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Abstract: The so-called superstructure is a chain of 4 coupled 7-cell cavities driven by a
single input coupler. Therefore the question of proper filling and refilling with field
energy is of greal importance. In this repors, we present calculations based on an
eigenmode expansion to determine the transieni field behaviour. A comparison with the
traditional 9-cell structure is given.

1. Overview

In order to calculate the time dependent behaviour of the fields inside the superstructure we use an
expansion into a set of eigenmodes. The eigenmodes, their frequencies, field energies and beam
relevance are calculated numercally, in our case with MAFIA [1]. Details of these calculations are
given in section 3. Using their results one can set up a system of coupled ordinary differential
equations with a solution explictly given. For the reason of completeness details of this method,
which is not restricted to a certain resonator geometry and which has been used already from various
authors (2], [31, [4]), are given in section 2. Section 4 contains the resulis on the 4x7-superstructure
and its underlying assumptions and a comparison with the well-established 9-cell-structure.

The same problem concerning the 4x7-superstructure (and furthermore a 4x9-structure to compare
with measurements) was calculated already from Ferrario and Sekutowicz ([5], [6]). Their method
was quite similar; differences are caused mainly by the use of a different code to calculate the
resonator modes and some details of theoretical modelling. There is no difference in the general
conclusions.

2. Model and Theory

Fig. 1: Schematic overview of the mode] (compans rein text). The cavity geometry is minvsed af the tight border in order to calculate a
four-cavity-chaire. The transmitier-driven carent & has a fixed (arbitrarily chosen) location near the left end of the first cavilty
whesezs the beamcarment Iy, traverses i four cavifies.

Figure 1 summarzes the effects that are taken into account in the model: Together with the resistor R
an ideal of voltage source switched on at t = 0 with constant amplitude U, is coupled to the cavity.
This coupling is simulated as an on-axis current path located in the beam pipe near the first cell. In
this manner the input coupler is substituted, assuming a common factor for all modes between
perpheral fields acting on the real input coupler and the on-axis-fields. This simplifies the ficld data
extraction from the numerical calculation. Length and location of the curmrent path are chosen
arbitrarily. The Q-value of the accelerating mode, which has to be the design value (comp. section 4),
is adjusted with the transmitter resistance R.

The beam is simulated as a sequence of Dirac pulses with velocity of light, traversing along the cavity
axis. To evaluate the field excitation the on-axis profiles of all modes are needed. Due to the large
frequency gap to higher monopole modes the mode system is restricted to the fundamental passband.
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Taking into account the assumptions noted above the relevant equations wilt now be derived. Starting
from Maxwells equations

UxH=3+aD UxE=-9,B (12 b)
i}
Vxﬁ?xﬁ:—a,(?xﬁ)
4 1
Vxﬁ?xﬁﬂiﬁfﬁ:—a(_j
working in cartesian coordinates and for vanishing sources of E the first expression on the left hand
side resulls in

VxhIxE=} (97 F)-aB)=—}al

which finally vields:
~kAB+ed’B=-2] @
The 1otal electrcal field is expanded in a set of eigenmodes E‘v('r‘)
B0 =T a0 280 6
T

with time dependent amplitudes a,(t) and field energies W, . Each of the eigenmodes is a solution of
AR +KE, =0 with K=ol
which is the wave equation and therefore:

- ff AB+ed?E );[ E.(®) (cm +af)an|=-3.3 @

Applying the orthogonality relation of the eigenmodes

JI] B Roav=2s, w

to the right equation in (4) yields (replace £ — v ):
N N E,
(03 +) a0 =9, j H_“Tz’—ﬁﬂ av = =30 )

The density of the externally driven currents :]’{'f, t) has two distinct contributions from the beam
(3u{#, 1)) and the transmitter coupled current (J (%, 1} ):

32,0 =305 9+ 345 1) (6)
According to Definition (5) the coefficient of the driving current ¢ (t) can be splitted up in the same
manner:

