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1. Introduction

The Beam Delivery System (BDS) of the proposed TESLA linear collider contains
some of the tightest magnet alignment tolerances of the entire machine. In [1],
luminosity stability issues were covered in some detail, with specific emphasis on
ground motion and magnet vibration. It was shown that ground motion effects and fast
magnet vibration leads to relatively high values of both linear and second-order
dispersion at the interaction point (IP). In this note, we estimate the related effects of the
residual dispersion left after performing beam-based alignment of the magnets.
Specifically, we want to estimate an RMS alignment goal which will need to be attained
with beam-based techniques in order to achieve the required 5 nm vertical beam size at
the IP.

The exact method of beam-based alignment used is not the subject if this report. Instead,
we assume that the method allows us to perform the following two steps:

1. accurate determination of the magnetic centre of the magnets with respect to the
local BPM (i.e. determination of BPM offsets), and

2. adjustment of the transverse position of each magnet, such that they have some
small remnant RMS alignment error with respect to the design beamline axis.

Random magnet alignment errors due to the initial optical survey of the magnets are
typically of the order of 100 µm RMS. It is the goal of beam-based alignment to
significantly reduce the alignment error to a number less than ~10 µm RMS.
Furthermore, it is assumed that the “orbit” will then be steered with a one-to-one or
similar algorithm, such that the beam is “zeroed” at each down stream BPM. The
position of the beam with respect to the  magnet centres is then given by the accuracy to
which the BPM offset was determined (point 1 above.)

After beam-based alignment and orbit correction the remaining aberrations will perturb
the vertical beam size at the IP. The most significant aberrations are the linear terms,
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such as vertical dispersion, x-y coupling and waist shift. We expect, however, to be able
to tune these linear aberrations out using orthogonal knobs based on the beam offset in
the strong sextupoles of the horizontal and vertical chromatic correction sections
(HCCS and VCCS respectively, see section 2.) If we assume that the linear terms can be
removed, then the remaining non-linear terms will dominate: of these, the most
important term is second-order dispersion.

In this report we will estimate a beam-based alignment tolerance based on the maximum
allowed residual second-order dispersion generated at the IP, and assuming the linear
terms are completely corrected. We begin by first defining our linear orthogonal tuning
knobs (section 2). In section 3,  we estimate the second-order dispersion at the IP arising
from the combination of residual random alignment errors and a simple one-to-one
steering algorithm.

2. Linear Tuning Knobs

As of writing, we expect to use the strong CCS sextupole pairs to produce orthogonal
waist, coupling and dispersion knobs for both planes. Conceptually, the sextupoles are
misplaced with respect to the beam, effectively generating a quadrupole (horizontal
motion) or a skew-quadrupole (vertical motion) at that point. Such techniques were first
successfully demonstrated at the SLC final focus [2] and later at the FFTB [3]. In the
latter case, the sextupoles were placed on translatable stages which allowed them to be
physically moved. In principle, the same effect can be achieved by steering the beam in
the sextupole. A third possibility is to add pairs of quadrupoles or skew-quadrupoles
close to the sextupoles to effectively perform the same job. In this section, we estimate
the beam motion relative to the sextupole centre that is necessary to achieve the required
tuning knobs.

By design the two sets of strong sextupole pairs are positioned –I apart, and are (n+½)π
in both x- and y-phase away from the IP. In both the HCCS and VCCS, the dispersion
function is symmetric at each sextupole in the pair. The net effect is for the unwanted
geometric terms to cancel, while the required chromatic terms add. Such an arrangement
allows us to use combinations of symmetric or anti-symmetric motions at the sextupole
pairs to generate the required orthogonal linear tuning knobs. Table 1 summarises the
five linear aberrations we need to correct, and the associated pair motion and
coefficients.

In the current design of the TESLA BDS, a single sextupole from a pair is actually split
into two sextupoles, separated by a quadrupole. Each sextupole has a length of 2 m. We
assume for this study that only the upstream sextupole is used for the tuning knob.
Table 2 shows the numerical coefficients for each aberration “knob”. The coefficients
are per unit sextupole pair motion (symmetric or anti-symmetric): for example, a 1 µm
symmetric horizontal motion of the HCCS sextupoles would generate a 383 µm and
1.6 µm x- and y-waist shift at the IP respectively.
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Table 1: Combinations of sextupole pair motions to produce the required
linear tuning. Here K2 is the integrated sextupole strength (m−2), R12 and
R34 are the linear Greens functions from the sextupole to the IP (m), and

Dx the design linear dispersion at the magnet.

aberration pair motion coefficient /
unit offset

x 2
1222 RK

waist
y

horizontal symmetric 2
3422 RK

x horizontal anti-symmetric
1222 RDK x

dispersion
y vertical anti-symmetric 3422 RDK x

coupling vertical symmetric
341222 RRK

Table 2: Coefficients for the various sextupole mover combination.

coefficients per unit offset
X Y

waist 382.8 1.634
HCCS dispersion 3.243 0.2118

coupling 25.01
waist 47.89 158.2

VCCS dispersion 0.8438 1.534
coupling 87.04

From the coefficients in Table 2, we can now estimate the required mover ranges (or
beam motion) for a typical IP scan. We assume a scan range which gives us an effective
increase in the IP β-function (σ2) by a factor of three. Table 3 lists the required
sextupole pair motions to produce a 3β change at the IP.

