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ABSTRACT 

The cavity control system for the TESLA - TeV–Energy Superconducting Linear Accelerator project is initially 
introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with 
signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. 
The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the 
system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink 
model implementation is developed to explore the feedback and feed-forward system operation and some experimental 
results for signals and power considerations are presented.  

 

1. INTRODUCTION 

The TESLA concept is based on nine-cell superconducting niobium resonators to accelerate electrons and positrons. 
The acceleration structure is operated in standing π-mode wave at frequency of 1,3 GHz. The RF oscillating field is 
synchronized with the motion of a particle moving with the velocity of light across the cavity (figure1). 
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Figure 1. Schematic cavity field distribution and simplified block diagram of cavity control system. 

The complex RF control system for the relativistic beam has been developed to stabilize the accelerating fields of the 
resonators contradicts with presence of signal disturbances, non-linearity and time-varying parameters. The control 



 

section, powered by one klystron, consists of four cryomodules containing eight cavities each. One 10 MW klystron, 
through coupled wave-guide with circulator, supplies RF power to 32 cavities which are operated in pulsed mode with 
an average accelerating gradients of 25 MV/m. The control feedback system regulates the vector sum of the pulsed 
accelerating fields in multiple cavities. The fast amplitude and phase control of the cavity field is accomplished by 
modulation of the signal driving the klystron. The digital controller stabilizes the detected real (in-phase) and imaginary 
(quadrature) components of the incident wave according to the required set-point. Additionally the adaptive feed-
forward is applied to improve compensation of repetitive perturbations induced by the beam loading and by the 
dynamic Lorentz force detuning (figure 1). 

 

2. CAVITY RF LEVEL MODELING. 

The signal relation for the cavity environment is obtained by applying signal-flow graph according to figure 2. The 
cavity is operated in 1.3 ms pulsed mode, 10 Hz rate; all quantities are represented in the Laplace transform space. 

-1 

-1/NZ0 

exp(-sTw) klystron current ≡ Jk 

1/N 

1/Z0 

-Z0 Zc = (1/R+sC+1/sL)-1 

reflected voltage ≡ Ur 

cavity voltage ≡ Uc 

beam current ≡ Jb 

cavity current ≡ Jc 
forward current ≡ Jf 

reflected current ≡ Jr 
= circulator load current 

1/N 

Figure 2. Signal-flow graph for cavity environment. 

The RF current generator driving the wave-guide with circulator models the klystron as a power amplifier. The wave- 
guide as a transmission line is parameterized by the impedance Z0 and time delay Tw. The beam loading can be modeled 
as a current sink Jb feed by the cavity electromagnetic field. The bunched beam current has typically  ~2 ps pulsed 
structure, 1 MHz rate and an average value of 8 mA. The cavity is represented as the resonant LCR circuit with 
impedance Zc coupled to the wave-guide. The forward wave drives the coupler, which converts the signals according to 
the transformation ratio 1:N. Superposition of the output coupler signal and the beam loading results in the cavity 
current Jc and related by impedance Zc cavity voltage Uc. The reflected wave is isolated by circulator and absorbed by 
the load matched to the wave-guide and therefore is no feedback signal to the klystron output. 

Applying an equivalent parallel resistance connection    RL ≡ N2Z0║R   
and  the cavity loaded impedance                                     ZL = (1/RL + sC+ 1/sL)-1     
and substituting the current generator                               Jg ≡  Jf /N,   
results in the cavity voltage                                               Uc = ZL·(2Jg - Jb) = ZL·J. 

Therefore the cavity impedance can be represented by the transfer function in the corresponding forms: 

ZL(s) = (1/RL+ sC+1/sL)-1 = ω0·ρ/(ω0/QL + (s2 + ω0
2)/s) = ω1/2·RL/(ω1/2 + (s2 + ω0

2)/2s, 

where the following cavity parameters are applied: resonance pulsation ≡ ω0 =2πf0 = (LC)-½, characteristic resistance ≡ 
ρ = (L/C)-½, loaded quality factor ≡ QL = RL/ρ, half-bandwidth (HWHM) ≡ 2πf1/2 = ω1/2 =1/2CRL = ω0/2QL.   

