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Abstract   We report the development of different algorithms for the calculation of quality factors
of eigenmodes in accelerating cavities, which have resonance frequencies above the cutoff frequency
of the beam tubes. The analysis is based on a discretization of such cavity structures by the Finite
Integration Technique (FIT), and the radiation at the open boundaries is systematically taken into
account by different approaches in time and frequency domain. Results indicate that even single cell
cavities of the TESLA type show Q-values of 103 and multicell cavities values in excess of 104. Thus
these modes may cause considerable beam instabilities. Comparison with the conventional method of
analyzing closed cavities and identifying modes with little change in frequency as function of bound-
ary condition show qualitative differences. Some modes from the closed cavity model do not exist in
the open structure and thus would be misinterpreted as trapped modes when only a closed cavity
analysis is employed.

I. INTRODUCTION

Trapped modes in accelerating cavities have been subject to serious consideration with respect to beam
instabilities since many years. While the phenomenon of trapped modes is well known in antenna theory,
the analysis of these fields remains a complicated task. In the field of accelerator design the typical analy-
sis tools are eigenmode solvers for closed structures such as the E-module in MAFIA [1]. Such tools a pri-
ori do not allow the rigorous analysis of trapped modes as the basic feature of continuous loss of energy
through travelling modes is not included. The eigenmode analysis can only give some hints on the exis-
tence of trapped modes. The same facts limit the usefulness of measurements in which typically the beam
tubes are electrically short ended and thus also do not take the key issue of travelling modes into account.
In many practical cases this analysis is sufficient as it results in upper limits for the impedance of such
modes. However, in the case of super conducting structures these upper limits become intolerable and a
more detailed analysis becomes indispensable.

In this paper we present several different methods for the analysis of trapped modes in open structures,
which are all based on the discretization with the Finite Integration Technique (FIT) [1,2]. The effect of
travelling modes is taken into account by different techniques in time or frequency domain.
After the introduction into the basic phenomenon we analyze a single cell cavity with three different meth-
ods and show the agreement between them. Finally we extend the structure to three cells. Even for this still
simplified cavity with ideally conducting cavity material we find dipole modes well above the beam tube
cutoff frequency with Q-values in excess of 104.

II. TRAPPED MODES

Fig. 1 shows a model resonator, which in this case is similar to the end-cell of a TESLA 9-cell structure
[3]. The end tubes are assumed to be infinitely long at both sides. We restrict our analysis to modes with an
odd azimuthal order (m=1,3,..., corresponding to dipole-, sextupole-,... modes), and thus it is sufficient to
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discretize one fourth of the cross-section, applying one PEC (perfectly electric conducting) and one PMC
(perfectly magnetic conducting) boundary condition at the symmetry planes. As it is not the aim of this
paper to analyze the convergence properties of  the fields and the secondary quantities referring to the grid
resolution, we use a quite coarse, but fixed discretization with 18x18x37 nodes (18x18 for the cross sec-
tion, and less than 7x7 for the beam tube). All results and comparisons refer to this computational model.
The field simulations are performed using the program CST Microwave Studio [4].
The cutoff frequency of the dipole modes in the beam tubes are shown in Table 1. We restrict our analysis
in the following to a frequency range of 2.5 GHz to 5.0 GHz, as in this range there is only one dipole beam
tube mode above cutoff frequency, and this simplifies the analysis while keeping all the basic physics pre-
sent1. We also do not include sextupole and higher azimuthal modes, as the first cutoff frequency of these
modes appears only at 5.61 GHz (TE31). The deviation of the simulated cutoff frequency of the TE11-mode
to the analytical value is less than 1% (despite of the coarse mesh resolution).

70mm

Figure 1: A single cell resonator similar to the TESLA cavity with infinitely long beam tubes at both
sides.

Mode f/GHz (simulated) f/GHz (analytical) Deviation
TE11 2.49903 2.5097 0.43 %
TM11 5.16461 5.2234 1.13 %
TE31 5.61294 5.7274 2.00 %
TE12 7.06743 7.2680 2.76 %

Table 1: Computed [4] cutoff frequency of the dipole (and sextupole) modes in the end tubes (using
only 1/4th of the structure making use of the symmetries). In the frequency range between
2.5 GHz and 5 GHz the deviation between the analytical values and the computational
model (fixed discretization with 7x7 grid points in the cross section of the beam tube) is
below 1.2 %.

