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Abstract

In this contribution, the field matching technique is employed for the calculation
of the short and long range wake in periodic circular symmetric accelerating struc-
tures. The electromagnetic field in the beampipe is represented by a superposition
of spatial harmonics; and the cavity field is expanded in terms of functions which
already fulfill the boundary conditions at the cavity walls. The numerical results
show that the beam impedance of such structures behaves like a reactance func-
tion with alternating poles and zeros. Two methods which are appropriate for the
calculation of the wake function from this kind of beam impedance are discussed.
The short and the long range wake is computed for various cases. Furthermore
the loss parameters are compared with those of a previously published approach
which can be used in order to calculate the short range wake for short bunches.
Finally the loss parameters of a simple model of the TESLA accelerating structure
are computed and compared with those numbers which are given in the TESLA
conceptual design report.

I. Introduction

The ficld matching method was recently used for the computation of the beam parameters
of periodic structures [1]-[5]. Such structures are encountered very often in the field of linear
accelerators: E.g., the may be used to study the effect of surface roughness in long beampipe
sections, which is especially interesting for the FEL operation mode of TESLA [6], [7] as well
as to calculate the wakefields in the accelerating structure itself.

The planar configuration shown in Fig. 1 served in [3] as a model for a circular accelerating
structure. In [5] it was demonstrated that the beam impedance of this model and that of the
corresponding circular structure, which is presented in Fig. 2(a), are indeed very similar except
for very low frequencics [8]. The dc spectral component of the beam impedance of the circular
structure in fact vanishes; whereas this is not the case for planar gratings. It was thus found
out in that paper that the wake function and the loss parameter of circular structures are quite
different from those corresponding to planar gratings for long bunches which basically excite
the low frequency part of the wakefield. On the other, the numerical investigations presented
in [5] showed that if one is interested in the short range wake for short bunches only one may
use the planar grating model.

The structure which was investigated in [5] radiates electromagnetic energy through the
gaps between the diaphragms which is also indicated in Fig.2(a). We have therefore to close
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Figure 1: Planar model for an accelerating structure.
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Figure 2: (a) Previously used model for the computation of the short range wake. (b} Actual accelerating
structure.
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these gaps as it is the case for a real accelerating structure, see Fig. 2(b), if we intend to compute
also long range wake effects.

This contribution is dedicated to the computation of the short and long range wake effects in
structures like that which is presented in Fig. 2(b). The field matching techniques corresponding
to the open and the closed structure are very similar. We just have to substitute some Hankel
functions which describe radially outward travelling waves between the diaphragms by linear
combinations of Bessel and Hankel functions yielding a radial standing wave pattern which
already fulfills the boundary condition at p = b.

The open model is damped by energy radiation. This leads to a complex-valued beam
impedance without poles along the frequency axis. On the other hand, the closed structure is
lossless because the electromagnetic energy is trapped within the shielding which is assumed to
be perfectly conducting, The beam impedance of this structure is therefore purely imaginary
and hehaves like a reactance function with alternating poles and zeros.

This type of beam impedance requires some special techniques for the calculation of the
wake function. Two methods will be discussed which solve the problem: The first one is based
on the computation of the ¢-wake from the resonant frequencies of the poles and their weighting
factors. The actual walke for a certain bunch is then obtained from the corresponding convolution
imtegral.

The sccond methods already takes into account the bunch shape in the frequency domain
which means that the beam impedance is multiplied by the bunch spectrum and then inverse
Fourier transformed in order to determine the wake function. Similar to the first method, the
poles are treated analytically; whereas the remaining part of the spectrum which is well-behaved
is numerically inverse Fourier transformed.

Numerical results for the short and the long range wake will be presented for an excitation
of the accelerating structure by various bunches. It will be demonstrated that more and more
poles are significantly excited if the bunch length is reduced. It will also be shown that the short
range wake and the loss parameter corresponding to the open and the closed circular structure
are approximately the same for very short bunches.

