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Eigenmode calculations of long and complex structures by ’'direct’ eigenmode solvers may need
an enormous amount of computer resources, especially computation time and memory. This
paper presents a technique based on scattering parameters that allows to split the complete
geometry into subsections which can be modeled individually. The S-parameter computations of
each subsection are significantly smaller problems and can be distributed on different machines.
Then, the eigenfrequencies of the complete structure are determined by the combination of the
scattering-parameters and the corresponding field distributions are computed in a second step.

I. INTRODUCTION

The analysis of rf components often is based on the
knowledge of their eigenmodes. The calculation of the
eigenmodes is usually done by ’direct’ eigenmode cal-
culations as we will denote the solution of discretized
Helmholtz’ equation on the complete solution domain at
once. Length and complexity of some structures demand
even in modern computational environments a significant
amount of computational resources to perform these cal-
culations.

This paper presents a method which we call Coupled S-
Parameter Calculation (CSC). It allows to split the whole
geometry into several subsections. The broadband scat-
tering parameters of each section are calculated seper-
ately with appropriate solution codes (e.g. MAFIA [1],
Micro Wave Studio [2], HFSS [3]). CSC calculates the
eigenfrequencies of the entire structure using the section’s
S-parameters. Furthermore, for each resonance it deliv-
ers the amplitudes of the waveguide modes in all cuts
between the resonator sections. These wave amplitudes
are used to specify the wave excitation at the section’s
ports in further field solver runs which yield the field dis-
tribution of every resonance in every section.

The partitioning can be chosen in such a way that ge-
ometrical properties like symmetry or repetitions of cer-
tain sections or groups of sections can be exploited. Also,
very simple subsections would allow for analytical solu-
tion.

First, a general procedure to calculate the coupling
between the external ports of an arbitrarily structured
system of scattering sections is described in section II.
There we compare our approach with the commonly used
T-matrix representation in order to demonstrate that the
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FIG. 1: Calculation of eigenmodes using CSC: The ge-
ometry is divided into several subsections. Then their
S-parameters are determined. CSC combines them and
provides the eigenfrequencies and additional information
to compute the field distributions of the eigenmodes in
the subsections.

application of the latter one is difficult for general geo-
metrical structural topologies.

Resonators, which are entirely closed by definition,
are handled as a special case without external coupling.
Then, the problem of finding eigenfrequencies is reduced
to the repeated solution of low dimensional eigenvalue
equations parameterized by frequency. The occurrence
of eigenvalue zero indicates resonance frequencies; the
according eigenvectors are vectors holding the ampli-
tudes of all the waveguide modes in the system which
are needed next to calculate the corresponding field dis-
tributions.
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FIG. 2: A chain of three rf-components with external
ports (P, Py, Ps, Pr) and internal ports (Ps, Py, Ps)

A test example is used to demonstrate the method
in comparison with direct eigenmode calculation using
MAFIA. Then the procedure is applied on the bunch
compressor chicane of the TESLA Test Facility [4] in or-
der to identify beam relevant modes in this large, complex
shaped beam line device.

II. THEORY

Signal reflection and transmission between the ports
of any rf-component can be described by scattering-
parameters (briefly: S-parameters). All S-parameters of
a linear n-port structure can be represented by a (nxn)-
matrix S where the entry S;; describes the transmission
of a signal from port j to port i. Because the S;; con-
tain information about phase and amplitude it is com-
plex functions of frequency. With @ = (a1, ...,a,)? and
b= (by,...,bn)T describing the input and output signals,
resp., the S-matrix Sy, of the k-th object section forms the
relation

511 (w) Sln(w)
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The method is not restricted to single moded wave-
guide ports. Every mode has its individual scattering
properties and therefore enlarges the size of the matrix
system; every excited mode can be treated as an individ-
ual port of the system in this formalism.

A Combining rf-components using T-matrix
representation

The S-parameter formalism allows to connect several
structures by concatenating their S-matrices in the fol-
lowing manner (see for example [5]):

s =8M 58P e...esM, (2)

This special ’product’ ® is defined as
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for two sections A 1and B with the abbreviation
N= [1 - Sﬁ") Sg’;)] and 1 representing the unity ma-
trix. Equation (3) is based on the transmission-matrix-
formulation (e.g. [6, sect. 4.9]): the S-matrices are trans-
formed into T-matrices which are combined by normal
matrix multiplication. Afterwards the resulting overall
T-matrix is transformed back into an S-matrix again.
To calculate the overall S-parameters of a chain of rf-
components eq. (3) has to be used iteratively. This goes
with the disadvantage of accumulating numerical errors
in each calculation step, especially if N becomes numer-
ically small which may be the case for some frequency
points in every calculation step.

