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I. INTRODUCTION AND CONCLUSION

The LOLA-IV transverse deflecting cavity [1] is used in the Sub-Picosecond Photon

Source (SPPS) as a diagnostic for measuring the length of very short bunches (with rms

length on the order of tens of microns). It is envisioned to use the same structure for the

same purpose in the Tesla Test Facility (TTF)-II. However, unlike the SPPS, the TTF-II

may also run in multi-bunch mode, and the question arises, How serious is the beam loading

that would be induced?

In this report we address this question and find that, for LOLA-IV in TTF-II, the varia-

tion in beam-loading induced energy is confined to the first ∼ 80 bunches, and that the total

spread in induced energy—the difference in energy between the bunch in the train with the

highest energy and the one with the lowest energy—is very small, ∼ 0.03%.

II. BEAM LOADING

Consider a train of N evenly-spaced bunches traversing an empty rf cavity. The energy

changed induced by the nth bunch is given by
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where qb is the charge per bunch, L is the structure length, and sn is the longitudinal

position of the nth bunch; where k0, κ0, Q0, are, respectively, the wave number (= 2πf0/c

with f0 the frequency and c the speed of light), the loss factor, and the quality factor of the

fundamental mode of the cavity. Here we ignore the effect of higher cavity modes. We can

rewrite (sn − sn′) = 2πν(n − n′)/k0, where the tune ν ≡ f0/fb = ck0/(2πfb), with fb the

bunch frequency. Therefore,

∆En = −2eqbκ0L

(

1

2
+ Re

[

n−1
∑

n′=1

e−αn′

])

= −2eqbκ0L

(

1

2
+ Re

[

e−α 1 − e−(n−1)α

1 − e−α

])

, (2)

where Re means to take the real part and α = ( 1
Q0

− 2i)πν. We see that the result of

Eq. 2 remains unchanged if we replace the imaginary part of α (= −2πiν) by −2πiνfrac,
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where νfrac is the fractional (non-integer) part of the tune. Note that beam loading is

more sensitive to the fractional part of the tune than to the integer part, and that there is

symmetry about the half integer tune [the result for tune νfrac is (nearly) the same as for

tune (1− νfrac)]. From Eq. 2 we note also that we reach near steady-state at bunch n when

the quantity e−nπν/Q0 becomes small. Finally note that at the integer tune the steady-state

energy change ∆E ≈ −2eqbκ0LQ0/(νπ).

For multi-bunch operation of TTF-II we have hundreds of bunches, each with charge

qb = 3 nC, bunch frequency fb = 1.3 GHz/144, and energy E = 600 MeV. For the LOLA-IV

cavity, the deflection mode frequency fd = 2.856 GHz and structure length L = 3.64 m;

the fundamental mode has properties: f0 ≈ 2.1 GHz, κ0 = 9 V/pC/m, and Q0 = 12000.

Note that since the cavity operates in the dipole mode, the fundamental mode is cut off,

and the total Q is the same as the cavity Q. Note also that ν = f0/fb ≈ 233., so that if we

want to know the fractional part of ν to better than 0.1, we need to know f0 to better than

4.3 × 10−4 (or 0.9 MHz) accuracy.

In Fig. 1 we show the energy change of the first 80 bunches in the train as given by Eq. 2,

for cases with the fractional part of ν = 0.03, 0.10, and 0.30, if the LOLA structure is used

at TTF-II (for ease of visualization, the calculated points are connected by straight lines).

Note that the single bunch energy loss (the energy loss of the first bunch) is 0.016%. Also,

note that the quantity e−nπν/Q0 = 7 × 10−3 for n = 80, which we can see from the figure is

near steady-state.

In Fig. 2 we plot the total spread of energy in the bunch train—the difference between

the bunch with the highest energy and the one with the lowest energy—vs. fractional part

of tune. Note that the curve can be divided roughly into three regions: for νfrac in ranges

(i) [0, 0.035], (ii) [0.035, 0.25], and (iii) [0.25, 0.5] (remember the mirror symmetry for values

beyond νfrac = 0.5). A beam loading example for each of the 3 regions is given in Fig. 1.

Beginning with Region (iii), note that, in this region, the energy change as function of bunch

number can be roughly described as a damped oscillation that is limited in amplitude to

ε = eqbκ0L, the single bunch energy loss. Therefore, the total spread in energy in the train

is ≈ 2ε, which for our parameters is equivalent to ∆E/E = 0.032%.
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FIG. 1: Energy change of the first 80 bunches in the bunch train, assuming the fractional

part of ν is 0.05, 0.10, and 0.20. Note that the results for the 80 bunches are connected by

straight lines.

