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The simulation of the motion of a particle beam in linear colliders demands fast and robust
numerical algorithms which solve the relativistic equation of motion for a large number of
time steps and unknowns. The physical grid—based model for the tracking of space charge
dominated electron beams requires the solution of Poisson’s equation on a rectangular grid
with large differences in the step sizes in each of the coordinates. While multigrid techniques
are very suitable as fast Poisson solvers, the anisotropic grid rapidly slows down standard
algorithms and makes adaptions necessary. In this paper several adaptive multigrid methods

are investigated.

INTRODUCTION

An important task in design and operation of fu-
ture linear colliders is to simulate the behaviour of the
particle beam. The related tracking algorithm realized
in the tracking code Q [10] considers nonlinear space
charge effects in electron beams. Consequently, the space
charge fields have to be computed in the beam’s rest-
frame via Poisson’s equation for a large number of time
steps (~ 1000) and unknowns (~ 1 million). This fact
demands efficient and robust algorithms. In this paper
we are going to investigate the multigrid technique as
fast Poisson solver. It turns out that the construction of
adaptive multigrid methods is necessary in the tracking
context in order to ensure acceptable convergence.

For a short description of the tracking procedure let
N be the number of macroparticles in the beam, where
the set of macroparticles represents the distribution of
all particles in the beam. The i-th macroparticle (: =
1,...,N) is assumed to have the position 7; and the mo-
mentum p;. The particle itself has the rest mass mg and
the charge q. Then the relativistic equations of motion
are given by [7]
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with the Lorentz factor v; = 4/1+ Epﬁic_% the electric
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field E and the magnetic flux density B. The nonlinear
space charge forces are determined in the beam’s rest-
frame from the electrostatic potential ¢’ as a solution of
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with the charge density ¢’ and the dielectric constant £g.
The computational domain §? is considered to be longi-
tudinally (z—direction) invariant and to have an elliptic
or polygonal cross—section in the (z,y)-plane. Transver-
sally, an ideal conducting pipe is assumed (Dirichlet
boundary conditions). The boundary condition in longi-
tudinal direction ought to be open describing the decay
of the electrostatic potential of the beam. Nevertheless,
we restict our considerations to Dirichlet boundary condi-
tions in order to compare the convergence of the proposed
algorithms in the numerical studies free of any influence
of the formulation for an open boundary condition. The
computational domain has to be chosen large enough in
this case. The necessary space charge field can be com-
puted by Lorentz transformation of the electrostatic field
E = —ﬁgo’ into the laboratory frame.

The three-dimensional rectangular grid is generated
adaptively by the grid—based tracking algorithm [10] de-
pending on the distribution of the particles. This dis-
cretization results in an anisotropic grid with small step
sizes in the centre of the beam and step sizes which be-
come wider near the boundary. Another anisotropy is
caused by the Lorentz transformation. There can be
a large difference between the smallest mesh sizes of
the transversal and the longitudinal direction (see Fig-
ure 1 for a small anisotropy). The adaptive discretization
doesn’t allow the use of the Fast Fourier Transformation
as direct Poisson solver. Among the iterative methods
the application of multigrid algorithms is state—of-the—
art. Further, it is taken into consideration, that a solver
for a large number of time steps is needed. In a multigrid
iteration, this allows to use the information from the pre-
vious time step, which saves a lot of computational work



compared to FFT. In the present paper we investigate
only the convergence of multigrid algorithms within one
time step. The study of the behaviour of these methods
applied to a large number of time steps is foreseen in the
next future.

I. ADAPTIVE MULTIGRID ALGORITHMS FOR
THE COMPUTATION OF SPACE CHARGE

The discretization of Poisson’s equation by finite differ-
ences (seven—point stencil) leads to a system of equations

Apup = fa,

where h denotes the vector of step sizes on the original
(fine) grid. The generation of the grid is adapted to the
actual distribution of the particles in the beam. Figure 1
gives an example for such a discretization.

The system of equations above can be solved efficiently
by a suitable multigrid algorithm. The multigrid method
is characterized by its fast convergence. Compared to
classical iteration methods (Jacobi, Gauss—Seidel) the
convergence speed remains the same when the discretiza-
tion is refined. Consequently, the computational work is
proportional to the number of unknowns in the system
of equations. In this section we give only a short de-
scription of the multigrid algorithm. More details can be
found e.g. in [2, 11].

The multigrid scheme works as follows:

Step 1 (pre—smoothing): Perform a few steps of a re-
laxation method (Gauss—Seidel) on the equation

Apup = fi

with some initial guess. Compute the residual rp
from the resulting approximation vy by

Th = fn — ApUp.