Moreover a simple model of the TESLA accelerating structure will be considered. This model
does not take into account that the contour of the TESLA structure changes smoothly. It rather
approximates the cells by abrupt steps in the radius according to Fig. 2(b). The corresponding
loss parameter will be given as a function of the bunch length and will be compared with those
numbers which are given in the conceptual design report (CDR) for TESLA [6]. It will turn out
that really a large number of poles has to be taken into account if accurate results are required
for short bunches.

II. Theory

This section is organized as follows: In Subsection I1a) it is shown how the previously published
field matching technique for the open structure has to be modified for the analysis of the closed
structure presented in Fig. 2(b). Subsection IIh) is then dedicated to the computation of the
wakefield from a beam impedance which looks like a reactance function.

ITa) Field analysis

The field analysis of the accelerating structure which is shown in Fig. 2(b) is very similar to that
ol the previously used model for the computation of the short range wake which is presented in
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[ig. 2(a). In the latter structure, the electromagnetic field is given by the eigenmode expansion

HY = 3 Aucos(kanz) HP (K2p) (1)
n=0
5(2) S (2) (12)
BY = 2}, Au—tcos(kunz) Hy (k) (2)
n=(

for p > a and 0 < z < Lo, where Hg) and le are the zeroth and first order Hankel functions
of second kind. The Hankel functions describe radially outward propagating waves which can
be seen from the asymptotic behaviour of these functions [9]:

.
Hl(,z)(kp)%Mﬂ—":pj"e_Jkp for [kol® > v ——‘ (3)

On the other hand, the cavity wall at p = b in an actual accelerating structure requires

EOp)| =0 . (4)

p=b

Th]q houndary condition is fulfilled if we substitute the Hankel functions H( (k(z) ) and
(!c 2) ) by appropriate linear combinations of Bessel and Hankel functions Zg (k(z)p) and
7 (k %) ) respectively:

pn

T (6) = Za(b20) = N (20) 1K) - HO (D) (D) . )
n”(afj p) = Zi(kZp) =H52)(kf,33p) Jo(K2b) — HE (k$26) 31 (k2p) (6)

Note that
Zo(k2b) = 0 (7)

so that Iq. (4) is satisfied. It is worth noting that the substitutions according to Eqs. (5) and
(6) are sufficient in order to analyze the closed structure instead of the open one. The already
implemented computer code for the open structure remains therefore almost the same.

IIb) Calculation of the wakefield

In [5] it has been shown that the beam impedance per unit length is proportional to the
expansion coefficient of the zeroth order spatial harmonic divided by the wavenumber. This
hearn parameter is a complex-valued, well-behaved function of frequency for open structures.
Fig. 3 presents the real and imaginary part of Z'(ko) / (Zo/L) for a typical set of parameters.

On the other hand, closed structures are not damped by radiation losses. Hence the cor-
responding Z'(kp) is purely imaginary. Fig.4 shows a typical Z'(kg). It is characterized by
alternating poles and zeros and looks thus like a reactance function. Such a function is given
by a series of terms 7ko/ (( jko)2 —( jkm)z) where kq; denotes the resonance wavenumber of the
ith pole. Note that although the numerical results suggest that Z'(kg) is a reactance function
it has actually not yet been proven. At least it is clear that Z’'(ky) cannot be a superposition
of terms jky/ ((_}'A“.U)2 — (7 koi)z) with complex-valued kg; because this would contradict the fact
that Z'(ko) is purely imaginary for all frequencies.

Nevertheless, let us assume in this paper that Z'(ky) is a reactance [unction. Then the
guestion arises how can we calculate the wake function from this kind of beam impedance. In
the following two methods are presented which solve this problem.
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Figure 3: Real and imaginary part of the beam impedance per unit length as a function of frequency for the
open structure. Parameters: Lo = 0.3L, a = 0.5L and Ny, = 50.
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Figure 4: Tmaginary part of the beam impedance per unit length as a function of [requency for the closed
structure. Parameters: Ly = 0.3L, a = 0.5L, b = 2L and Ny, = 50.
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ITb.1) Convolution method

The method which is discussed first is based on the computation of the é-wake. The actual
wake of a real bunch is then calculated by convoluting the bunch shape and the d-wake. This
method is thus referred to as the convolution method.