To describe a resonator problem all open ports of the
chain need to be closed with loss-free reflecting devices.
Analytically this is done by setting ag = r1by and ay =
roby at the outer most ports; the r; are commonly called
reflection coefficients. Setting r1 = ro = —1 for instance
will create a loss free electric short cut at both ports.
In general r; and 72 will be complex functions of w of
value 1.

Now (1) can be written as

bo\ [ SY SO\ [/r 0 bo n
o ) = sth s ) Lo ) Cow )
This can only be fulfilled for discrete frequencies wg which
are the resonance frequencies given by the solution of

det(SR—1) =0. (5)

Herein R = (Tl 0> is set.
0 T9

The electromagnetic fields corresponding to the eigen-
frequencies can be determined by numerically exciting
monochromatic waves with the appropriate frequency
and amplitude at each port of each section. The am-
plitude at port j + 1 can be computed recursively from
the in- and outgoing signals at port j again using the
T-matrix representation:
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At the starting point - port 0 is chosen for simplicity -
the output signal by is given by

S(t) S(t)
bo = Sﬂ) + ”1722(1) ao (7)
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where ag can be set arbitrarily, for example ag = 1.0.

If there exists more than one excited waveguide mode
at a port Eq. (3) may be generalised: then the entries
of the S-matrix will become matrices themselves. There-
fore the formalism is applicable to linear chained 2n-port-
structures, which is implied by the definition of the ma-
trix concatenation (3).

The formalism involves immense complications, if
there are branches or variations of mode numbers in the
system. A further disadvantage of this procedure is its
numerical sensitivity given by the iterative use of (3) to
compute the overall S-matrix S®. The same is true for
the determination of the wave amplitudes using (6).

B Combining rf-components using
CSC-formulation

Here a formulation is given, which avoids the disadvan-
tages mentioned above. We will arrange the S-matrices
Sy for all sections in a block diagonal matrix S. It cou-

ples the vector @ of all incident signals with vector b of
all scattered signals:

...........................

The vector @ of incident signals is now reordered in a
way that all signals coming from outside the system are
collected in a vector @;,. whereas those signals that are
incident in one section, but outgoing from a neighbour-
ing one are put together in the coupling vector @cop. A
permutation matrix P links this reordered vector with a:

i=P () . (9)

Qinc

In order to illustrate this idea we use the arrangement
shown in Fig. 2. For this example the permutation is
expressed in a (10 x 10)-matrix. The exact shape of the
matrices of course depends on the chosen numbering of
the ports. If the signals are named by their section num-
ber (first index) and the port number (second index) P
looks like this:

a1 1 a1,3
a1,2 1 az,3
a3 1 az,4
az3 1 az,5
aza | _ 1 as,a (10)
a2,5 1 : as.s
as.4 1 a1
as,s 1 ai,2
as,e : 1 as,6
asz,;7 1 a7

A second (permutation) matrix F is used to describe
the feedback in the system, namely the fact that the out-
going signals of one port are incident at another port.
All signals leaving the system are kept untouched and F
reads in our example like

Next, we can order the scattered signals in the same
manner like the incoming signals in (9). This can be
achieved by applying the inverse permutation leading to

(%”jzzp—lFE (12)
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In our example the product P~1F is given by

a3 1 b1
az,3 1 by
a4 : 1 b1,3
ass 1 bag
as4 | _ 1 bo.4 (13)
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Combining (1), (9) and (12) results in the following
matrix vector equation:

deop) _ p-1pgp (Geor (14)
d’sct —r C-7:1'nc
G

where G = P ' FSP describes the structure of the
whole system.

The system matrix G can be split into four block ma-
trices G;; where the dimensions of the G;; correspond
to the dimensions of @.,p, @ine and @s- Thus, (14)
can be written as the following system of matrix-vector-
equations:

Eicop =Gy 5:cop + G2 Eiinc: (153)

5:sct =G 5:cop + Gao 6inc- (15b)

Herein @;,. and dsc; represent the incident and the re-
flected waves at the external ports. Hence the coupling



FIG. 3: Geometry used to compare the direct eigenmode
calculation with CSC. Additional the cutting planes are
shown.

between these signals is given by
@set = (G21 (1 = G11)7" Gi2 + G22) @ine- (16)
The overall S-matrix, denoted by S(2), can be written as
S = Go (1= G11)7* Giz + Goo. (17)

So far our considerations are applicable both for struc-
tures with open ports and resonators. We use (17) for the
analysis of open structures, like cavities for particle accel-
eration with attached couplers, which will be described
elsewhere [7].

