal monopole wake potential is presented in analytical form.
The diffusion term of the potential is modified to simple integral form.
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1. INTRODUCTION

The longitudinal and transverse impedances of infinitely resistive round pipe with frequency
independent conductivity have been obtained by Chao [1]. The further treatment of the impedances
both for frequency independent (DC-direct current) and frequency dependent (AC-alternate current)
conductivities has been performed in Ref. [2].

In particular, the analytical extension of longitudinal impedance (monopole term) to the complex
plane has been derived as [2]:
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where b is the pipe radius, s, =(ch?/2ps)¥*® is the characteristic distance, ¢ is the velocity of

light, s isthe conductivity of thewallsand k =ks, is the complex dimensionless wavenumber.
For the DC conductivity, s isthe static quantity and the parameter | is given by

| =k (@1+i). )

For the AC case, the conductivity isgiven by s =s ,/(1- iwt ) with s, the static conductivity, w
the frequency and t the relaxation time of the metal. The parameter | isthengiven by [2]:
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The complex plane has a brunch cut on the negative imaginary axis. The function confined to the
Riemann sheet - p/2<q <3p/2 and parameter | has different signs in opposite sides of the

brunch cut.
The wake potential is given by the inverse Fourier transformation of the longitudinal impedance:

with
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For the DC case, the integration of (5) in the complex plane results on the sum of resonator (given
by elementary functions) and diffusion (given in the integral form) terms [2]. For the AC
conductivity, the wake function is given by the numerica integration of (5) [2,3]. The numerical
integration of the resonator term in addition implies the numerical determination of impedance
function poles.

In this paper, the further treatment of the wake potentials for both DC and AC conductivities has
been performed. For the DC conductivity, the analytical form of the diffusion term has been
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obtained for both longitudinal and transverse wake potentials. For the AC conductivity case, the

analytical form for the resonator term and the simple calculating integral for diffusion term of the
longitudinal monopole wake potential is derived.

2. DC CONDUCTIVITY

2.1 Point-Charge
The longitudina and transversal wake potentials for the point driving charge may be presented in
the form of expansion over the longitudinal (w,,) and transversal (w, ) multipole moments[1,2]:

¥ ¥
w,(s,F)=a w,,(s7) W (sF)=a W ,(sF) 6)
n=0 n=1
with
wo(s7)= 07 820 g, 1, (u,Jeosnf - 1),
e
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where d, =g, =1, d,., =2, 0,., =(n+1)/2, f,r, and f,rare the cylindrical coordinates of

driving and test particles respectively, & ,& are the unit vectors. The argument u, is equal to
gs/s, -

The representation (7) allows express the dependence of the potentials from longitudinal coordinate

¢ for any multipole moments via the longitudinal f,(u) and transverse f, (u) wake functions with

modified argumert u=u, for nth multipole. The wake functions f,, f, for any multipole

moments are given by the sum of resonator and diffusion terms [2]

() :-—e cos(«/—u)+—l (u)

8
()= 2 (Bsn)- cosf). il .
with the diffusion integrals |,,1, givenas
¥ e K ¥ XU
1, (u)= Omdx |r(u):9mdx. ©)
To transform integrals (9) to analytical forms, the integrands can be rewritten as:
x> g A 1 8 A
x° +8 Jaz‘lx +(B,)*’ x6+8:Ja:l x> +(B,)”
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A =-2A7 =-1/6, A, =-2A, =(1Ti3)/12, (10)
B,=+2, B,,=(Fi\3)/+/2.

After integration, the wake functions f,, f, can be presented as:

f,(s)=1- 4e°° cos(/3s) - X (i/25) +x (€7 /25) +x (- € "/°[25)}/3,)
(12)
f,(s)={2e *(V3Sn(+/35) - cos(/3s) ) +x (i/25) +e PP (eP/°4/25) + &P/ (- & " 25)} /3,
where x(s) = exp(- s2) erfd- is) is the complex error function [4].
The analytical form of the wake functions f,(s) and f, (s) can be modified by expanding the
expressions (11) into the series [5]:

¥ ¥
fz(s): é . s™ + é d,s* 2,
k=0 k=1
(12)
3 ~ 3 ~
f,(s)=s C.s™ +sq d s™¥?,
k=0 k=1
where
c, =- 2*/(3k), €, =2%*/(3k +1),
d, =+/2/p 2°%/(6k - 3, (13)

d, =-+/2/p 2%*/(6k- 1)1

The expansions (12) are uniformly converged at the interval 0 £ s<¥ and are the Laibnitz series,
i.e. the consecutive terms of series (12) have aternative signs (d, <0,¢c, >0,d,,, <0) and

decrease by the module with the term number. Fig.1 presents the longitudinal f,(u) and transverse

f, (u) wake functions given by (11) that are exactly coincide with the integral representation (8)
(solid curves). The dashed curves show the wake functions approach by series expansion (5, 10 and
15 terms in series). Note, that the argument of the wake functions for rth multipole moment is
givenby u=u, =g¥s/s, .