If the assurnption that the beam impedance per unit length is a reactance function is correct,
it then can be written as [10]

&
= J Koi

Zh) = 3o
=1 1— _0
(%)

where the 7th pole is weighted by the factor r;. The weight factor r; can readily be computed
numerically from the slope of 1/Z' (ko) at ko = koi:

(8)

1 gk ’ (ﬁko)) (9)

T; - 2 dk‘g
ko =koi
Note that 1/2'(kg) vanishes at ko = ki
The é-wake per unit length reads
Wo(s) = & / T 2k eRosdky (10)
iy k‘()=—00

Hence W¥(s) can be calculated if we substitute Eq. (8) into Eq.(10). The evaluation of the
infinite integral in Eq. (10) so that W¥(s) is causal is discussed in detail in the Appendix
yielding
W¥(s) = eo Y, rikoicos(kois) . {11)
i=1
The actual wake per unit length for a given bunch shape A(£) can then be obtained using the
well-known convolution formula
o0
Wis)= [ MW (s +ede (12)
[t is worth noting that the wake is completely determined by the poles of Z'(kg ). This means that
we do not have to know Z’'(kq) precisely for the numerical evaluation of the convolution method;
we just need to compute the resonant wavenumbers ko; and the corresponding weighting factors

r;. Nevertheless we have to keep in mind that this statement is only valid under the assumption
that Z'(fy) can be written according to Eq. (8) which has yet not been proven.

ITb.2) FFT method

The second method for the computation of the wake is called FFT method because 1t requires

a FET instead of a convolution integral. The FI'T method is based on the fact that the wake

is just the inverse Fourier transformation of the beam impedance times the bunch spectrum:
€o

W(s) = ]k ::_m Z"(ko) Alko) €70 dkq (13)

T oom
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The (unction 2 ’(kU)X(kg) still contains poles at the same wavenumbers ko; as the beam
impedance does. If we substract these poles which are weighted by A(koi) i from Z (ko) Ako)
we gel a well-behaved spectral distribution S(kq)

S(k’o) = Z ku )\ k‘o Z)‘ !‘Cg, (14)

Fig. 5 presents this auxiliary function with the bunch length as a parameter. Note that S(ko)

0.035
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0.825

)

Figure 5: Auxiliary function for the wake calculation with the bunch length as a parameter. Parameters:
Lo =030, a=05L,6=2L and Ny, = B0.

is absolutely pole-free. Furthermore Fig. 5 shows that the spectral width of S(ko) increases if
we consider shorter bunches which is also expected.

The subtracted poles and the auxiliary function S{kg) are then individually inverse Fourier
transformed:

W(s E (kos) rikoscos (kois) + == /k T S(ko) e dg (15)
=1 0=—0C

271'

pole part FFT part

The pole part of W(s) is obtained by inverse Fourier transforming the sum in Eq.(14) ana-
tytically similar to the convolution method. As already mentioned, the weighting factors of the
poles are now A(ko;) r; instead of r;. Therefore only a few resonances contribute significantly to
this summation as long as the bunch has a reasonable length.

Fig. 6 presents both the FFT and the pole part of the FFT method. The pole part has a
step discontinuity at s = 0 which is ¢o 300, A(koi) 7iko;. This discontinuity is just compensated
by the inverse Fourier transformation of S(kp) so that the total wake is continuous at s = 0.
The fast oscillations of the FI'T part are due to the fact that the spectral distribution S(ko) has
to be truncated somewhere. This phenomenon could be removed by an asymptotic expansion
of S{ky).

Fig. 7 compares the total wake corresponding to the FF'T and the convolution method. The
agreement between both wake functions is excellent except for the already discussed oscillations
of the FFT method at s = 0 which are an artefact of the numerical calculations. Nevertheless
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Figure 6: FFT and pole part of the FFT method. Parameters: Ly = 0.3L, a. = 0.5L, b = 2L, koy, = 100/L,

Npgr =580 and o = L,
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Figure 7: Comparison between the FFT and the convolution method. Parameters: Ly = 0.3L, a = 0.5L,

b=2L, kop = 100/L, Npor = 50 and & = L.
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we are going to use only the convolution method for the following calculations of the wake
function because this method does not suffer from such a phenomenon.