Cv(t) = cv,h(t) + cv,:(l] (7}
In case of an on-axis beam with constant velocity v it follows:

3
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The current driven from the transmitter is assumed to be one-dimensional and constant along its path.
Therefore

B(hdi
_] (r t) E LT J; .
t dv=1
o= [[[ HgRav- 1o 25— ®
holds. Applying Kirchhoifs law on the extemal transmitter circuit (comp. Fig. 1) one finds:
UM +RIMO = U ) (10)
‘With the abbrevation
I E, @) df
K, ==t
i (tn
the correlation between the voltage U (t) at the resonator port and the mode amplitudes may be
written as
E.mdt
Ut) =— Z a,() e a, (K, (12)
% AT
and the coefficients of the driving current given in (9) can be expressed as:
E/(fdt
=12 =IO K
)= 1) = = LOK, a3

Equ. {10) reads together with (12}
LT a0k +10= 0(‘)

and its time derivative as

Uu
-1 Taa0K, +a, Lo =2 3, U0

0Or:

3,100 =20 L 73 00K, )

Equ. (5} with (13), (14} lead further to:
(w2+37a,)=-0,c,(t) =
=-d,c,(t)-d.c. ()=
=-0,¢,(t) -3 LOK, =

g, Uyt
- dca)-K, |20

+E Tk,
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After rearranging the left hand side this reads as: 0
K, 2
(02 +3) a0+ TK K, 8,80 =-2, [cu,(z) + g UM Yv o (15 5=

Equ. (15) establishes a system of second order differential equations in the mode amplitudes a,{t) .
Obviously its homogeneous part describes a set of coupled oscillators. The right hand side contains
the excitation of the system induced by beam and transmitter. Introducing a second set of vadables the W) = f‘; (Ej et uj(t)) 23)
solution is technically simplified: =t

these amplitudes are assumed to be time~dependent:

Equ. (23) may be written in matrix-vector-notation
=$a(av e da,=ieb, & da=ie,db, (l6ac)

ghit (0 et 0]
Replacing 9% a, and 3, a, in (15) according to (16 b,c) and dividing by i @, yields using (16) a set W0 =(, - Ba) R =¥ - el ’(t) (24)
xn

of two equations belonging to the same index:
introducing the column matrix of the eigenvectors:

o.a,—-iwa, =0

(17 ab) v=(z 2
. K Y= T (25)
ab,+ pReFalay, ina =), [cv_h(z)+T*uoa) (B _2“)_ _
@y Then the time dervative in (22) reads like
The inhomogenity in (17 b) is abbreviated as: u,{1) u, (1)
. K, 4,¥=Y LR 2 Y I
Written as matrix-vector relation the system (17) reads like: and the second term as:
. 0 i (s),2 0 a \ . e"i‘ (0
N e, K& Lo EKS (T MP=M(2,, 8 Pl
b, ! R R [N b, 8y el;_,,l 117,‘([)
a,} i [-]| : : : : S (19) )
a, 0 0 -0 e, a, 0 o " ) . A
b, o K. K, 0, i KD b, 8, SlAr €, s Ao € e D=
- R a, 18y, R € um(t)
A X (0
As commonly known the solution of a homogeneous system = (31 ETUIN '8'2,,) :
A
&ﬁ—l\=/[i*=0 20) ghut 7&,2', U4, (t)
is given as: Altogether this yields
2n i}
=2 (8¢} @ et uO) s
; 14 IR P N G Y 26)
Herein A; are the eigenvalues and 2, the corresponding eigenvectors of the matrix M. These ghul Uz (1) S

gigenvalues and eigenvectors have to be calculated numerically (which is - besides the field
simulations (sect. 3) - the only non-analytical step in the calculation). The quantities u; are arbitrary
but constant amplitudes. To solve the inhomogeneous system