2.2. Gaussian Bunch
For the arbitrary longitudinal distribution of the driving bunch, the wake potentials are given by
the convolution of the point-charge wake potentials and bunch distribution. In particular, for the

Gaussian bunch wake function F, (z) we get:
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¥ (z-38)7
F.(2=(p)"f, (52)e 7 . (14)

0

where §,=s,/9¥?, Z=2/s,,S=s/s,,z=s,/§ ad s, is the bunch rms length. The

n !

expansions of the wake functions for the Gaussian bunch may be then obtained by putting the point-
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Figure 1. Wake functions f,(u) (top) and f, (u) (bottom). Solid lines are the results of numerical
integration. Dashed lines are the serial approach with 5, 10 and 15 terms of expansion.

charge wake function series (12) into expression (14). The longitudinal wake function of Gaussian
bunch is then expressed as

S2%f4s? oy s

F(2)= e@ éoiq;%e(skﬂp?g%m%,- z/szg+dkz3k'3/2d3k— Y2 (k-1 - 7s )Z (15)
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where U (a, x) is a function of parabolic cylinder [4]. The severa first terms of this expansion give
a good coincidence with the directly integrated expression (14) for the case of comparatively small
z (z < 1). Fig.2 presents the approximation of the Gaussian bunch wake function (solid line) by the
serial expansion (5, 10, 15 terms, dashed lines) for z =0.5. Actually, the approximation curves

detached from the exact solution at different distance behind the bunch depending on the number of
termsin series.

F(s/o.)

-0 0 5 10 15 20
s/,

Figure 2. The longitudinal resistive wake function for Gaussian bunch with s , /s, =0.5. The solid

curve is an exact solution; the dashed curves are the wake functions computed by expansion (15)
for various numbers of first termsin the sum.

For V=5,/s >1 the solution may be obtained by substituting (11) into (14). After successive
partial integration, the result is given in a series expansion by positive degree of Sy/s :

¥ Z-3k‘- g*-2 _ 1 g% 5_21,1
;Zqzdisk-zQi(z)-@d’z?’k-le 2{;,
(16)

Q.(2=rze {1, (22/a)1,,(22/4)

with positive sign for Z >0 and negative one for Z<0; 1,,,(2) are the modified Bessal functions
[4]. In power of parameter z the wake function F(z) can be presented as:

F(Z)=Az ¥ +Az 3 +Az P +Az °+.. (17)

The first term of this expansion coincides with the well-known Piwinski formula [6] for the
longitudinal wake function in low frequency approximation, i.e.
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The next three terms in expansion are given below.

— 1 52 - 722
= -1 ,
A, e (Z* - De
A= S o1 ) 1)+ 0N o)1 (), 09
A, =- 1 sa5- 1072 +3%)e 7h,
2°\2p
where
f(2)=22%(2% - 4), §(z) =5+22%(z*- 5). (20)

Fig.3 presents the longitudinal wake functions for the Gaussian bunch for z =2.5 obtained by
exact integration and series expansion given by (16), (17).
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Figure 3. The longitudinal wake function for z =25. Exact solution (solid line) and its
approximation by first (dashed line) and two (dotted line) terms of expansion (17) are shown.

A good convergence is observed aready with two terms of series expansion. Thus for z 3 2.5, the

two first terms of (17), i.e. the Piwinski formula plus the second term of expansion, with high
accuracy describe the Gaussian bunch wake function:
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For more precise calculation of wake potential the next terms may be used. On Fig.4 in enlarged
scale the consecutive convergence of the expansion (17) to the exact solution by using 2, 3 and 4
terms of expansion are given.
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Figure 4. The convergence of approximation (17) to the exact solution for z = 2.5.