C Resonators

In the case of a resonator problem there are no open
(external) ports. Then dim(d,) = dim(d;) = 0 holds and
only the coupling between the internal ports remains.
Simultaneously the block matrices Giz, Go; and Gao
vanish and (15) reduces to

(1 — Gn(wo)) L_icop =0 (18)

which has to be fulfilled. This is only valid for discrete
frequencies wy which are the resonant frequencies aimed
for. In order to find wg the eigenvalues of (1 — G11(w))
have to be determined repeatedly. Since the dimension
of this matrix is equal to the number of internal signals,
which is usually below 102, this can be done with stan-
dard solvers. A resonant frequency is found if at least
one eigenvalue equals zero.

In that case the vector @.,p contains the amplitudes
of the waveguide modes at the location of the internal
ports. dcop is found as basis of the eigenspace - usually
one vector - of the eigenvalue zero which is the kernel of
the matrix (1 — G11(wo))-

Afterwards the eigenfields are computed in separate
runs for every section, using exciting waves with ampli-
tudes given by dcop.

III. TEST EXAMPLE

To verify the formulation given above a test geometry
was modelled (see Fig. 3) which was split into 5 subsec-
tions. The S-parameters of each single subsection were

Ccsc MAFIA E-mod. Laifc;w
MAFITA

1.212265 GHz 1.210309 GHz 1.62 x 10°°
1.240062 GHz 1.240023 GHz 3.15 x 107
1.348054 GHz 1.347277 GHz 5.77 x 1074
1.383414 GHz 1.382202 GHz 8.77 x 10~*
1.442567 GHz 1.442681 GHz —7.90 x 107%
1.463943 GHz 1.463867 GHz 5.19 x 107°
1.503261 GHz 1.502614 GHz 4.30 x 107*
1.531568 GHz 1.531387 GHz 1.18 x 1074
1.604844 GHz 1.603293 GHz 9.67 x 10™*
1.653448 GHz 1.652757 GHz 418 x 107*
1.687855 GHz 1.682436 GHz 3.22 x 1073

TABLE I: Comparison of the eigenfrequencies found by
the CSC-technique and by MAFIA’s E-module (double
precision) in the frequency range of 1.2...1.75 GHz. The
same mesh was used inside the resonator section.

calculated using the MAFIA time domain solver T3 in a
frequency range of 1.2...1.75 GHz.

To monitor the in- and outgoing waves a field decompo-
sition at the particular port planes was performed, using
2D-waveguide-modes that were determined from the port
geometry except for an arbitrarily chosen factor. This is
a standard procedure, that is prepared in the MAFTA
time domain solver T. It has to be guaranteed that cor-
responding modes of neighbouring sections have the same
orientation although they are calculated twice in differ-
ent runs with probably different meshes. To ensure this,
a criterion was implemented that orients all waveguide

FIG. 4: Electric field of the f = 1.44258 GHz-
eigenmode computed by CSC (upper plot) and directly
with MAFIA’s E-module (lower plot).
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FIG. 5: Ey-component of the f = 1.44258 GHz-
eigenmode along some path perpendicular to the port
plane calculated by CSC and directly with MAFIA’s E-
module. Partially overlapping curves may be not visible.



modes in a consistent manner.

A Mathematica [8] script was used to compute both
the resonant frequencies and the amplitudes at each in-
ternal port. The field distributions of the eigenmodes in
all subsections were calculated using MAFIA’s frequency
domain solver W3. The input power and phase of the
incident waves are given by CSC and have to be spec-
ified for the particular ports of the subsection. During
the field calculation the same orientation of all 2D port
modes must again be guaranteed like in the S-parameter
calculation. This results in the resonant field pattern of
the according resonator section.

Alternatively the time domain solver T3 can be used
to derive the eigenmode field patterns. In this case
monochromatic waves of the given frequency are ex-
cited at every port with the appropriate amplitudes and
phases. It must be guaranteed that the calculation sta-
bilised to steady state before the resonant fields are eval-
uated. This can be checked by testing whether all outgo-
ing signals reached a constant amplitude. Nevertheless
it may be difficult to decide whether the steady state is
reached if resonant substructures with high quality factor
are calculated.