In Region (ii) the oscillation amplitude becomes larger than ε; as νfrac decreases, the

energy spread in the train gradually increases (here ∼ 1/νfrac). Finally, in Region (i), near

the integer, all bunches in the train lose energy, and the energy variation increases steeply as

νfrac decreases. The boundary to Region (ii), νfrac ≈ 1.82ν/Q0 (which here = 0.035), is the

tune for which the maximum energy in the train ∆Emax = 0. At the integer tune, we obtain

as minimum energy in the train (also the steady-state energy) ∆Emin = −2εQ0/(πν), which

here is equivalent to ∆E/E = −0.54%. To minimize beam loading due to the LOLA-IV

cavity we want to operate in Region (iii), and at all cost avoid Region (i).

III. MODE CALCULATIONS

To find the strength of beam loading in the LOLA-IV structure, we need to obtain, to

high accuracy, the fundamental mode frequency in the structure. The structure length is

3.64 m. The geometry of one cell of the structure (all cells, except the coupling cells, are

identical) is indicated in Fig. 3. Fig. 3a displays the shape of one cell, showing the iris

and the mode alignment holes; Figs. 3b,c give a negative image, showing the shape of the

enclosed volume in a cell. In Table I we reproduce, from Ref. [1], geometric parameters that
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FIG. 2: Total spread in energy in the bunch train vs. fractional part of tune.

we use in our calculations.

TABLE I: LOLA-IV Geometric parameters, in inches [1]. Note that the period length

d = 3.5 cm.

Cavity ID 2b 4.5805

Iris aperture diameter 2a 1.7670

Disk thickness t 0.230

Iris tip radius ρ 0.1215

Iris tip flatness s 0.031

Alignment holes diameter 2p 0.750

Alignment holes offset c 1.457

As a check on our calculations we also compute the dipole mode frequency, which was

measured in the real structure. This frequency was measured in air with 40% humidity, at a

temperature of 75◦F, and was found to be 2.8562 GHz. The operating temperature, however,

is meant to be 113◦F with the the cavity under vacuum. It turns out that increasing the

temperature reduces the frequency and evacuating the cavity increases the frequency in a

such a way that, under operating conditions, the frequency is again 2.856 GHz [2]. Note

that increasing the temperature by the 38◦F alone yields a relative change in dimension of

3.7× 10−4, and a relative change in frequency of −3.7× 10−4; evacuating the cavity at room
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FIG. 3: The LOLA-IV cell geometry. Shown are the shape of one cell (a), and the shape

of the enclosed volume of one quarter of a cell (used for calculations) (b), and the enclosed

volume in a cell (c).

temperature will yield the negative of this frequency change. Our calculations will use the

(room temperature) dimensions of Table I and will assume vacuum. Under these conditions

we expect a frequency increase of 1 MHz, or a dipole mode frequency of 2.8572 GHz [6].

We begin by finding the modes in a 2 dimensional (2D) approximation of the LOLA

structure using the frequency domain program OMEGA2 [3]. We approximate the iris tip

as being perfectly rounded (a half circle in longitudinal cut). We obtain f0 = 2.1127 GHz

(near π/2 per cell phase advance), corresponding to a tune ν = 234.02 and a dipole mode

frequency fd = 2.8725 GHz (2π/3 phase advance). Note that fd/f0 = 1.36. To obtain a

more accurate result, we next perform a 3 dimensional (3D) calculation for the structure

of Fig. 3, including the alignment holes, using OMEGA3P [4]. Again we approximate the

iris tip as being perfectly round. This time we obtain f0 = 2.1078 GHz (ν = 233.48), and

fd = 2.858 GHz. Note that fd/f0 is nearly the same as for the cylindrically symmetric

model. Also note that the dipole mode with the other polarization has a frequency that is

25 MHz higher.

To study the effect of the more complicated iris tip, we have repeated the 2D calculation,
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but now using the actual tip geometry. The shape of the iris tip can be described (in

longitudinal cut) by two, symmetric circular arcs of radius ρ that, on one end, meet the

iris tangentially, and, on the other (the tip end), meet a flat line of length s at iris radius

a (see Table I). We find that the dipole mode frequency decreases due to this modification

by a small amount, 0.2 MHz. Finally, our best result for the dipole mode frequency at

room temperature is 2.8578 GHz, which is 0.6 MHz higher than the expected 2.8572 GHz.

This discrepancy is larger than our expected accuracy, ∼ 0.2 MHz, and is not understood.

Nevertheless, the reasonable agreement gives us some confidence in our numerically obtained

fundamental frequency.

Our (room temperature) fundamental mode frequency f0 = 2.1078 GHz becomes, at

operating temperatures, f0 = 2.1070 MHz (ν = 233.39). Note that even if this result were

uncertain by as much as ±1 MHz the tune would be in the range [233.28, 233.50], still

safely away from the integer resonance. Thus, we conclude that the total spread in bunch

energy due to beam loading for the LOLA-IV structure in TTF-II, to good confidence, will

be ∼ 0.03%.

TABLE II: Calculation results assuming perfectly rounded iris tips.

Model fd [GHz] f0 [GHz] ν

2D 2.8725 2.1127 234.02

3D 2.8580 2.1078 233.48
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