If there is a broadband excitation of fields present in the cavity, such as the excitation through a bunched
beam current, field energy is deposited over a wide range of frequencies. The part of the spectrum below
the cutoff frequency of the first travelling mode in the beam tube cannot leave the cavity. This energy will
be stored in true eigenmodes and will only be subject to wall current losses. Thus the Q-values of these
modes are determined solely by the material of the cavity walls and the field distribution. Typically such
Q-values – referred to in the following as QMAT – are of the order of some 104 in copper cavities and some
109 in super conducting cavities.

                                                       
1 Note, that the TM01 and the TE21-mode, which both have cutoff frequencies below 5 GHz, cannot exist in this model due to the
chosen symmetry conditions at the boundaries.
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The part of the spectrum above the cutoff frequency of the first travelling mode will loose energy into the
walls but in addition also through the ports. However, this radiation loss takes place only at a certain rate
per period. Thus there will be associated Q-values as well, which we call QRAD in the remainder of  this
paper. Cavity modes with high QRAD-factors (and thus only weak coupling of the fields to the ports) are
identified as ‘trapped modes’.
The total Q-value can finally be determined by

TOT RAD MAT

1 1 1= +
Q Q Q

. (1)

For many practical cases, the effect of the contribution due to radiation can be neglected as the closed cav-
ity analysis yields an upper limit of the final Q value. Whether such a pure eigenmode analysis of a closed
cavity model is sufficient with respect to beam dynamics, strongly depends on the cavity surface material
and the overall accelerator layout.

1. COPPER STRUCTURES

In copper cavities the eigenmode analysis can be used to determine upper values for the Q-values of
trapped modes. Extensive analysis of such modes has been performed for the S-Band traveling wave cavi-
ties after they were discovered and found to present a serious problem with respect to beam instabilities
[5]. Due to the importance of theses modes special test structures were built that were small enough to be
easily computed and large enough to show highly trapped solutions [6]. As the true Q-value can only be-
come smaller when radiation losses are added, this analysis was sufficient to be able to design the neces-
sary mode couplers for reducing the Q-values.

2. SUPERCONDUCTING STRUCTURES

In superconducting cavities the situation is drastically different. Due to extremely small wall losses Q-
values determined solely by eigenmode computations yield results that are not tolerable from the beam
dynamics point of view. Although it still holds, that a closed cavity analysis only gives upper limits, these
limits are too high. In this case a careful analysis of trapped modes becomes a crucial issue, as does the
design of couplers as the only means to reduce the Q-values.

To avoid confusion with the experimental evidence of trapped modes in the TTF [7], it should be pointed
out here that there exist also other phenomena that lead to trapped modes with high Q values. In the TTF
case the trapped modes that were found experimentally are most likely to be caused by the effect of the
neighbor cavities that did not allow the fields above cut-off frequency to travel away from the main cavity
[8]. These trapped modes are externally trapped and thus concise a different subject than the one treated
here, where the beam tubes are assumed to be infinitely long with a constant cross section.

III. CONVENTIONAL EIGENMODE ANALYSIS

Throughout the rest of this paper, the material losses and QMAT are neglected. (However, they can easily be
taken into account in the numerical analysis by performing a ‘power loss’ calculation and applying (1)).
We begin with the conventional method of computing true eigenmodes of the closed model cavity, where
the beam tubes are terminated with either ideal electric (PEC) or ideal magnetic (PMC) walls. The influ-
ence of the choice of boundary condition on the mode frequency gives a strong hint for possibly trapped
modes, as when the influence is small, the relative field strength at the beam tube ends is small as well (as
it follows from Slater’s theorem).
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The results for all calculated dipole-modes with resonances between 2.5 GHz and 5 GHz are listed in Ta-
ble 2, also including a coupling factor K, that gives a measure for the strength of the influence of the
boundary condition. This factor is defined as is the coupling factor in multicell cavities by

EM

EM

ff
ff

K
+
−= 2 , (2)

where EM ff ,  are the resonance frequencies of the cavity terminated with PMC or PEC walls, respectively.
Some of the modes are good candidates for trapped modes, with small and very small coupling factor K.
Some modes cannot be identified as having similar field patterns in both cases and thus are not likely to
represent trapped modes in the open structure.