ITI. Numerical results

This seckion in which some numerical results are presented is split into two subsection. The
first one is dedicated to the verification of the developed method; whereas the computation
of the loss parameter of a simple model for the TESLA accelerating structure is discussed in
subsection [1Ib}.

IITa) Verification of the presented method

In order to check the validity of the presented method let us compare the cavity and the

waveguide field at p = a. Fig.8 shows the corresponding real and imaginary parts of the
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Figure 8: Normalized axial electric und azimuthal magnetic field along p = a. Parameters: Ly = 0.7L, @« = 0.5L,
b=1,ky =5/L and Np,, = 50,

axial clectric and the azimuthal magnetic field. The wavenumber ky = 5/L corresponds to a
frequency of the electromagnetic field of about 2.5 GHz if we assume a period lenght L of 10 cmy;
and Nj.. = 50 means that 50 spatial harmonics are taken into account in the beampipe.

The axial electric field shows the well-known singularities at z = 0 and z = Ly due to the
90°-cdges alb these locations [L1]. This phenomenon leads to relative strong oscillations of the
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ficld distributions. Nevertheless, the agreement between the beampipe and the cavity field is
quite good for 0 < z < Lg. On the other hand, for Ly < z < L, the cavity field is not defined
and the beampipe field must vanish as it is the case.

The azimuthal magnetic field is parallel to the edges. This field component is consequently
well-behaved everywhere. The corresponding curves for the beampipe and the cavity field are
very smooth and agree almost perfectly within 0 < 2 < Lo.

Fig. 9 presents the wake functions for various bunches. The parmeter ko, = 100/L means
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Figure 9: Wake as a function of the bunch length. Parameters: Ly = 0.7, a = 0.5L, b = L, ko, = 100/ L and
Arhm‘ = 5.

that all resonances up to this wavenumber are taken into account. For a period length of 10 cm,
kom = 100/ L corresponds to a maximum {requency of about 50 GHz. Within this frequency
band 638 poles are found.

For a very long bunch (¢/L = 5) the wake is inductive. This means that W'(s) is propor-
tional to the derivative d/dsA(s). For such a long bunch none of the poles of Z'(ko) is signifi-
cantly excited because the bandwidth of X(kOi) is less than the lowest resonance wavenumber
feqi. Therefore no long range wake is observed in this case.

If we consider a bunch with o/ L = 2 the short range wake is still almost inductive. Neverthe-
less, the lowest pole is considerably excited, whereas the excitation of higher order resonances
is negligible, The long range wake is therefore a harmonic function with a wavelength equal to
2 /Ko

Il we consider shorter bunches (¢/L = 0.5 and ¢/L = 0.2) the excitation of more and more
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poles cannot be neglected any longer. Under these circumstances many resonances contribute
significantly to the long range wake according to the pole part of Eq. (15).

On the other hand, the short range wake finally becomes almost capacitive (W'(s)
f, A(s)ds) for very short bunches as it is shown in Fig.10. In this figure o/L = 0.02 is as-
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Figure 10: Capacitive short range wake for a very short bunch length. Parameters: Ly = 0.3L, a = 0.5L,
b=2L, kin, = LO0/L, Npgr = 50 and o = 0.02L.

sumed which means that the actual bunch length is 2mm for L = 10cm.

T'or a further check of the presented method let us compare the short range wake which
is calculated using this method with that obtained for the open structure (Fig.2(a)). Fig. 11
illustrates that both wakes are the same for

| ‘ . pathl

S S W— » path?2

IFigure L1: Shortest path of a wave reflection {path 1) along which a bunch (moving along path 2) can
experience its own wakefield due to the outer shielding of the cavity.

h— 2
As < Lo J1+4( “) —1] (16)
Lo

where As denotes the difference between the lenghts corresponding to path 1 and 2. Path 1
is the shortest path of a wave reflection along which a bunch can experience its own wakefield
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due to the outer shielding of the cavity; while the bunch itself moves along path 2. Note that
the interval As counts from that coordinate s where the bunch first gives rise to a non-neglible
wake.