Table 3: Required sextupole mover motion for a 3β scan of the IP beam. The 2% limit is
defined as that motion which would increase the beam size by 2%.

Aberration Sextupole
Pair

Motion Type 3β Scan Range
(µm)

2% limit
(µm)

HCCS 52 7
x

VCCS 413 58
HCCS 346 48

waist
y

VCCS

horizontal
symmetric

3.6 0.5
HCCS 121 18

x
VCCS

horizontal anti-
symmetric 465 70

HCCS 19 2.6
dispersion

y
VCCS

vertical anti-
symmetric 2.6 0.4

HCCS 7.4 1
coupling

VCCS
vertical

symmetric 2.1 0.3
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A typical tuning scenario would be to make a ±3β scan of a specific knob, measuring
the beam size at each step. The minimum of the resulting parabola would then be
determined and the sextupole movers adjusted accordingly. If we set ourselves a tuning
goal of 2% from the design beam size, then this effectively defines the required mover
resolution. The 2% limit for motions are also given in Table 3. Magnet movers of the
type similar to those used at the FFTB [4] have a range ±1 mm and a typical resolution
(step size) of ~1 µm, which would be too large for three of the entries in Table 3 (the
VCCS knobs for coupling, y-dispersion and y-waist.) Clearly in these cases, the
alternative HCCS knobs could be used.

3. Estimates of the alignment tolerance goal for beam-based
alignment

A realistic machine will clearly have magnets with non-zero alignment errors. The
initial “tuning” that is performed will be to steer the orbit to zero at all the BPMs: the
resulting steered orbit will go off-centre through all the magnets by an amount equal to
the BPM offsets, assuming that each magnet has its own dedicated BPM. These magnet
offsets, together with the dispersive kicks from the correctors, generate to first-order
those aberrations listed in Table 1, namely dispersion, waist shifts and coupling, the
latter two coming only from offsets in the sextupoles. We assume that these linear
aberrations are then tuned out using the sextupole knobs described in section 2. Now
only non-linear aberrations remain, and of those, the second-order dispersion is likely to
be the dominant term.

Assuming a set of magnet alignment errors with a given RMS value, we can estimate
using the formalism developed in [1] the second-order dispersion generated at the IP
after steering the orbit flat. We can use this value to set a limit on the allowed RMS for
the alignment errors.

From [1], the offset of the orbit with respect to the magnet centres (y) due to a set of
quadrupole offsets (Y) is given by

YQy ⋅−= , (1)

where Q is the linear response matrix. The measured orbit ( y~ ) is given by

bYQy +⋅−=~ , (2)

where b are the BPM offsets. Assuming that every quadrupole has a corrector coil
associated with it, we can now steer the BPM readings to zero (i.e. 0y =~ .) The linear
dispersion resulting from the corrector kicks in this case is just given by y~ . After
steering, the beam offset in each of the magnets is only the BPM offsets b. In [1], the
linear dispersion response matrix (∆) was used to estimate the dispersion at each magnet
generated from a set of beam offsets in the upstream magnets:

yDy ⋅= . (3)
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Hence before tuning but after steering, we can write down following expression for the
linear dispersion along the beamline:

YQbI)(

ybDy

⋅−⋅+=

+⋅= ~
(4)

The covariance of the dispersion (VD) is given by

T2T2 )()( QQIIVD ⋅σ++⋅+σ= Yb (5)

assuming that the BPM offsets and magnet alignment errors are random and
uncorrelated, with the RMS values of σb and σY respectively. Figure 1 shows an
example of the RMS dispersion generated by random alignment errors of 10 µm RMS,
together with BPM offsets of 1 µm RMS (after steering.) The resulting RMS IP
dispersion is 21 µm; this value must now be corrected using the sextupole knobs
presented in Section 2. From Table 2, we can see that a vertical anti-symmetric motion
of the VCCS sextupoles by 21/1.534 ≈ 14 µm would tune the RMS dispersion to zero.
However, the sextupoles only generate dispersion at the IP phase, and so they will have
almost no impact on the dispersion shown in  Figure 1.
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Figure 1: RMS linear dispersion generated after one-to-one steering for an RMS
magnet alignment error of 10 µm, together with an RMS BPM offset of 1 µm.