BC No fE /GHz BC No fM /GHz fmid /GHz K=|∆f /f | Log(1/K)

E 3 2,611490 M 3 2,482180 2,546835 0,051 1,3
E 4 2,636410 M 4 2,534320 2,585365 0,039 1,4

M 6 2,847730 2,847730
M 7 2,999960 2,999960

E 6 3,018400 M 9 3,057130 3,037765 0,013 1,9
E 8 3,219310 M 11 3,591350 3,405330 0,109 1,0
E 9 3,332230 M 10 3,334890 3,333560 0,001 3,1
E 10 3,472680 M 14 3,883820 3,678250 0,112 1,0
E 13 4,026830 M 17 4,150410 4,088620 0,030 1,5
E 15 4,147450 4,147450
E 18 4,226440 4,226440
E 19 4,279100 M 19 4,269450 4,274275 0,002 2,6

M 20 4,364460 4,364460
E 21 4,390450 M 22 4,383840 4,387145 0,002 2,8

M 24 4,660490 2,330245
E 22 4,587560 M 25 4,676190 4,631875 0,019 1,7
E 24 4,850230 4,850230

Table 2: Eigenmodes in the model cavity and the influence of the chosen boundary condition at the
beam  tube. Only dipole modes are listed. Column “BC” denotes the type of the boundary
condition at the beam tube ends (M = perfectly magnetic conducting, E = perfectly electric
conducting boundary condition). Modes that depend only weakly from the change in
boundary condition are found. Other modes, which differ significantly in mode pattern and
frequency between the two cases of beam tube boundary condition, are no candidates for
trapped modes.

The only conclusion from this type of analysis can be, that the total Q-values for these potentially trapped
modes will be lower in the real cavity than the values of QMAT computed from the eigenmode field pattern.
Fig. 2 shows the modes with minimal difference in eigenfrequency as function of change of boundary con-
dition. These modes obviously have very small field strengths at the boundaries and thus are good candi-
dates for trapped modes.
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Figure 2: Electric fields of two modes near f=3.33 GHz and f=4.28 GHz, for which the influence of
the beam pipe boundary condition (Electric or Magnetic) is minimal.

In superconducting cavities these upper limits calculated from closed cavities are far too high as the Q-
value is determined almost entirely by the loss due to radiation into the beam tubes. Thus we will investi-
gate open structures in the next chapter.

IV. TIME DOMAIN ANALYSIS

A seemingly simple approach to attack the open cavity problem is to use a time domain analysis including
waveguide ports. These waveguide boundary ports simulate infinitely long beam tubes and have been suc-
cessfully used in S-parameter computations for waveguide components [9]. As the orthogonality of the
waveguide modes in the boundary plane is exactly taken into account (in the sense of the numerical
model), this boundary condition is well suited to deal also with high-Q cases with small time signals at the
ports.
The QRAD-values of trapped modes are determined solely by the ratio of the stored energy in the cavity and
the power radiating through the boundary ports. Thus, assuming an arbitrary excitation of the cavity and
freely oscillating fields, the knowledge of  the time signals at the ports, which include the exponential de-
cay of the stored energy, is sufficient for the calculation of QRAD.
In principle, the port modes can be used both for the excitation of the cavity and for the detection of the
rates of energy decay. However, this approach leads to very long settling times especially for the desired
trapped modes. It is more efficient to introduce virtual pickup antennas in the inner volume of the cavity in

Termination = PEC,   f = 3.33223 GHz Termination = PMC, f = 3.33489 GHz

Termination = PEC,   f = 4.27910 GHz Termination = PMC,   f = 4.26945 GHz
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the simulation as shown in Fig. 3, and to calculate the transfer function between the signals at the
waveguide boundary and the signals at these antennas. According to the reciprocity theorem, the Q-values
can finally be extracted from this function, no matter which of the signals serves as input and which as
output signal. As the cavity modes may have zero field components at some points, more than one antenna
has to be used.