 



 

3. LOW LEVEL FREQUENCY MODELING. 

According to the RF generator constant pulsation ωg, and due to a narrow resonator bandwidth, the cavity voltage can 
be modeled in time domain as a generalized oscillation       

ur = A(t)·cos(ωgt + φ(t))      with its π/2 shifted Hilbert  transform       ui = A(t)·sin(ωgt + φ(t)), 

where the amplitude A and the phase φ are slowly time-varying components. 
This ordered pair of complementary signals called analytical signal can be represented as a vector or phasor in complex 
domain 

u ≡  (ur, ui) ≡ ur + iui = A·exp(i(ωgt +φ)). 

The cavity control system proceeds with the low level of frequency envelope represented by (I, Q) components: 
the real signal component                              in-phase ≡ I = vr = Acosφ 
and the imaginary signal component             quadrature ≡ Q = vi = Asinφ. 

In-phase and quadrature components can be detected by the complex demodulation (down-conversion) as follows: 

(I, Q) = v ≡  (vr, vi) ≡ (Acosφ, Asinφ) = Aeiφ = u·exp(-iωgt). 

The cavity input current is modeled as well as an analytical signal:  j = 2jg - jb, created by the complex modulation (up-
conversion), where jb correspond to ωg Fourier component of the pulse structure beam loading current. 
According to the cavity transfer function modeling, the relation between current and voltage analytical signal is given 
in Laplace space: 

U(s) = ZL(s)·J(s) = ZL(s)·(2Jg(s) - Jb(s)). 

The signal relation is modeled by signal-flow graph according to figure 3. The beam loading current is extracted outside 
of the signal-flow graph according to (I, Q) components relation:   I(s) = 2Ig(s) - Ib(s). 
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Figure3. Signal-flow graph for (I,Q) components and analytical signals. 

The successive operations represented by the signal-flow graph in figure 3 yield the direct relation between the cavity 
input and output (I, Q) components as follows 

V(s) = ZL(s+iωg)·I(s),  where 
ZL(s+iωg) = ω1/2·RL/(ω1/2+((s+ iωg)2 + ω0

2)/2(s+iωg)) = ω1/2·RL/(ω1/2+(s(s+2iωg)+(ω0-ωg)·(ω0+ωg))/2(s+iωg)) 

The RF cavity transfer function is transformed to the low-pass filter and can be effectively simplified for signals with a 
narrow spectral range relative to the generator frequency close to the cavity resonance pulsation, then for |s| << ωg ≈ ω0  
yields   

ZL(s+iωg) ≈ ω1/2·RL/(s +ω1/2 – i∆ω) ≡ Z(s),  where cavity detuning  2π∆f = ∆ω ≡ ω0–ωg.   

Therefore (I, Q) components relation can be written for phasor representation 

(s +ω1/2– i∆ω)·V(s) = ω1/2·RL·I(s). 



 

Moving to time domain yields the state space equation 
           dv/dt = A·v + ω1/2·RL·i 

where A = (-ω1/2, ∆ω) for phasor representation    or  state matrix A = (-ω1/2, -∆ω; ∆ω,-ω1/2) for vector representation. 
Thus the resultant state space equation depends on the cavity bandwidth and detuning only. 

The phasor solution of the state-space equation for the current step input i0·1(t) is as follows 

v(t) = i0·ω1/2·RL·(1– exp((-ω1/2+i∆ω)t))/(ω1/2– i∆ω)        for  time  t ≥ 0. 

The cavity (I,Q) voltage step response for a driving current of i0 = 32 mA (ig=16 mA, ib=0) is presented in figure 4 for 
the following parameters: loaded quality factor QL = 3·106, characteristic resistance ρ =520 Ω (RL = 1560 MΩ, f1/2 = 217 
Hz) detuning range ∆f = 0 : 400 Hz. 

 

Figure 4. Cavity (I,Q) voltage step response for different detuning. 

 

4. CAVITY VOLTAGE (I, Q) DETECTION. 

In the TESLA control system the only real part of the analytical signal is available and applied for detection cavity 
voltage (I, Q) components. In down-conversion operation the signal of 1300 MHz frequency is mixed with 1300.25 
MHz local oscillations. The low-pass filter selects the signal of the difference 250 kHz intermediate frequency fi 
preserving the amplitude and phase information as follows 

u(t) = ur = A·cos(2πfi·t +φ).  