FIG. 6: The electric field of the f = 1.50325 GHz-
eigenmode computed by the CSC (upper plots) and di-
rectly with MAFIA’s E-module (lower plot).
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FIG. 7: E, along some path in z-direction shown for the
eigenmode with frequency (f = 1.50325 GHz).

For comparison, the eigenmodes of the whole structure
were also computed with MAFIA’s eigenmode solver E.
As shown in Tab. T the frequencies found by the CSC
technique match very well those calculated directly.

Fig. 4 and Fig. 6 compare the field distributions of
the eigenmodes with frequency f = 1.44258 GHz and
f = 1.50325 GHz calculated with CSC and the di-
rect eigenmode solver. Fig. 5 and Fig. 7 show the y-
component of the electric field along some path perpen-
dicular to the port plane and pointing through them. As

Bellow Step

FIG. 8: Geometry of the Bunch Compressor II of the
TTF-FEL with the sectioning used for CSC.

can be seen, the field distribution computed by MAFIA’s
E-module and CSC match extremely well.

IV. APPLICATION
A Resonator

The Bunch Compressor IT of the TESLA Test Facility
was chosen as a real-life problem. This device is intended
to compress electron bunches using a dispersive beam line
built by four dipole magnets( a sketch of the geometry is
shown in Fig. 8).

The straight part of the chicane is not modelled yet
because its cut-off frequency of approx. 3.0 GHz lies well
above the examined frequency range of 1.7...2.2 GHz.
In this frequency range only one travelling mode exists
and the junction sections act as frequency dependent
closings of the structure and only their reflection param-
eter has to be calculated.

The sectioning was chosen in such a way that the bel-
low and flange section were symmetric. So only one
side of the devices needed to be excited in the T3-runs
since their S-matrices reflect this geometrical symmetry
in identical reflection parameters. This was not possible
for the step section and two runs were needed here to
achieve full information.

CSC calculated 23 eigenfrequencies in the range of
1.7...2.2 GHz. They are shown in Fig. 10, seperated
into two groups of symmetric and antisymmetric modes.
Fig. 11 shows a sample field distribution, demonstrating
the smooth connection between neighbouring sections.

V. CONCLUSION

The presented CSC-technique allows to divide a long
and/or complex structure into smaller subsections. Com-
bination of their individual S-parameters yields the S-
matrix of the complete structure (for structures with
open ports) as well as the eigenfrequencies and the cor-
responding field distributions in the case of a resonator
problem. For a test example it was shown that the results
of CSC match very well with those of a well established
code for direct eigenmode calculation.



FIG. 9: Geometries of the sections modelled in MAFIA
with the electric field of the 1.8558787 GHz-mode. The
dimensions of the junction section (upper) are 0.02 m X
0.421 m x 1.586 m discretized with 7 x 103 x 148 mesh
lines. The step section (25 x 30 x 45 mesh lines) measures
0.054 m x 0.129 m x 0.19 m. The bellow section needs
56 x 66 x 80 mesh lines for a sufficient discretization of the
folds (0.14 m x 0.208 m x 0.24 m)and 32 x 48 x 47 mesh
lines were used to model the flange geometry (0.27 m X
0.35 m x 0.42 m).
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FIG. 10: Eigenmode spectrum of the chicane.
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FIG. 11: E, along a path in z-direction along the centre
line of the middle sections shown for the eigenmode with
frequency f = 1.8558787 GHz.

The advantage of this technique is the possibility to
calculate the S-parameters of each subsection on differ-
ent machines or in separate runs. It also allows to exploit
possible symmetries or repetitions of particular subsec-
tions groups of sections; some parts of the geometry may
be described analytically. Furthermore, it easily allows
to specify frequency ranges of the eigenmodes searched
for, which is often quite difficult.

If a direct calculation is possible, the overall effort of
the CSC-procedure is of course essentially higher. CSC
was developed to provide the possibility of eigenmode
computation for those structures which cannot be han-
dled directly. Additionally it allows to create libraries of
S-parameters of sections and makes it possible to opti-
mise small components in a wider context.

A typical example of a structure being far to large for
usual calculation is the TTF bunch compressor beam
pipe. Here we applied CSC in order to calculate reso-
nant fields. Since they cannot be validated in available
computational environment they have to be tested by
measurement.
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