3. AC CONDUCTIVITY

The longitudina impedance (1) for the AC conductivity after change of variables | =-il ,
k =il 2/(2- 1?G) and G=ct /s, , may be rewritten as:

2s, | (2-172G)

- = = 22
cb? (2- 12G)% +13/2 &)
The denominator of (22) has four roots given by:
I, =-1/8G*- g/2G*Fe [2&2,
(23)
|54 =-1Y8G*+g/2G* Fe,/2G?,
where
g=4ata,, € = (2a, - a2¢a3/49)1/2 (24)
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with
3 G abaG? O
al—i+£, a,=— d—, agz-l-8G3, (25)
16 3 3 é d 8
and
3
d=2% (27 +1024G* +34/31/27 + 2048G° )]/ . (26)

The first two roots I~l,2 are real while I~3’4 are complex (the term e, is imaginary for arbitrary
G>0). In DC limit (G=0): I,=-¥, [,=-2 and I ,, =1Fi+/3. The last two roots give a
negative imaginary part for the wavenumber k :

~ ~ )\ b
k., =il2,|2- 126/ =2 -2 27
3,4 3,4( 3,4 ) M M ( )

wherea =4uw, b = f’G- 2f_ with f, =u’+twand M =4- 4& +G* 2.
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Figure 5. The contour of integration.

The integration contour for inverse Fourier transformation to obtain the longitudinal wake
potential is presented in Fig. 5. Similar to the DC conductivity, the wake function is presented by
the difference of resonator and diffusion terms. The resonator term is given by the integration over
the complete contour (sum of the residues), while the diffusion term is given by the integral along
the cut of. The resonant term of the longitudinal wake potential, given by the sum of two residues

a k =k, and k =k ,, isthen presented as
8 o (2-1°G07 e 7™

W (s)=- — . . 28
() b7 2,47 +31 /2- G 29

In terms of real variables the resonator term (28) may be rewritten as:

bS\
W)= g ® IR o RS T2y 29
b’MQ 1 M s M s,
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where

Q =16G*M - 12Gu(2- Gf, )+=f,,

h|©

F. =32Gu(d, - 1)- 8G°* f,u(f - 2w?)+3f,(2- &), (30)
F, =320MG, +1)- 8G° f,w(f. +2u?)- 6&,uw.

Thus in AC conductivity case, the resonator term (29) of the longitudinal wake potentia is the
superposition of two waves shifted by the quarter wavelength.
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Figure 6. The waves amplitude versus C.
The dependence of the waves amplitude on the parameter C is given in Fig. 6. The main (cos-like)
wave amplitude distribution for small C is presented separately. The sin-like wave amplitude

reaches the maximum at C » 0.4 and vanishes for small and high G. For C=0, the cos-like item
gives the resonator term of monopole longitudinal wake potential for dc case [2]:

WR(8)apo = - 16/30%e 7 cos(«/§s/ so). (31)

Note, that the AC wake potential resonator term amplitude (29) contains both the contribution from
cos and sintlike waves and the retarding potential seen by the driving charge has non zero phase.
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Figure 7. Longitudinal monopole wake potential for AC conductivity case.

To obtain the diffusion part of the longitudina wake potentia, we note, that during the
integration along the brunch cut (Fig.5) the values of parameter | (3) are the same at both cut off
sideswhen Im(k) <- 3/G and the integral along this part of cut off is equal to zero. The diffusion
part of the longitudinal wake potential is then given by the integration over k along of both sides of
cut from k =0 tok =- i/G (Fig.5) and is given by:

b _1642%  x2(1+x%G)
WZ (S)_ b2 08 2\ 4 6
p ;8X1+Xx°G)" +x

s X2
e %y (32)

that tends to the corresponding diffusion term of wake function for dc conductivity if C® 0. The
complete wake function is a sum of resonator (28) and diffusion (32) terms:

W, (s)=W,"(s) +W.” () (33)

Figure 7 presents the point charge monopole longitudina wake potential for various C. Note, that
for both limiting cases, (C® 0; C® ¥ ), the results are strive to well known performance of the
wake potentials[2].

4. SUMMARY

The analytical presentations for the wake potentials produced by point and Gaussian bunches are
obtained for the AC and DC conductivity of the pipe walls.

For DC conductivity case, the integral presentation of the point wake potential is transformed to
anaytical form for any multiple modes of both longitudinal and transverse wake potentials. An
obtain results are further expanded into fast converged series that gives pictorial view of excited
short range wakes and allow to evaluate the correction terms with respect to existing approximation
(see Piwinski formula[6]).

For AC casg, the inverse Fourier transformation of the longitudinal impedance is obtained in
analytical form. The resonator term of the longitudina wake potentia is derived in the form of
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superposition of two waves shifted by p /2. The amplitude of the resonator term is defined by
contribution of both waves and is greater than in single mode approximation (see [2]). The diffusion
term is presented in simple integral form.
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