In order to complete the analytical signal model the π/2 shifted copy ui = A·sin(2πfi·t +φ) is considered. Taking into 
account the measurement channel attenuation by factor g and additional phase shifting -∆φ for an individual cavity the 
measured vector value is as follows 

u(t) ≡ (ur, ui) = g·A·exp(i(2πfi·t +φ-∆φ)) 

Therefore (I,Q) components can be obtained by complex demodulation according to relation 

(I,Q) ≡ v(t) = (vr, vi) = A·exp(iφ)= 1/g·exp(-i(2πfi·t-∆φ))·u(t). 



 

In the TESLA control system the digital signal processing is performed applying the real part of the analytical signal. 
Assuming a slow variation of the amplitude and phase for the period of delay T = 1/4fi = 1µs the sequence of two π/2 
shifted consecutive samples un = u(nT) = (u(nT), u(nT-T)) = (un, un-1) of the IF signal is applied to detect the discrete 
approximation of the (I,Q) components as follows 

(I,Q)n ≡  v(nT) = vn = 1/g·exp(-i(2πfi·nT-∆φ))·u(nT) = 1/g·exp(i∆φ)·(-i)n·un= Rn·un, 

where coefficient Rn = 1/g·exp(i∆φ)·(-i)n  

Applying recursive algorithm yields 

R0 = (cos(∆φ)/g,  sin(∆φ)/g);   Rn = (Im(Rn-1),  -Re(Rn-1)); 

(I,Q)n ≡  vn = (Re(Rn)·un - Im(Rn)·un-1,   Im(Rn)·un + Re(Rn)·un-1). 

 

5. CAVITY POWER CONSIDERATION. 

According to the analytical signal modeling, the cavity voltage and the current can be represented, after complex 
demodulation, as a relatively slow varying phasor or vector v(t) ≡ V  and   i(t) ≡ I,  each with its  I, Q  components. The 
real power is given in terms of complex voltage and conjugate current   P = ½ Re{V·I*}. 

The forward power, which is provided by the wave-guide, reflects partly due to the mismatched input coupler and 
dissipates in the circulator load (figure 5). The residual transmitted power supplies cavity and the beam loading. The 
objective of the accelerator system is to deliver power to the beam with the best efficiency. 

Energy conservation yields                      Pf = Pr + Pd + dW/dt + Pb, 
where 

- forward power ≡ Pf = ½ Re{Vf ·If*} = ½ |If|2 ·Z0 ≈ ½ |Ig|2 ·RL   (RL << R) 
- reflected power ≡ Pr = ½ Re{Vr·Ir*} = ½ |Ir|2 ·Z0 ≈   |Vc – RL·Ig|2 /2RL  (RL << R) 
- cavity dissipated power ≡  Pd = ½ Re{Vc·Ic*} =  |Vc|2 /2R ≈ 0 
- electromagnetic energy stored in cavity ≡ W = |Vc|2/2ρω0, 
- beam loading power ≡ Pb = ½ Re{Vc·Ib*} 

 

Figure 5. Cavity amplitude voltage step response and power monitoring for different detuning. 



 

In a steady state with the beam loading and the detuned cavity (ωg ≠ ω0) the main signals and parameters are as follows 
- beam loading average current ≡ Ib0 = 8mA – typical value 
- RF component beam loading current  Ib = 2Ib0  - determined as a reference phasor 
- cavity required voltage  Vc = |Vc|·eiφ  - |Vc| , φ – determined, stabilized amplitude and phase 
- generator current  Ig = |Ig|·eiθ   - |Ig|, θ  – amplitude and phase actuated by controller 
- cavity actual voltage  Vc = ZL(iωg)·(2Ig – Ib) ≈ 2RL/(1- i∆ω/ω1/2)·(Ig – Ib0). 