9 V-MV=3 @2) ulzm - (e_lﬂ ]V“ " e en
e—x;nt =

with the right hand side: u{t) 0
8,(1)

which may be integrated either completely:

=—na

or - with the advantage of shorter expressions - by means of Cramers nle:
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1
det (El, ,j e "t 3()dr, ..., ém]
T=—00

u= Ly 8 @8
The vector which holds the time dependent quantities will be refered as:
— 1
W)= f &M 3 dt (29)
T=—vo

All excitations of the system start with ( =0, so using (18) this vields:
t
o

W= 1 I K, d
o e -,j:a, c\,,,("c)+T UO(T)] *

=0
Again the two different contributions of beam (index b} and transmitter current (index c) are

separated:

0

: ; 0
. - —AjT 1 -hjT | 9] =
wm e va 3 cunl®) ditg | ek / o, 2. Uyt dr
_ : =0
=0 (30)
=W, 0+W

The transmitter current is assumed to have the time dependency

Uo(t)= VOE‘im')' (3 l)
which, using the abbreviation

R=} 0 |, (32)

allows for an explicit integration of W, Uk

— TR t .
W0 =% KI et ad (Voeri =) de=
h =0
(33)

_Y 9y _ alitg=3gt
_RKimo—lj[l eliwo-Ait]

In order 1o evaluate the beam excitation

0

Wo=| et dr

i
'(Tv a,th.b(T]
t=0
one has to use Equ. (8)
Le-PELED

Cvp(‘): ﬁ'“Tv

2 —axis

with 1,(t) being the (particle) current at time t and z = ¢. No excitation has happened before t =0, s0
I(t <0)=0. A 5 -pulsc of a single charge g, traversing z=0 al t =t,, is givenby

Lst)=q80-t.) (34)
and consequently:

b
Copalt) = f a3t -$&EQ dz=

2w,

. L.
o Belv (t—th)){ Lif 0<(i-t)< == }== @)
M 0 otherwise

= o Balv (- 0)) ¥l (1)

Pt =4; {t—t,)] contains the double step function needed in (35). In case of such a single charge
excitation the comresponding component of Wmm reads like:

t .
Wi =I e-mm%at[—‘/% E,o(v (£ —1,)) W[tnst; (":—ln)]}dt=
=0
. L
=1aY__ | o Avit— o (2t i}
W ] ¢ M a By (T - o)) ks (T—1,)]] dv

_ gy ag _ Lo+ 1 — t _
et | e N ULV TSGR

L
—(=2) I e M E, v {1 1.)) P(besd; (T—1,)] d't}
=0

(36)

Herein the second step results from an integration by parts. The remaining integral is transformed
using the substitution t'=1t-1,:
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L t—ty
f et By (t—t)) W t=ki (- 1,)] de = f e B (v U)Wl mks T] e =

1=0 Tty
l—lb
Tt =t j e M E (v T) W[t eki T dr =
T=—1y
L

It
o on

ith 1. (l t,) if 0<{t- t,,]<5 ﬁlh<t<&+tb
w1

—= if t>#+tb
EX)

Inthe last step the ime of entering the cavity 1, of each bunch is separated from the integration. From
now on we partly restrict ourselves to these time intervals without a charge inside the cavity. Then
.. = L=4 holds and the integral in (37) becomes time independent. Futhermore the integrated term in
(36) then vanishes. During a charge traversal the result is incomplete since the postition/time-
dependent contribution of this single charge is not counted. It is added totally after the charge left the
resonator and from then on the result again is correct. One of us (M.Dohlus) added the contribution
for all points of time in a special code.

In the case of several bunches all their excitations (as long as they have left the resonator at time t)
have to be surnmed up. So (36) has to be modified (including the simplification mentioned above)

. Liesf,
igva, E g
o[l 2 o) o

or written as vector:

0
W,.=i v?\.( e"‘i"’)
b q 1y <ft-Lom/v} (Lml, )
1 -;\.-‘(B
L[ e
W j
o, L EAP

(39)

Only the summation has to be evaluated with respect to the beam structure. All other guantities in (39)
are calculated from cavity properties and remain unchanged.