[ig. 12 presents the wake functions corresponding to the open and the closed structure for
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Figure 12: Comparison between the wakes which correspond to the open and the closed structure for various
bunches. Parameters: Ly = 0.3L, a = 0.55, b = 2L, kom = 100/L and Npq. = 50.

various bunches. For the given parameters we have As = 2.7L. The presented curves confirm
that the wake functions are indeed identical within this interval As in all four considered cases.

For a long bunch (/L = 1) the wake functions already start to deviate within the bunch. We
therefore expect that both models do not yield the same loss parameter for such an excitation.
On the other hand the short range wakes agree very well for (/L < 0.5).

This statement is also confirmed by Fig.13 which compares the loss parameter of both
models as a function of the bunch length. From the numerical results which are presented in
this figure it clearly lollows that the models yield the same results for short bunches. This
justifies the use of an open structure as a model for a real accelerating structure if one is
interested in the short range wake only and if the exciting bunch fulfills the condition o < As.

ITIb) A simple model for the TESLA accelerating structure

In this subsection some of the problems are discussed which one encounters if one is interested
in the beam parameters for very short bunches. The parameter set which is assumed for this

12
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cin|| ¥inV/pC/m
mm || CDR | this method
0.5 12.0 | 10.8
1.0 9.7 9.2

Table |: Comparison of the loss parameter corresponding to two short bunches with those given in the CDR.
Parametlers: Lo = 0.792L, a = 0.303L, & = 0.8051 and Ny, = 100,

discussion corresponds to a simple model for the TESLA accelerating structure (Lo = 0.792L,
a = 0.303L and 6= 0.805L).

For the calculations 100 spatial harmonics were taken into account which is quite a lot.
Using this number of field expansion functions in the beampipe, we can expect accurate results
iup to a maximum normalized wavenumber of koL ~ 250. Keeping in mind that the length of
one TESLA cell is 115.4mm, koL = 250 corresponds to a frequency of about 100 GHz. This
upper frequency limit is found from a detailed study of convergence for the beam impedance.

Fig. 14 presents the loss parameter of the TESLA accelerating structure as a function of the
bunch length with the wavenumber up to which poles are taken into account as a parameter.
[rom the curves which are given in this figure one can see that kp, L = 10 is sufficient for
a/L = 0.1; whereas we have to consider all poles up to kon £ = 200 for o/L = 0.005. The
wavenumber up to which the resonances have to be determined in order to get accurate results
for the loss parameter is actually inverse proportional to the bunch length.

Figs. 15 and 16 present the weighting factors r; according to Eq. (9} and the number of poles
as a function of frequency, respectively. Fig. 15 shows that the mean value of the weighting
factors r; decreases with increasing wavenumber. On the other hand, the number of poles is
proportional to k3 which can be seen from the two curves that are given in I'ig. 16.

From Fig. 14 it follows that the presented method still yields accurate loss parameters for a
500 sem short bunch if ko, L = 200 is used. In this case more than 1600 poles have to be taken
into account. The numerical search for all these poles requires more than 20 days of cpu-time on
a modern workstation. The efficiency of the field matching method has therefore significantly
to be improved if one is interested in the beam parameters of even shorter bunches like those
which are foreseen for the TESLA FEL operation mode.

In Table 1, the loss parameters corresponding to two short bunches are compared with those
values which are given in the CDR [6], [12] for the average loss parameter of the 8th cavity.
This cavity and the first cell are more than 7m apart which is much more than the critical

length for a periodic solution

CI2

Lcrtt - 20_ (17)
even for ¢ = 0.5mm. This length actually is 600 mm and 1200mm for ¢ = 0.5mm and o =
1.0 mm, respectively, assuming ¢ = 35 mm.