Equating the required and the actual cavity voltage Vc, yields the stabilization equation. Solving this equation, the 
required forward power Pf is obtained, which is dependent on the beam loading and the cavity detuning (R >> RL): 

Pf = ((1+ 2RL·Ib0·cosφ/|Vc|)2 + (∆ω/ω1/2 + 2RL·Ib0·sinφ/|Vc|)2) ·|Vc|2/8RL. 

The calculated power attains the minimum value equals beam loading power Pb = |Vc |·Ib0·cosφ for tanφ = ∆ω/ω1/2  and 
for loaded quality factor QL =   |Vc |/(2Ib0·ρ·cosφ). 

 

6. CONTROL SYSTEM MODELING. 

The objective of the control system is to stabilize the cavity voltage with the minimal power consumption supplied by 
the klystron. The feedback control system supported by feed-forward is modeled by the signal-flow graph according to 
figure 6. The cavity is represented by the transfer function Z(s) linking the current and voltage (I, Q) components. 
Superposition of the feed-forward and beam loading current drive directly the cavity. Voltage (I, Q) components are 
compared to the reference vector R set-point. The proportional controller with gain G closing the feedback loop 
amplifies the error signal. Transducers K1 and K2 adapt signals to match its value for the controller and cavity 
environment.  
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Figure 6. Signal-flow graph for cavity control system. 

The cavity voltage is stated as follows: 
V(s) = (K2·exp(-sTd)·(G·R(s) + F(s)) – Ib(s))·Z(s)/(1+K·G·Z(s)·exp(-sTd)), 

where transducer ratio K ≡ K1·K2, loop delay ≡ Td. 

For the steady state value V, assuming that error signal equals zero, the feed-forward component is estimated as 
follows:           K2·F = V·(1– i∆ω/ω1/2)/RL + Ib. 

The main reason of the cavity voltage destabilization is the resonance frequency changing caused by microphonics and 
Lorentz force detuning. The feedback system stabilizes the cavity voltage at the expense of additional forward power. 
The high controller gain for the better accuracy and fast response is limited by the stability of the feedback system.  The 
loop phase shift is the reason of the potential instability. The time delays caused by the wave-guide and the digital  
controller latency are important contributions to the phase shifting in the closed loop of the feedback system. The 
detuned cavity behavior for driving step current i = 16 mA (ig = 8 mA, ib=0, without feed-forward) is presented in figure 



 

7 for the following parameters: loaded quality factor QL = 3·106, characteristic resistance ρ =520 Ω (RL = 1560 MΩ, f1/2 
= 217 Hz), detuning ∆ω = 400 Hz, loop delay = 4 µs, proportional controller gain range G = 20 : 110. 
 

 

Figure 7. Cavity step response and I/Q graph for different controller gains (detuning = 400Hz, loop delay = 4 µs). 

 

7. ELECTROMECHANICAL MODELING. 

The super-conducting resonator has an extremely high loaded quality factor QL = 3·106 and the narrow bandwidth of 
about 430 Hz (FWHM). The cavity is very sensitive to the mechanical distortion caused by microphonics and Lorentz 
force changing the resonator's frequency. In addition to the feedback control loop, the adaptive feed forward is applied 
to suppress the influence of the beam loading and the dynamic Lorentz force detuning. Furthermore the local piezo-
translator system is developed to cope with the mechanically induced detuning of the cavity. 

The cavity electrical model is based on the state space equation for the cavity voltage vector (vr, vi ) driven by the 
current vector (ir, ii ) 

            dvr/dt = -ω1/2·vr - ∆ω ·vi + ω1/2·RL·ir 
            dvi/dt = ∆ω·vr - ω1/2·vi + ω1/2·RL· ii 

The time-variant electrical model describes the cavity field as the function of the drive signal (generator + beam 
current) and non-stationary detuning ∆ω(t). It consists of the state space model with the non-linear vector function and 
integrator. The detuning ∆ω is the additional external signal obtained from the output of the mechanical model. Due to 
the Lorentz force the cavity resonance frequency changes with the rising field gradient. The mechanical model 
describes the dynamic Lorentz force detuning which is the function of the square of the time varying gradient. It is 
based on the state space representation for the mechanical modes of the cavity with the resonance frequency f and the 
mechanical time constant τ for each mode according to equation 

d /dt = -( )/τ - (2πf)
•

∆ω
•

∆ω 2 ·(∆ + 2π·Kvω 2), 

where detuning  and its derivative are two state-variables for each mode. The mechanical model is driven by 
square of the cavity field gradient v

ω∆
•

∆ω
2 with Lorentz force detuning constant K. Three dominating resonance frequencies 

are considered in the model and the superposition of all modes yields the resultant detuning.  