The solution of the mode amplitudes originally searched for is found summarizing the above
calculations:
a,(t)
(®
: f‘, et det (B 0 (W )0 + W 0) 1 B 40)

2, wy A
b.(0)

In the general case of simultaneous beam and transmitter excitation further replacement of (33) and
(39) within {40) does not simplify neither formal representation nor calculation. For vanishing beam
a somewhat shorter expression may be found:

a,(t)
b,(t) .
. _ Vawy B ” oz -
: = Rdar ¥ j_l[ o F iR, det (8, ..., K, .\ E2) A1)
a,(t)
bn(t) no beam

E (found from (32) and (11)) replaces & ; inthe determinant
The total time dependent electric field is then derived from (3):

By =Ta,0 Jﬂ 3)

With the last step the oniginal problem i3 formally solved.

It is useful to analyze (41) with respect to the special case of excitation at one of the cigenfrequencies:
All eigenvalues of the system matrix {compare (19)) have the form:

Aj=-0y (5) @ “2)

They appear in pairs with the same negative real part - describing the damping - and both signs of the
imaginary parts. If we decide to use an excitation frequency @, with positive sign all eigenmaodes
with positive o; will reach only very low amplitudes due o the denominator in (41). In the special
case @,=~w, the eigenvector &; is strongly dominating the sum. Then the field profile Ei
dominates the total field since €; bas only small a,, ;.

With increasing time t all ¢# -terms vanish. The corresponding Q-values can directly be found from
the mgenvalues (42):
_m )|

2u 2ZRe{(r) “3)
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3. MAFIA Eigenmode Calculation
As seen in the previous section the following set of quantities characterizing the eigenmodes is

needed:

.
« the eigenfrequency ;= -;

« the stored energy W,
+ the E, -profile at the beam path (in our case on-axis}

« the E-field at the location and in direction of the externally driven current (in cur case a short
on-axis-path at the cavity front; identical to the E, -profile in this range)

Due to the cavily geometry these quantities have to be determined numerically, in our case with
MAFIA. Even exploiting the symmetry of the superstructure the problem size is reasonable high. In
order to model the boundary curvature avoiding stair case approximations, yet with limited number of
mesh points, a command file was writien that calculates appropriate z-mesh lines for given r-mesh
lines.

The basic idea is illustrated in the following excerpt of the command file wrtten in the MAFLA
programming language.

if (rlinad .ge. rw .and. rlinad .lt. ru} then

define zlinad = *a*sqrt(l-{(rlinad-xrb}/b)**2)"
zadd zlinad exec

endif

if {rlinad .ge. ru .and. rlinad .lt. re) then
define zlinad = "zu+{zo-zu)/{ro-ru)*{(rlinad-ru)"
zadd zlinad exec

endif

if {rlinad .ge. ro} then
define zlinad = "zh - sgrt{c**2 - (rlinad-rkj}**2}"
zadd zlinad exec

endif

In a sequence of three "if™-clauses it is decided whether a given r-mesh line at radius rl1inad crosses
the cavity boundary in its elliptic, linear or circular part (comp. fig. 2). Then z1inad, the position of
the z-meshline to add, is calculated using the geometric parameters of the respective shape. They are
known for all different cell shapes (left end- and left intermediate-cell of end resonator; standard end-,
standard intermediate—, standard inner-cell of inner resonator; right cells mirrored to left ones) -
compare table 1.

il

&

0 m zo ; . zh

Fip. 2: Shq)enfaﬁaifce]].wmpcwdofe]]jpﬁc,lilmanddmu]arpﬂ'twiﬂ]as‘ing]crauiﬂlmd‘dinealr:ﬂjmdlndaz-mh]im
crogsing the shape in the same point.