The loss parameters which are presented in the CDR and those which are calculated using
the field matching method agree quite well if we take into account that only a rough model of the
TESLA accelerating structure is used. The fact that the loss parameters in the CDR are slightly
higher than ours may be explained by two reasons: It is known that the loss parameters of a
structure with a finite number of cells are larger than those of a corresponding infinite structure.
Furthermore we might have overlooked some of the poles which leads to a degradation of the
calculated loss parameters.
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Figure 13: Comparison between the loss parameters of a closed structure and the corresponding open model
as a function of the bunch length. Parameters: Ly = 0.3L, a = 0.5L,b = 2L, kom = 100/ L and Npar = 50.
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Figure 14: Loss parameter per unit length of the TESLA accelerating structure as a function of the bunch
length with the wavenumber up to which poles are taken into account as a parameter. Parameters: Ly = 0.792L,
a=0.303L, b= 0.895L and Np, = 100.
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Figure 15: Weighting factors r; of the TESLA structure as a function of frequency. Parameters: Lo = 0.792L,
a=0.303L, b= 0.895L and Ny, = 100,
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Figure 16: Number of poles as a function of frequency. Parameters: Ly = 0.792L, a = 0.303L, b = 0.895L and
Npur = 100,

IV. Conclusions

The field matching technique has been applied for the computation of the electromagnetic field
and the beam parameters of periodic circular symmetric accelerating structures which are ex-
cited by an ultra-relativistic point charge moving along the longitudinal axis of the structure.
It has been demonstrated that the beam impedance of such structures looks like a reactance
function. It has been shown how the wake function can be computed from this kind of beam
impedance. Numerical results have been presented for the beam parameters of various struc-
tures. Kspecially the loss parameter of a simple model of the TESLA accelerating structure has
heen calculated for short bunches.
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Appendix

In order to discuss the inverse Fourier transformation of Z’(kp) according to Eq. (10) it is con-
venient to consider an equivalent problem. Let u®(¢) denote the inverse Fourier transformation
of the input impedance Z(w) corresponding to the circuit shown in Fig. 17:

O

() —

J'J - m

O

Figure 17: LC parallel networks which are connected in series.

1 =]

) Twit
u'(t) = — VA v 18
“ ( ) 2 w=—00 (W) ¢ v ( )
w®(1) is just the voltage response of the network due to a é-current excitation.

The input impedance Z{w) of the network shown in Fig. 17 is given by

w
> ws L; 1
Zw)=43Y —%——7; with Z;=/~ and w= 19
(w) ng_(_‘ﬂ)z wi . and w I (19)
Wy

If we compare the above equation with Eq. (8) we see that that Z(w) and Z'(ko) are equivalent.
Note that the poles of Z(w) are located at +w; exactly on the w-axis. It 1s therefore not
straightforward to find u’(#) by the inverse Fouriertransformation according to Eq. (18). For
the evaluation of the Fourier integral one would have to choose the path of integration around
the poles such that the voltage response 1s causal as it has to be for a real network.
On the other hand, u’(#) can alternatively be calculated in time domain. «*(#) is the sum
of all u$(#) which are the voltage responses of the individual LC parallel networks:

(1) = 3 ul(t) (20)
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Each uf(#) satisfies the second order differential equations

d2+ 2lud(@) =0 (21)
_— w- u =
dt? vl
wider the initial value conditions
1
)]0 = 7 (22)
d §
Zul0)] o, = 0 (23)

where { = 0+ 0 denotes ¢ just after the d-current excitation. Note that the charge of the current
pulse has been assumed to be 1. The well-known solution for u{(t) reads

ul(t) = wi Zicos(wit) . (24)
Counsequently, we get for u*(t)
w(t) =3 wiZicos(wit) . (25)
i=1

If we insert the above equation and Eq. (19) into Eq. (18), we finally obtain

w
Y wiZicos(wit) = QL ” iy %Z,— etdw (26)
i1 T Jw=—00 i=1 1 — (_)
W

In the previous lormula the poles of Z(w) are automatically taken into account in such a way
that the voltage response is causal since Eq. (26) has been derived for a physical network. This
is exactly what is required for the inverse Fourier transformation of Z'{ky) according to Eq. (10).
W¥(s) which is given in Eq. (11) follows then directly from Eq. (26).
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