 

The detuning response of the mechanical model for driving step voltage v = 25 MV and voltage response of the 
electromechanical model for driving step current i=16 mA (ig=8 mA, ib=0) is presented in figure 8 for the following 
mechanical parameters: resonance frequencies: (280, 340, 420) [Hz], quality factor = 100 for each mode, Lorentz force 
detuning constants: (0.4, 0.3, 0.2) [Hz/(V/m)2]. The mechanical model is weakly damped but the electromechanical 
model appears unstable! 

 

Figure 8. Cavity step response for mechanical and electromechanical model. 

 

8. SIMULINK MODELING. 

The model of the cavity control system is composed applying Simulink – dynamic system simulation for Matlab 
according to figure 9. Its non-linear state space electrical model and the mechanical part as a linear state space model 
generating the non-stationary detuning represent the cavity. The required amplitude and phase set-points converted to 
the in-phase (Re) and quadrature (Im) components are compared to the actual (I,Q) cavity voltage. The proportional 
controller as a matrix gain amplifies the signal error and closes the feedback loop. The amplitude and phase of the beam 
loading current and feed-forward signal are adequately generated and converted to its (I,Q) components. The 
transducers match properly signals level to the controller circuit and the cavity environment.  

For the simulation purpose the initializing Matlabs’ m.file is used to control the model implemented by the Simulink 
Toolbox. The main parameters of the model are available from this file and are combined in the table below. 

 



 

 
 
 
 
 
 

 
Figure 9. Simulink model of the cavity control system 

 



 

CAVITY ELECTRICAL parameters 

f0 = 1300 …………………resonance frequency [MHz] 
ρ = 520 …………………..characteristic resistance [Ω] 
QL = 3·106………………………..loaded quality factor 
RL = QL·ρ = 1560………………..load resistance [MΩ] 
f1/2 = f0/2QL  = 216……………….half band-width [Hz] 
∆f = 428 …………………………….pre-detuning [Hz] 

SIGNAL  parameters 

Beam = 8.........………beam current average value [mA] 
V = 25……………..amplitude of cavity voltage [MV] 
φ = -0.1……………………phase of cavity voltage [rad] 
Φ0 = -1.4……………initial phase for integrator [rad] 
Tf = ln2/2πf1/2..……………..….………..filling time  [s] 
T = 1.3e-3……………………..duration generator pulse [s] 

CAVITY  MECHANICAL  modes parameters 

f = [280, 340, 420]……resonance frequencies vector [Hz] 
Qm = [100,100,100]…… quality factor vector  
K = [0.4, 0.3, 0.2]……Lorentz force detuning constants 
vector [Hz/(MV)2]     

CIRCUIT parameters 

FF…………….Feed-forward: on – FF = 1;  off – FF = 0  
G = 75………………………………controller gain 
del = 1e-6……………………..wave-guide delay [s] 
lat = 4e-6..........................................DSP latency [s] 

 

9. CAVITY FEED-FORWARD AND FEEDBACK OPERATION. 

In the real operational condition the cavity is driven in pulse mode forced by the control feedback supported by feed-
forward. During the first stage of the operation the cavity is filling with constant forward power resulting in an 
exponential increase of the electromagnetic field according to its natural behavior in the resonance condition. When the 
cavity gradient has attained half of the final value and the transmitted power has reached the value of the forward power 
(no reflection) (figure 5) the beam loading current is injected resulting in the steady-state flattop operation. Turning off 
both generator and beam current yields an exponential decay of the cavity field. 