Figure 3: Virtual pickup antennas for field components in the inner cavity volume.

The excitation signal is chosen to be a modulated Gaussian pulse, having a Gaussian shaped spectrum
ranging from about 2.5 GHz to 5 GHz with middle frequency 3.75 GHz. As shown in Fig. 4, all resonances
outside the desired frequency range are only weakly excited and can be neglected (as well as the higher
beam tube modes as mentioned above).

0
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0 852.5
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Figure 4: Normalized time signal and DFT-spectrum of the dipole wave guide mode as used for the
excitation of the structure.

A typical output time signal at one of the pickup antennas is shown in Fig. 5 (left). From a discrete Fourier
transform (DFT) of the signals (cf. Fig. 5, right) we obtain the cavity impedance (the transfer functions
between the beam tube ports and the pickup antennas) and thus the width of the trapped resonances. For
the cavity analyzed here, the spectrum clearly shows some sharp resonances. From the zoomed plot around
f= 3.336 GHz in Fig. 6 we can extract the 3db-bandwidth ∆f=0.0022 GHz and thus a quality factor for the
corresponding mode of QRAD = f /∆f  ≈ 1514.
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Figure 5: Amplitude signal of one of the virtual antennas (left) and spectra of some E-field antennas
as a result from the DFT (right).

Figure 6: Zoomed spectrum of the Ey-component around its peak at f=3.33645 GHz showing a 3db-
bandwith of ∆f=0.0022 GHz and thus a quality factor of QRAD ≈1514.

Once the quasi-resonant frequencies are known, one can perform a discrete Fourier transform (DFT) also
of the fields in the cavity at those frequencies. The field patterns resulting from such ‘DFT-monitors’ show
the ‘true’ field of trapped modes, including the radiation at the ports, according to the chosen excitation.
These field results can be used to find the correspondences between the modes in the open structure and
the results of the conventional analysis with closed boundaries. It turns out, that not all eigenmodes in Ta-
ble 2 have an analogon, if the beam tube is opened. This shows quite clearly that a closed cavity analysis
may lead to qualitatively different results. Some candidates for trapped modes as found in this eigenmode
analysis do not show up at all in the open structure analysis.

One serious problem with the time domain analysis as described so far is, that all modes with high QRAD-
factors are related to long settling times, when they are excited by fields at the port modes. The other way
round, if they are oscillating in the cavity, the time signals at the ports are very low, and again long simu-
lation times are needed for a numerically robust extraction of the QRAD-factors. Additionally, if the simula-
tion is aborted before all the energy has left the cavity (as in the example in Fig. 5), the DFT-results are
overlaid by a si-function ( ωω /)sin(~ ), which may lead to wrong results for the 3db-bandwidth and thus
for QRAD.
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If we require that the frequency resolution of a signal’s spectrum is at least ∆fsign < ½ ∆f3db (the bandwidth
of the resonance peak), we find from signal theory, that at least a total number of

RADsample
RADsimulation Qn

t
fQ

t
T

n ⋅⋅=
∆

≥
∆

= 22min (3)

time steps are needed in the simulation to resolve an expected Q-factor, where nsample is the number of time
steps per period (at least 20 in typical cases). As we can see from this formula, the numerical cost of the
time domain analysis increases linearly with Q (which of course is a-priori unknown).
This situation gets even worse, as in this type of analysis – using a Cartesian mesh model of the cavity,
which is not perfectly rotationally symmetric – also parasitic resonances with a higher azimuthal order
(sextupole and higher modes) are weakly excited. The coupling between these cavity modes and the dipole
beam tube mode is only due to numerical (grid) effects and thus very low. This leads to extremely high
quality factors and settling times (cf. Fig. 5, with a parasitic peak in the Ex-spectrum at f=4.191 GHz),
which overlay the time signals of the desired dipole modes. This problem may be solved by using narrow-
banded input signals, but only if the resonance frequencies of the dipole modes and the higher order modes
are not too close.
Another problem with the time domain approach is the appropriate location of the antennas, which is re-
quired for a good resolution of the resonances in the resulting DFT spectrum. As can be seen from the re-
sults presented here (cf. Table 3), some resonances may be overseen or appear only with very poor resolu-
tions in the time signals. Moreover, for neighboring peaks with only small differing resonance frequencies,
the peaks often are unsymmetrical.