64.3851 64,3851
11.4573 L.13:4573
81.6601 . B1.6524

104,935

Tab. L Geometry parameters of differcnt half cells (p2: end half cell end resoredor, &i: inlemmedisie holicell end resormtar, se: end half el
ittner resorakor, 5i; inemmediaie half cell inner resonator, in: inmer cell any resonaior); all quantities given in rm; data provided
firom Sekuigwicz [7] with exception of mulec), rofee) and zo(ee) which have been modified to improve the calcalated field
flatness.

The positions of the r-mesh lines were chosen in such a manner that all the specific points of the
shape (rw, m, ro, ...) were hit exactly. The number of lines between them was fixed in a way to
achieve similar mesh sizes - at least locally. There was no automatism used to do this for two reasons:

« The distances between the specific points vary in a broad range.

= The slope of the shape is partly (near iris and equator) near to zero and the z-lines are spread
very wide; in the linear part the slope is very high and z-lines are close together.

As a consequence of both reasons, the ratio of mesh sizes becomes quite high globaly (in the order of
50) and one has to take care to keep it locally significantly below 10. One important measure to do so
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is a selection of r-mesh positions in the elliptic and circular part, calculated from steps of equal angles
(seen from the center of the resp. shape). This results in small ratios of mesh sizes from step to step,
as well in z- as in r-direction (comp. fig. 3).

Univ Reostock

Fig 3:  Part of gric andshape nearthe leftond of the strocturc. The second cell has a snller cquator radius which makes additional r-

mesh lines necessary, The density of z-mesh lines has its highest values in the areas with highest cavity boundary slopes snd

YIOL WaRA
Using a grid of 241000 mesh points constructed in the descibed manner the eigenfrequencies and
eigenmodes of the 2x7-chain have been calculated in two runs for both the electric and the magnetic
boundary condition at the right end, corresponding to the symmetry plane of the complete 4x7-
stnucture. In either run the first 42 monopol modes have been calculated; the first 14 modes of both
runs together give the 28-mode fundamental passband. Its so called n-0-mode is the accelerating one,
which is found as mode no. 13 of the run with electricat boundary conditions.

Since the original geometry data showed poor field flatness in the outer cavities the equator radius of
the outermost end cells has been changed. In Fig. 4 a-d the field profiles of the accelerating mode are
shown for equator radii of 104.935 mm, 104.994 mm, 105.044 mm and 105.094 mm. The run
with the radius of 105.044 mm was used, even if there might still be some slight ficld flatness
improvement possible.

The eipenfrequencies, stored field energies and on-axis ficld profiles were extracted with the MAFIA -
post-processor. All further calculations have been done with a special code (M. Dohlus) or
Mathematica™. For the reason of comparison the whole procedure has been repeated with a standard
9.cell-structure.
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4. Time Dependent Field Amplitudes in TESLA-9-Cell- and 4x7-Cell-Structure

In order to calculate the temporal behaviour one has to perform the following steps:

* Determine the coupling K, from the transmitter to each mode according to (1 1) and set up the
vector K from (32) using the field profiles, frequencies and stored energy data from the
MAFIA calculation.

* Build the system matrix }f given in (19) from K, and the MAFIA cigenfrequencies. Start
with a typical transmitter impedance R and calculate the eigenvalues of the system matmx.
Compare the Q-value of the accelerating mode found from (43) with the goal for Q, given
from the demanded filling time. Fit R accordingly, applying the (almost) linear dependency
@ ~ R. Calculate and keep all the eigenvalues and eigenvectors of this final system matrix.
Set up the column matrix ¥ of the eigenvectors following {(23).

= For each pair of indices (3, v) calculate the integral expression in (38), using the field profiles
and the eigenvalues of the system matrix. Store these values.

* Use (41) to calculate the eigenmode amplitudes a,(t) if no beam excited the cavities prior to
the calculation time t. Otherwise apply (40), which needs the summation over all previous
bunches, performed in (39), and the transmitter excitation, expressed in (33). To calculate the
beam excitation the time of entering the cavity t, has to be known for each bunch. The
charges of the bunches are assumed to be equal to g for all bunches, which is then used as a
commoen factor.