Considering the deterministic conditions of the operation the cavity can be driven directly by the determined current 
resulting in the required cavity behavior. For repetitive beam loading and cyclic dynamic detuning the adaptive feed-
forward signal is applied. To accomplish the cavity voltage V=|V|eiφ

 required at the flattop level the filling feed-
forward signal can be estimated as the phase modulated current step 

if(t) = 2|V|·exp(iΦ(t))/RL,    

so that, magnitude |V| stands for the half of the final exponentially rising amplitude of the cavity voltage. The 
appropriate phase modulation Φ(t) compensates the cavity detuning according to the relation 

dΦ/dt = ∆ω,  so that RF tracks the cavity resonance frequency. 

Therefore detuning ∆ω obtained from the output of the mechanical model drives the integrator, which establishes the 
phase condition for the generator. The cavity response is as follows:  

v(t) = 2|V|·(1– exp(-ω1/2·t))·exp(iΦ(t)) 

The proper initial condition Φ0 = Φ(0) of the integrator adjusts the required flattop value Φ(Tf)= φ for filling time Tf. At 
the beam injection instant Tf = ln2/ω1/2 the phase and amplitude of the cavity voltage are set stable as the result of the 
steady state forced in the flattop operation. For the required condition with the beam loading ib and the detuned cavity 
(∆ω ≠ 0) the driving flattop feed-forward current can be estimated as follows: 

if  = |V|eiφ·(1– i∆ω/ω1/2)/RL + ib, 

so that predicted component = ib compensates the beam loading current, and detuning dependent factor ∆ω/ω1/2 
compensates the cavity impedance variation. 



 

The only feed-forward cavity voltage amplitude response and power monitoring are presented in figure 10 for the cavity 
parameters according to the table from chapter 9.  

 

 Figure 10. Feed-forward cavity voltage amplitude response and power monitoring. 

 During flattop operation the dynamic Lorentz force still decreases the cavity resonance frequency. The cavity voltage is 
stable at the expense of an additional power reflected due to the mismatch caused by the cavity detuning. To minimize 
the peak power the proper cavity pre-detuning ∆ω0 shifts the time varying detuning, so that required forward power is 
symmetrically extended along the flattop range. The appropriate initial phase Φ0 adjusts the cavity flattop phase φ. The 
cavity voltage phase and the cavity detuning are presented in figure 11 for Φ0 = -1.4 rad, φ = -0.1 rad and pre-detuning 
∆ω0 = 451 Hz. 

 

Figure 11. Feed-forward cavity voltage phase response and detuning monitoring. 

The required cavity voltage can be accomplished through the feedback operation with an accuracy limited by the 
controller gain. Therefore applying adaptive feed-forward the main task for the feedback is to suppress stochastic errors.  



 

The filling set-point for the feedback loop is estimated as the phase modulated exponentially rising signal: 

r(t) = 2|V|·(1– exp(-ω1/2t))·exp(iΦ(t)). 

After filling time Tf = ln2/ω1/2 the flattop level V = |V|eiφ is established. 

The only feedback performance for amplitude, phase, detuning and forward power is presented in figure 12 for different 
levels of the cavity voltage. For any case the cavity pre-detuning ∆ω0 and initial phase Φ0 are adequately set up.  

 

Figure 12. Cavity voltage amplitude, phase, detuning and power monitoring for feed-back operation only. 

10. VECTOR SUM CONTROL. 

In the TESLA collider the control system stabilizes the vector sum of pulsed accelerating fields in 32 cavities powered 
by a single 10 MW klystron. For the given parameters and signal requirements the optimal operational condition can be 
evaluated for a single cavity. For identical cavities the RF power should be distributed evenly to individual resonators 
therefore the signal and power results are the same like for a single cavity. Due to variation and spread of parameters 
the proper averaging procedure is required to optimize performance of the system. In special cases (e.g. cavity quench) 
it is desirable to operate cavities at different gradients to maximize energy gain of a system with multiple resonators. 
The system of multiple cavities can be modeled as the serial connection of resonators with diverse parameters and 
individual appropriate power distribution. The only common signal i drive many cavities and should be properly 
distributed to individual resonators in respect to the amplitude and phase requirements. For the given beam loading 
current ib common for all cavities and for the required voltage Vk of the k-cavity the driving current for the steady state 
in the resonance condition is as follows 

ik  = Vk/Rk + ib = pk·i.  