These considerations lead to the assumption, that the use of the time domain approach combined with a
Discrete Fourier Transform is not well suited or at least not very efficient for the calculation of trapped
modes with extremely high values of QRAD.
The situation gets slightly better, if alternative techniques are applied for the spectral analysis of the time
signal. Especially some approaches from filter synthesis or Prony’s method [10] are able to make use of
parts of the time signals without getting in trouble with the errors introduced by the premature abortion of
the simulation. However, for the high Q-cases to be considered here, these techniques sometimes have nu-
merical stability problems, and often parasitic resonances and Q-factors are found.

Therefore in the following two alternative approaches in the frequency domain are presented. Based on the
same computational model, they again lead to eigenvalue problems, but now including the open boundary
condition at the waveguide ports.

V. FREQUENCY DOMAIN ANALYSIS

A method to calculate the cavity impedance in the frequency domain, including the radiation at the beam
tube ports, has already been presented in [11], and in principle the Q-factors of trapped modes can be de-
rived from these results in a similar way as mentioned above for the time domain scheme (cf. Fig. 5 and 6).
However, in this approach a inhomogeneous equation has to be solved for each frequency point, and thus it
seems to be more appropriate to pass over to an eigenvalue equation again.

1. COMPLEX EIGENVALUE FORMULATION

To this end, the computational model of the FI-discretization including the energy loss through the
waveguide boundaries is formulated in frequency domain [12], leading to a linear system of equations for
the vector e)  of electric grid voltages (the state variables of the FI-formulation):

( ) ωωω reIBA =−+ )2' )(WGCC . (4)
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The system matrix consists of the operator '
CCA  for the (slightly modified) curl-curl-wave equation and a

special waveguide boundary operator WGB , which is complex and nonsymmetrical. The right hand side ωr
includes the (monochromatic) excitations at the ports.
If there are no excitations present (freely oscillating fields), we obtain the complex and non-linear eigen-
value problem

( ) eeBA )) 2' )( ωω =+ WGCC . (5)
Its solutions are the complex eigenvectors e)  and the corresponding eigenvalues (the squared complex fre-
quencies αωω i+= ). The Q-factor of these modes finally is given by

)Im(2
)Re(

2 ω
ω

α
ω ==RADQ . (6)

To linearize the eigenvalue formulation, the frequency dependence of the matrix WGB  is neglected and a
constant matrix )( 0ωWGB is used instead, where 0ω  is a real-valued approximation of the complex eigen-
frequency. Especially for the modes with high Q-factors, this is a valid simplification, if 0ω  is chosen to be
the eigenfrequency of the real problem with closed (PMC or PEC) boundaries. Finally the task is to solve a
(still complex and nonsymmetrical) linear eigenvalue problem, where a good start solution for iterative
solvers is given again by the solution of the corresponding real problem.
Some results of this procedure for the single cell cavity are listed in Table 3, compared to the results from
the time domain calculation (where the resonances are evaluated either by a Discrete Fourier Transforma-
tion or by signal processing techniques). The typical relative deviation is below 10-3 for the resonance fre-
quencies and 10-2 for the Q-factors (except for the DFT-results, which suffer from the graphical evaluation
and the influence of the finite simulation time). For some of the resonances, accurate results can only be
obtained in the frequency domain analysis, due to the weak time signals or their poor resolution in the fre-
quency domain – at least for the pickup antennas used here.
A typical trapped-modes analysis requires to calculate both several (10-30) solutions of the real problem
(with closed boundaries) and some solutions of the complex formulation, and the most severe disadvantage
of this approach is the high numerical cost of the complex solvers. Thus, in the next chapter we present an
alternative frequency domain approach, which does not require solution of a complex eigenvalue problem.