Step 2 (restriction): Restrict the values of the residual
vector 1y, to a coarser grid with rg =1 ,{{ rh, where
H denotes the vector of stepsizes on this level. The
coarser grid is obtained by the removal of every
second grid line in the case of equidistant meshes.
For non—equidistant meshes an adaptive coarsening
scheme has to be applied as it is explained later in
this section.

Step 3: Solve the system of equations
Apeg =rH

if the number of unknowns is sufficiently reduced.
Otherwise, perform again a few steps of relaxation
with initial guess ey = 0, compute the related
residual and go down to the next coarser level. The
matrix Ay is obtained by applying the finite dif-
ference scheme for the discretization on the coarser
grid.

Step 4 (interpolation): In order to go up from the
coarsest level to the original fine grid the values of
the vector eg have to be interpolated to the next
finer level with e, = I Ih{eH. In the three dimen-
sional case, the interpolation I? is usually the tri-
linear interpolation.

Step 5 (coarse grid correction): The vector ey, is re-
ferred to as the coarse grid correction and it im-
proves the iterate vy, from step 1 with

v = v, + ep.

Step 6 (post—smoothing): Another relaxation step on

Apun = fa,

with initial guess v;*" will smooth high—frequency
error components which result from the interpola-
tion.

The multigrid scheme explained above is called V-cycle.
It goes strictly down to the coarsest level and then again
up to the finest level. The reason for the efficiency of
the multigrid method can be explained as follows: The
relaxation rapidly reduces high—frequency error compo-
nents, while low—frequency errors are scarcely damped.
On the coarser grid the low—frequency error components
appear as high frequencies and will be smoothed again
by relaxation.

In the case of an adaptive discretization, as in the
tracking context, the strategy for the construction of the
coarser grids is a crucial point to retain the efficiency
of the multigrid algorithm. There are two possibilities:
first the geometrical method, that is the removal of grid
lines and second the algebraic method which operates on
the matrix entries. Advantages of the geometrical strat-
egy are the fast performance and simple implementation.
Unfortunately it only works acceptable if the discretiza-
tion is suitable for the chosen coarsening. Otherwise the
algorithm considerably slows down as shown in [6] or it
even diverges.

The geometric multigrid scheme for the tracking proce-
dure is performed with a semi—coarsening technique. The
rule for semi-coarsening is as follows: Do not remove a
grid line, if the subintervals related to the seven—point
stencil are still two times larger than the overall minimal
step size of the corresponding level. The objective of this
strategy is to obtain, on a certain level, an equidistant
grid as far as possible. Conversely, it is most efficient to
construct the discretization of the original problem such
that it is equidistant at least on the coarsest level.

If the approximation of the pacticle distribution in the
tracking process requires a discretization which doesn’t
support the performance of the geometrical coarsening,
the algebraic multigrid method (AMG) [8, 12] can be ap-
plied. As already mentioned above the algebraic multi-
grid algorithm uses the matrix entries for the construc-
tion of the coarser levels and the interaction between the
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FIG. 1: Discretization of a beam pipe, longitudinal cross—section. The potential ¢’ of a beam with Gaussian distri-

bution of the space charge density is shown.

levels. The effect of the geometric multigrid with semi—
coarsening is similar to the algebraic method, which dis-
tinguishes between strong and weak coupled variables for
the selection of the coarse grid points. The advantage of
AMG is that the adaption to the non—equidistant grid
is done automatically. Thus, the algorithm can be used
as a black box solver as we did for our numerical tests
with the AMG code of Ruge and Stiiben [9]. On the
other hand the setup phase in AMG, i.e. the choice of
the coarser levels and the computation of the interpola-
tion and restriction operators, takes a lot of time.

II. NUMERICAL RESULTS

Numerical experiments have been performed with the
data of a 10 MeV beam in a cylindrical pipe. The space
charge density has Gaussian distribution in longitudinal
and equidistribution in transversal direction.

Geometric and algebraic multigrid are tested and com-
pared to a conjugate gradient method with ILU(3) pre-
conditioner as it is implemented in the software pack-
age MAFIA [1]. The geometric multigrid algorithm per-
formed as a V—cycle has the components [2, 11]: red—
black Gauss—Seidel relaxation with two pre—smoothing
steps and one post—smoothing step, ‘half’—weighting re-
striction, trilinear interpolation and semi—coarsening for

the construction of the coarser levels. The algebraic
multigrid method is applied as black box solver with the
AMG code of Ruge and Stiiben [9].