* Repeat the last step for every point of time t the field distribution is asked for. The total field is
found from the seres expansion (3) using the coefficients a,(t) with the MAFIA field profiles
and energies.

In the TESLA scheme 1130 bunches of 5.7267 nC charge are foreseen following each other in a
distance of 919 rf periods. The injection of the first bunch happens at rf period 760336 (584.6 ps) at
half the unloaded steady state voltage. From this an external Q = 3446120 follows. This data allows
to calculate the transmitter resistance, which of course is only valid for a certain coupling, defined by
length and position of the current path, For the calculations in Fig. 5 a (slightly to low) Q) = 3433810
was found from the M -eigenvalue A; using (43). This results in a voltage decrease (cf. Tab. 2)
during the bunch train and is cited here to illustrate the dependencies. The voltage was calibrated 1o be
25 MV/m inside the cesonators at first injection, equal to 80.6756 MV in total for the 4x7-structure.

punch 1130 47.0
decrease ; -0

Tabe2:  Decrease of accelerating voltage in the 4x7-strucmune in the case of a slight mismakch of the transmiteer resistnce, Le. coupling
{ext (F =3433810 instead Q = 34461 0).
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Fig. 5 a(eft columnn), b (right coman): On-axis Fz field profiles of the 4x7-cell-superstructure-(teft) and the 9-cell-structure (2l pictures:
Ez/(Vfm) vs. length/m) after 1, 10, 100, 1000 rf-periods. During these early phase field profiles of both structure types
comespond very well (picture continved on following page).
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Fig. 5 a (lef column), b (right coumn) (pictue continved from previeus page). On-axis Ez field profiles of the 4x7-cell-soperstractme (lefl)
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Fig. 5 illustrates one main result of the work, showing seres of snap shots of the on-axis z-
component of the electrical field along both a superstructure and a 9-cell-structure. As one would
expect the build-up of a flat field distribution takes longer in the superstructure, but for both structure
types the field geometry stabilizes fast enough and reaches the demanded amplitude, too.
Furthermore, during the passage of the bunch train the fields are kept stable (in the range visible in
Fg. 5). This confirms a sufficient energy transport even through the long cavity chain.

In Fig. 6 the on-axis field strength of the last cell {no. 28) is shown for varous moments in time. The
field rises up in the expected manner. The complicated time behaviour in the very beginning is not
visible in the scale used here. The beam is injected at 50% of the steady state voltage. From then on
the amplitude remains stable even in the chosen cell having the biggest distance to the input coupler.
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Fig. 6 Zcomponent of the acoekerating on-axis Ez.field in the center of the Lastcell of the 4x7-structure vs. time. Even in this cell with
the largest distance ko the input coupler, the ficld anoplitwde remains stable: (beside the weak decresse mentioned in Tab: 2, caused
by & dighdy mismoaiched Q) during the bunch train traversal (584 pis <1 < 1386 pis). The beam is injecied a1 hali the sieady-
st voltage,
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Fig.7 Deviation of inegraied accelerating field of e seperstructure from average valoe of B.6756 MV ve. bunch muntber. Data wese
calenlated without simplification and therefore incorporating the influence of the actual bunch in the cavity.

Fig. 7 contains the total energy gain of each bunch that passed the superstructure. The remaining jitter
is smaller than 1100 V compared to the average value of 80.6756 M V.

5. Conclusiens

The modal expansion is a useful method to calculate non-stationary fields for time intervalls much
longer than those which may be calculated directly in time domain.

A special grid, generated (almost) automatically approximates the shape of TESLA-type resonators
without staircases with a reasonable number of mesh points.

The 4x7-superstructure has a slower filling and refilling than the 9-cell resonator (as one would
expect) but fast enough for proper operation.
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