2. MODAL APPROACH

The following ‘modal’ approach is based on a result of Slater’s work [13], which has previously been used
for a similar analysis in [14]. The waveguide-coupled cavity is interpreted as a multiport system, and the

impedance matrix ( )ijZ  referring to the generalized voltage and current
quantities at the ports of this system is calculated. To this end we use a set
of modal coefficients, which are related to the 3D cavity modes and their
coupling to the 2D waveguide modes at the ports. The desired eigenmodes
and their external Q-factors can then be derived by means of a simple
network consisting of the impedances of the structure and the matched
resistive loads Ze of infinitely long (reflection-free) waveguides.

The model problem introduced above can be viewed as a one-port system, making use of the third symme-
try of the structure, and thus the following derivation concentrates on such simple systems (but can easily
be adopted to the general case). The impedance matrix then reduces to one single impedance quantity re-
lated to the input port of the cavity, which is defined as a reference plane in the beam tube. We introduce a
PMC boundary condition at this reference plane and perform a conventional (real-valued) eigenmode
analysis of the closed structure as presented above. From [13] we get the following formula for the imped-
ance of the cavity:

Ze Z11
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∑=
a

aZZ )()(11 ωω       with ( )ωωωω
εωω

aa

aa
a j

v
Z

−
= )/(

)(
2
1 . (7)

aω  is the resonance frequency of the ath eigenmode of the closed structure, and va1 is the expansion coeffi-
cient of this mode referring to the two-dimensional waveguide mode in the beam tube (the fundamental
mode in the guide with index 1). In the continuous regime of [13], the summation has to be performed over
the infinite number of  cavity-eigenmodes ( ∞= K1a ).
If the cavity (the one-port system) is terminated by an external impedance Ze (where in our case this is the
characteristic impedance of the beam tube mode: )(01 ωZZ e = ), we obtain the scalar, non-linear eigen-
value problem for free oscillations in this small network:

0)()( 11 =+ ωω ZZ e . (8)
From the complex eigenfrequencies ω  of this equation we find the Q-factors of the corresponding modes
according to (6).
To use this approach in the discrete model, we have to ensure, that the orthogonality properties of both the
3D-cavity modes and the 2D-waveguide modes are fulfilled – this is exactly true for the FI-discretization –
and that they are properly normalized. The impedance now appears as a finite sum over a number N of
cavity modes (corresponding to the finite number of degrees of freedom in the model). However, in the
practical application only a limited number p=10...500 of eigenmodes can be calculated, and usually we
have p<<N. From the denominator in (7) we can expect to obtain a good approximation of the impedance
for such a truncated summation, if pωω < . If we are looking for the complex eigenmode related to the ath

real solution, this is usually fulfilled for ap >> .
For a rigorous solution of the non-linear equation (8), iterative schemes (e.g. Newton) can be applied. In
many cases good results can also be obtained using the following simplifications (as proposed in [13]):
Typically in the neighborhood of the resonance frequency only one of the addends (with index a) is
strongly varying, and all the others can be assumed to be approximately constant (but not zero):

111 )()( aa ZZZ +≈ ωω            with  )(1 a
ai

ia ZZ ω∑
≠

= = const. (9)

In a similar manner, the impedance of the waveguide may also be approximated by a constant value
)()( 0101 aZZ ωω ≈ . A simplified analysis of (8) then yields

g
Q

Q ext= , (10)

with the abbreviations

1

01

ae ZZ
Z

jbg
+

=+       and      2
1

01
1,

a

a
aext v

ZQ εω= . (11)

The key point in the modal approach is the control of the truncation error due to the finite number of cavity
modes, which can be calculated with reasonable computer resources. Once the p real eigenmodes of the
closed structure have been calculated, the series )(iQ  of Q-factors (using i=1...p modes) can be easily
evaluated. For the convergence properties of this series we find:
1) The value of 1,aextQ  from (11), where no additional modes are needed, is always a lower bound for the

final Q-factor.
2) If 0)Im( 1 >aZ  for a number p0 of modes (this can be easily checked), we get an improved lower bound

by 
)(

)(
0

0 pg
Q

pQ ext= , as )( pQ  is monotonously increasing for p>p0.
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In many cases, these two results and the convergence curve Q(p) (the computed Q-factor vs. the number of
considered modes) allow an estimation of the final value of the Q-factor. The number of modes needed for
an accurate solution depends (among others) on the density of resonances in the real spectrum.