Hence we can assume that the linear dispersion in the FFS itself remains unchanged by
the application of the dispersion tuning knob. The second-order dispersion at the
magnets (η) is given by

yD⋅= (6)

value at IP = 21 µm
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Substituting (4) into (6), and defining I)( +⋅≡  and Q⋅≡ , we can estimate
the covariance of the second-order dispersion along the beamline (Vη) as

T2T2V ⋅σ+⋅σ= Yb (7)

The RMS second-order dispersion for the previous example (σb = 1 µm, σY = 10 µm) is
shown in Figure 2. From (7), we can estimate the RMS second-order dispersion at the
IP1 for the BDS as

2
Y

2
b

2 609626 σ+σ≈ση (8)
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Figure 2: RMS second-order dispersion generated by linear dispersion shown
in Figure 1.

As an upper limit on η, we take a 2% increase in vertical beam size at the IP,
corresponding to 1 nm added in quadrature to the design 5 nm. Taking the electron
energy spread of δ ≈ 1.8×10−3, we have

nm12 2 ≤δσ≈σ∆ ηy (9)

and thus

m218 µ≤ση . (10)

This value corresponds to an RMS of ~9 µm for either the BPM offsets or magnet
alignment errors, providing the effect is entirely due to one or the other. If we assume
that beam-based alignment can effectively align the BPM to the magnet centres to
within an RMS of (for example) 3 µm, then the RMS magnet alignment will need to be
of the order of ~8 µm. However, some overhead is required, since we must expect the

                                                
1 The IP value is given by the last element of η.

value at IP = 248 µm
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RMS magnet alignment to grow over time due to ground motion effects, such as ATL
[5]. For ATL-like motion, we estimate the RMS second order dispersion at the IP by

]hours[8]m[ATL, T≈µση (11)

assuming A = 4×10−6 µm2m−1s−1[6]. If we allow a 2% drop in luminosity due to second-
order dispersion before we need to invasively re-tune2, we have T ≈ 740 hours, or
~30 days. This assumes that we start with a perfectly aligned machine. Realistically, we
must add the ATL contribution (11) in quadrature with the effects of the random magnet
and BPM alignment errors (8):

T64609626 2
Y

2
b

2 +σ+σ≈ση (12)

where all RMS quantities are now in microns, and T is measured in hours as before.
Again, assuming σb = 3 µm, we can estimate what the mean time between invasive
tuning (T) is as a function of the initial random RMS magnet alignment. The results are
shown in Figure 3.
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Figure 3: Mean tuning time (in days) as a function of initial RMS magnet misalignment.
Calculation is based on a 2% contribution to the vertical beam size by second-order

dispersion with δ=1.8×10−3, and ATL-like motion (A = 4×10−6 µm2m−1s−1).

As a final comment, we should note that the ~8 µm RMS alignment requirement is
effectively a short wavelength (magnet to magnet) constraint, where no correlation is
assumed. For longer wavelength effects, such as baseline effects arising from optical
survey or beam-based alignment techniques, the correlation between the magnets has a
significant effect, and larger “amplitudes” of misalignment can be tolerated. Figure 4
shows the maximum allowed RMS amplitude of misalignments as a function of
“alignment wavelength”. The short wavelength values correspond to the ~8 µm for the
random uncorrelated estimate arrived at above. However, at longer wavelengths (>500
m), amplitudes on the order of ~40-100 µm RMS can be tolerated. However, it is still

                                                
2 this may require repeating beam-based alignment, or adjustment of some other tuning knobs
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unlikely that such long-baseline tolerances will be met, and more sophisticated
alignment procedures, steering algorithms (dispersion free for example) and tuning
knobs will probably be required to achieve the tight tolerance set here.
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Figure 4: Maximum allowed RMS amplitude of alignment errors as a function of
alignment wavelength. Based on a 2% increase in σy due to second-order dispersion
(after one-to-one steering, with no BPM errors.)

4. Summary

Linear tuning knobs for waist shift, dispersion and coupling can be successfully
implemented using the strong sextupole pairs in the CCS sections of the TESLA BDS,
placed on mechanical movers with a step size of ~ 1 µm. Using these knobs, the
residual linear aberrations at the IP due to random magnet misalignment and BPM
offsets, and after one-to-one steering, can be effectively tuned out. The remaining
second-order dispersion sets an upper limit on the RMS  magnet alignment and BPM
offsets. For a 2% increase in vertical beam size due to second-order dispersion, the
initial RMS magnet alignment needs to be on the order of ~ 8 µm: such values can only
be achieved with beam-based techniques. A value of 6 µm RMS (with an additional
3 µm RMS BPM offset) would allow ~13 days of ATL-like ground motion, before the
2% tolerance is exceeded. These results have been obtained using simplistic analytical
models of the BDS: the exact effectiveness of various specific beam-based alignment
techniques and subsequent tuning requires more study.
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