First the numerical results on an equidistant grid with
65x65x65 (=274 625) mesh points are given. Here, only
a large anisotropy with h, ~ 25h, =~ 25h, poses a dif-
ficulty. Thus, the standard coarsening is performed and
semi—coarsening is only applied in the following sense:
do not coarsen the mesh of the longitudinal direction, if
the step size is still two times larger than the step size
of the transversal directions. Figure 2 shows that the
best results are obtained with the geometric multigrid
method. Neglecting the setup phase, the convergence
speed of AMG has nearly the same slope. The precon-
ditioned conjugate gradient method (PCG) needs a con-
siderable amount of work for the preconditioning, which
is rather costly for the ILU(3)-preconditioner.

The situation changes on the non-equidistant grid.
Two different examples with respect to the influence of
the Lorentz transformation have been investigated: a
small anisotropy with h;pin = 2hzmin = 2hy,,,, and
a large anisotropy with h;ps, = 10hgpi, = 10k, . .
Both examples have been performed on a discretization
with either 33x33x33 (=35 937) or 65x65x65 (=274 625)
mesh points, that is the second grid is twice as fine as the
first grid. Figure 1 shows the discretization in the case of
the small anisotropy on the 33x33x33—mesh. Only for the



numerical studies the numbers of grid points are chosen
equally in each coordinate. In real application, the track-
ing procedure would generate a grid with more points in
longitudinal and perhaps less points in transversal direc-
tion.

The numerical results for the discretization with the
small anisotropy are given in Figures 3 and 4. It turns
out, that the convergence of the geometric multigrid with
semi—coarsening is still good, but not as good as in the
equidistant case. After the setup phase, the convergence
of AMG is slower than for the geometric method and
the setup phase itself is very long in the case of a small
anisotropy.

Figures 5 and 6 show that the convergence speed of
the different multigrid algorithms has changed. The ge-
ometric multigrid remarkably slows down compared to
the discretization with the small anisotropy. The reason
for this behaviour is the varying step size on the coarsest
grid. Consequently, the discretization should be changed
to reach a better convergence. The performance of AMG
has comparatively improved, that means the setup phase
is much shorter and the convergence speed is better than
in the previous example. The algebraic multigrid is faster
for discretizations with large anisotropies, because the
differences in the magnitude of the matrix coefficients
are larger than in the case of small anisotropies. Thus,
the construction of less levels is necessary [12].

For both examples the conjugate gradient algorithm
converges very fast after the preconditioning process, in-
dependently of the anisotropy. This behaviour can be
explained by the spectrum of the matrix Ay. The eigen-
values for the non—equidistant discretization form clus-
ters. This property leads to a faster convergence than in
the equidistant case [3].
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FIG. 3: Convergence of several algorithms for a
non—equidistant discretization on a 33x33x33-mesh
with a small anisotropy in longitudinal direction.
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FIG. 4: Convergence of several algorithms for a
non—equidistant discretization on a 65x65x65-mesh
with a small anisotropy in longitudinal direction.
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FIG. 2: Convergence of several algorithms (MG:
multigrid, AMG: algebraic multigrid, PCG: pre-
conditioned conjugate gradient) for an equidistant
discretization on a 65x65x65—-mesh with a large
anisotropy in longitudinal direction.

III. CONCLUSIONS

Two multigrid strategies have been investigated in this
paper. The numerical results show, that geometric multi-
grid with semi—coarsening works very fast on equidistant
grids. Yet, non-equidistant meshes ought to be con-
structed appropriate to the coarsening process. The best
way to do so is to start with an equidistant grid and to
refine it in accordance to the distribution of the particles
of the beam. Investigations in that field are still going
on.

It is possible to apply an algebraic multigrid method if
a suitable discretization for a geometric multigrid algo-
rithm would not approximate the real tracking problem
sufficiently. The disadvantage of the long setup phase
can probably be overcome with the recent development
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FIG. 5: Convergence of several algorithms for a

non—equidistant discretization on a 33x33x33-mesh
with a large anisotropy in longitudinal direction.
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FIG. 6: Convergence of several algorithms for a
non—equidistant discretization on a 65x65x65—mesh
with a large anisotropy in longitudinal direction.

of AMG [12], which is not yet available for common use.

The good convergence of the conjugate gradient algo-
rithm for the non—equidistant grid encourages further in-
vestigations with respect to the application of multigrid
as preconditioner instead of ILU(3).

Last but not least the choice of the solution method
for the tracking problem will depend on its behaviour for
the simulation of the particle motion over a large number

of time steps. Investigations in that field are planned for
the next future.
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