As an example, Fig. 7 shows the convergence of Q(p) for the 10th mode in the single cell cavity: The ‘fi-
nal’ values of the modal approach (real part of the resonance frequency f10=3.334 GHz and 1578≈Q ) is in
very good agreement with the results of the complex eigenvalue formulation presented in the previous sec-
tion (cf. Table 3). A first approximation of this values can already be obtained by the evaluation of

122610, =extQ  (where no further modes are needed), and for a relative deviation below 10% about 90
modes have to be taken into account. The results from an exact solution of (8) and the simplified formula
in (10) are in nearly perfect agreement (indistinguishable curves in Fig. 8).
Note that obviously many modes do not considerably contribute to the result for Q (e.g. the modes between
p=90 and p=97). These are modes with a higher azimuthal order2 and thus no (or only an extremely weak)
coupling to the dipole beam tube mode at the input port. As a consequence, the number of modes needed in
the modal approach can be considerably decreased, if only dipole modes are calculated (by use of a 2D-
mesh for rotationally symmetric structures and a modification of the system matrix [1]).

Figure 7: Convergence curve of the calculation of the Q-value of mode #10 (f=3.3344 GHz) using
the modal approach. Related to the ‘final’ value Q=1578 (including 500 cavity modes) we
need about 90 modes to obtain a relative accuracy of 10 per cent. The (easy accessible)
value Qext from (11) is a lower bound for Q.

The results for some other modes are summarized in Table 3. For the resonant mode #22 at fres=4.387 GHz
the modal sum has not yet converged very well, however a lower limit Q>603 is available.
Note, that due to the dispersion effects of the time stepping scheme the resonance frequencies in the time
domain approach are always slightly higher than the results from frequency domain.

                                                       
2 These cavity modes, which only couple due to the non-symmetric computational grid, deteriorate the time domain analysis as
mentioned above. In the frequency domain they do not significantly contribute to the Q-calculation.
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Closed cavity (‘M’) Time Domain Frequency Domain
(real EV-Problem) Complex Modal

No fres Type fpeak Q   Re{fres} Q fres Q
9 3.057 DFT (Ex) 3.031 71

SP (Ex) 3.039 47 3.036 62 3.038 61
10 3.335 DFT (Hz) 3.336 1510

SP (Hz) 3.336 1538 3.334 1558 3.334 1578
17 4.150 DFT (Ey) 4.153 ?

SP (all) ? ? 4.155 70 4.153 69
19 4.269 DFT (Hz) 4.280 417

DFT (Hx) 4.281 441
SP (Hx) 4.280 444 4.276 447 4.277 420

22 4.384 DFT (Ex) 4.391 635
SP (Ex) 4.391 654 4.387 658 4.387 >603

Table 3: Some results of the computation of resonance frequencies (in GHz) and Q-factors in the
open single-cell test cavity. Time domain: The resonances are extracted from different time
signals via graphical evaluation of the DFT or by signal processing techniques (SP). In
some cases no numerically stable results can be found due to too weak signals. Frequency
domain: Solution of a complex eigenvalue problem and modal approach.

VI. THREE-CELL CAVITY

To investigate the influence of the number of cells to the quality factor QRAD of the dipole modes,  we con-
sider the cavity in Fig. 8, which consists of three cells and a beam tube of the same type as in the simple
model above. From the eigenmode computation with closed PMC-boundaries some dipole modes can be
found in the frequency range between 2.5 and 5 GHz, and thus above the beam tube cutoff. One of these
modes with resonance frequency f=3.0700 GHz is also shown in Fig. 8.

Figure 8: Eigenmode in a three-cell cavity with resonance frequency f=3.0700 GHz (electric field).