 

The relative complex coefficient pk of the signal distribution for k-cavity can be evaluated taking as a reference the 
average cavities current i = (V/R)ave + ib, therefore 

pk = (Vk/Rk +ib)/(V/R)ave + ib) = (Vk+Rib)/(Vave + Rib)  for nominally identical cavities, where 
Vave – average cavities voltage as the required vector sum divided by the number of cavities, Rk = R = QL·ρ – load 
resistance for any cavity.  

The Simulink implementation of the control system for the 8-cavities section is presented in figure 13 in relation to the 
functional block diagram. The cavities cryomodule subsystem outputs 8 voltage vectors and detuning scalars, after that 
which are summarized and averaged. According to the amplitude and phase requirements the I/Q drivers subsystem 
generates the required in-phase, quadrature components for the beam, feed-forward and set-point signals applying 
additionally the information of the average resonators detuning. The feedback and feed-forward operation can be 
proceeding independently. According to the signal requirements for every cavity the common driving current is 
adequately distributed to the resonators. The monitoring subsystem registers and presents the information for every 
cavity - voltage vector in amplitude, phase representation, power, detuning as well as the average value of each 
quantity. 

 

Figure 13. Simulink model of 8-cavities cryomodule control system. 

 

 

 

 



 

The eight cavities parameters collected in the table below are considered for the simulation purpose. 

Cavity 1 ÷ 4 5 ÷ 8 variation 

Gradient [MV/m] 12 20 ± 10% 

Phase  [ ˚ ] 0 -10 ± 5˚ 

Quality factor [106] 2 2 ± 10% 

Lorentz force detuning const. vector [Hz/(MV)2] (0.3, 0.3, 0.3) (0.3, 0.3, 0.3) ± 10% 

Mechanical resonance frequency vector [Hz] (280, 350, 440) (280, 350, 440) ± 10% 

Mechanical quality factor vector (100, 100, 100) (100, 100, 100) ± 10% 

 

The signal requirements are just fulfilled in the resonance as well as in the steady detuning condition for the operation 
without beam. The simulation results for amplitude, phase, forward power and detuning are presented in figure 14. 

During the operation with the Lorentz force detuning without beam the average vector is stabilized but particular 
cavities phases are strongly deviating. The simulation results for amplitude, phase, forward power and detuning are 
presented in figure 15. 

During the operation in the resonance condition and with 8 mA average value beam the average vector is stabilized but 
the particular cavities vectors strive for their final flattop values. The simulation results for amplitude, phase, forward 
power and detuning are presented in figure 16. 

During the operation with the Lorentz force detuning and with 8 mA average value beam the average vector is 
stabilized but the particular cavities amplitudes strive for its final flattop values and phases diverge from its common 
point. The simulation results for amplitude, phase, forward power and detuning are presented in figure 17. 

Taking into account the variation of the cavities signals and parameters four series of simulations has been carried out 
with the Lorentz force detuning and with 8 mA average value beam. 

1. Variation ±10% of the cavities voltage amplitude (required phases are established) when the cavities parameters are 
stable at the nominal values according to the table above (figure 18). 

2. Variation ± 5˚ of the cavities voltage phases (required amplitudes are established) when the cavities parameters are 
stable at the nominal values according to the table above (figure 19). 

 3.and 4. Variation ±10% of the cavities parameters: electrical quality factor (figure 20) and mechanical parameters  
(figure 21) when  the required cavities signals are established at the nominal values according to the table above. 



 

  

Figure 14. Simulation results of 8 cavities operation for stable detuning without beam. 

 

Figure 15. Simulation results of 8 cavities operation for dynamic Lorentz force detuning without beam. 



 

Figure 16. Simulation results of 8 cavities operation in resonance condition with beam. 

Figure 17. Simulation results of 8 cavities operation for dynamic Lorentz force detuning with beam. 

 



 

Figure 18. Variation ±10% of cavities voltage amplitude when cavities parameters are stable. 

 

Figure 19. Variation ±5˚ of cavities voltage phases when cavities parameters are stable 



 

Figure 20. Variation ±10% of electrical quality factor only when  required cavities signals are established. 

 Figure 21. Variation ±10% of mechanical parameters only when  required cavities signals are established. 
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