For the open structure we at first perform a time domain analysis with as much as 2 million time steps, and
a sampling rate in time of 50)(1 ≈∆= tfnsample  according to (3). For the signal spectrum this leads to a
resolution of  ∆fsign≈80 kHz, and in the result in Fig. 9 the resonance peak is only quite poorly resolved. As
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a consequence, the Q-factor obtained by this approach cannot be expected to have a very good accuracy. A
graphical evaluation only yields the estimation QRAD>20000.

Figure 9: DFT-spectrum of the time domain analysis of the three-cell cavity. After about 2 million
time steps the spectral resolution is about 80 kHz.

From the frequency domain approaches we get the results as summarized in Table 4. The resonance fre-
quencies are in very good agreement, and the Q-values differ in the range of about two percent. This de-
viation can be explained with the still not fully converged results: In the modal approach the series Q(p) is
still slightly decreasing after pmax=500 modes, and in the complex eigenmode calculation an extremely
good accuracy of the eigenvalue is required, as its real and imaginary parts differ by several orders of
magnitude.
A similar result can be obtained for another trapped mode at f=3.3421 GHz (cf. Table 4).

Closed cavity (‘M’) Time Domain Frequency Domain
(real EV-Problem) Complex Modal

No fres fpeak Q   Re{fres} Q fres Q
22 3.0700 3.0708 >20000 3.0697 25579 3.0697 26100
26 3.3422 3.3435 >12500 3.3421 13489 3.3421 13934

Table 4: Some resonance frequencies (in GHz) and Q-factors in the open three-cell cavity.

VII. COMPARISON

As shown for the small test example and the three-cell cavity, all three approaches for the calculation of
external quality factors yield comparable results, showing relative deviations of some percent for the Q-
factors.
The time domain approach can be considered to be principally the most rigorous and exact method, as no
further simplifications are made within the computational model. However, it suffers from the long simu-
lation times and the difficulties with the graphical evaluation of the DFT-results, or with the numerical
stability of the signal processing techniques, respectively.
In the modal approach also no further approximations are made, except for the truncation of the sum in the
impedance formula. Thus, reliable results can be expected from this algorithm, whenever the series of Q-
factors seems to have converged for a specific complex eigensolution. The computational cost of the real
eigenvalue analysis (requiring up to several hundreds of field solutions) might also be quite high; however,
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as a benefit we obtain field solutions of all real eigensolutions in the cavity, what often is of special interest
at least for the lower modes.
The approach using the complex eigenvalue formulation does not have this convergence problem, as only
one eigenmode has to be computed for each Q-factor. However, the solution of a complex nonsymmetrical
system is still a severe task for the algebraic solver to be employed. Especially for the high-Q case of
trapped modes, the calculated eigenvalue must have a very good accuracy for both its real and imaginary
part.

VIII. CONCLUSIONS

We calculate the quality factors of trapped dipole modes in accelerating cavities, which have resonance
frequencies well above the cutoff frequency of the beam tube. Three different approaches have been pre-
sented, where the radiation at the ports is rigorously taken into account. As these approaches follow quite
different paths, the calculated Q-factors with deviations in the range of some percent can be considered to
be reliable results.

Quantitative results show Q-values of 1000 for single cell cavities an more than 10.000 for three cell cavi-
ties. Thus the impedance above cut-off frequency may yield a serious contribution to beam instabilities.

The conventional procedure of computing closed cavity modes and comparing the eigenfrequencies when
changing the beam tube end boundary condition may give hints for the existence of trapped modes. This
analysis yields upper limits for the contribution of the fields above cut-off frequency, which may be suffi-
cient in some practical applications. However, a comparison between closed cavity analysis and open cav-
ity analysis shows, that not all modes that appear to be candidates for trapped modes from the closed cavity
analysis are actually real trapped modes. Thus for some modes, the closed cavity analysis does give upper
limits. However, for some modes this type of analysis may give wrong results.

Especially for superconducting accelerators the closed cavity approximation yields unacceptable values for
the impedance and a rigorous analysis of the open cavity structure is indispensable.
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