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Abstract

In this contribution, the mode matching technique is employed for the computation
of the beam impedance, the wakefield and the loss parameter of a planar infinite
periodic structure. It is shown that such a grating may also be used as a model for a
corrugated circular beampipe if the parameters of the planar structure are properly
chosen. Furthermore it is demonstrated how the Rayleigh expansion which is used
for the field representation above the grating has to be modified if we consider an
ultra-relativistic beam. Numerical results are presented for various examples. The
validity of the mode matching technique is examined by comparing the wakefields
which are calculated using the proposed method and the MAFIA computer code.

I. Introduction

Periodic structures play an important role in the field of linear accelerators. Fig. 1 presents two
examples: The accelerating structure itself shown in Fig. 1(a) is a periodic structure. Secondly,
Fig. 1(b) shows the longitudinal section of a higher order mode absorber which has recently
been proposed for TESLA [1], [2]. This absorber consists of a stack of about 250 parallel-plate
waveguides which is accomodated in a pillbox-like cavity. The parallel-plate waveguides are
used to extract the higher order mode from the beampipe and to attenuate the high frequency
spectral components of the extracted field by the surface losses of the metal slabs. On the other
hand, the additional absorbing material at the outer radius of the absorber is necessary in order
to suppress low frequency long range wakefields which are not sufficiently damped by the ohmic
losses of the waveguides.

For beam dynamics simulations it is important to know the beam impedance, the wakefield
and the loss parameter for such periodic structures. Therefore much effort has already been
made in order to investigate this kind of problems. In several papers dealing with periodic
structures the high-frequency limit of the beam impedance has been studied. For example, this
quantity has been investigated in detail for a periodic array of cylindrically symmetric cavities
connected by beampipes and for an array of infinitely thin diaphragms in a circular pipe in
[3] and [4], respectively. The analysis presented in [3] leads to some important scaling laws
for the beam impedance. Among other things, it has been demonstrated in [3] that the beam
impedance of an infinite periodic structure is proportional to w=3/2 for high frequencies.

In this contribution, the mode matching technique [5]-[7] is used in order to calculate the
electromagnetic field which is excited by an ultra-relativistic bunch of particles in the presence
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Figure 1: Two examples for periodic structures. (a) Sketch of an accelerating structure. (b) Schematic drawing
of a proposal for a higher order mode absorber for TESLA.

Figure 2: Planar grating consisting of an infinite number of parallel-plate waveguides.

of an infinite periodic structure. Subsequently, the beam parameters are calculated by making
use of the results of the field analysis. Except for the limited computer resources, there are no
other principal limitations for the accuracy of the method. Furthermore the numerical efficiency
of the presented method is quite high. Therefore it is especially useful if very short bunches are
considered for which we need to know the beam impedance over a broad frequency range.
Since the field analysis of a planar structure is much easier than that of a circular configu-
ration we apply the mode matching technique to an infinite array of parallel-plate waveguides
which is shown in Fig.2. The electromagnetic field of this structure is independent of the
y-coordinate. However, most of the relevant examples for periodic structures are circular sym-
metric. Therefore we analytically calculate the beam impedances corresponding to a circular
and a planar two-layer problem in order to demonstrate that the planar structure can be used as
a model for the circular one if the parameters describing the structures obey certain relations.
The electromagnetic properties of a grating and a dielectric layer are very close to each other
as long as the free-space wavelength is larger than the grating period {8]. For this frequency
range it can hence be concluded that a circular corrugated beampipe is equivalent to a planar
grating if the same parameter relations are fulfilled as for the two-layer problems. For higher
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frequencies the behaviour of a dielectric layer and a grating becomes different. Nevertheless, it
is evident that the beam impedances of a circular corrugated beampipe and a planar grating
are the same if the curvature of the circular structure can be neglected over one wavelength.

If we use the parallel-plate waveguide model for an accelerating structure according to
Fig. 1(a), it is clear that we have to short-circuit the waveguides at a certain depth. On the
other hand, the parallel-plate waveguides are more or less matched in the case of the TESLA
absorber shown in Fig. 1(b) due to the absorbing material. In principle it makes no difference
for the mode matching technique how the waveguides are terminated.

Since we are basically interested in the short range wake, and because the distance between
the waveguide termination and the grating interface is in general much larger than the bunch
length, an arbitrary load may be assumed. It is worth noting that the beam impedance does
depend on the waveguide termination. Nevertheless, the short range wake and the loss param-
eter are independent of it for bunches which are shorter than the distance between the load
and the grating interface. For the sake of simplicity we choose a matched load corresponding
to parallel-plate waveguides which extend to —oo with respect to the z-direction,

Practical structures always have a finite length. Thus a criterion is required which allows us
to decide whether the length of a structure is sufficiently large so that it can be considered as
infinite. This problem has already been discussed in many publications as e.g. in [9], [10]. It has
been found that the so-called critical length which is used to describe the transition between
the single cell solution and that corresponding to the infinite periodic structure is proportional
to the aperture radius squared divided by the bunch length. Hence, we have to keep in mind
that the critical length becomes large for short bunches.

II. Relation between a planar and a circular two-layer
problem

In the following two subsections, we consider a circular and a planar two-layer problem illus-
trated in Figs. 3 and 4, respectively, in order to show the equivalence between the two structures.
Note that the second layer extends to infinity in Figs. 3 and 4. For both of these two-layer prob-
lems, we obtain an analytic expression for the beam impedance so that the conditions under
which both configurations are equivalent can easily be established.

The circular two-layer problem consists of the cylindrically symmetric structure. Region
(1) (p < a) is characterized by a permittivity equal to that of free-space whereas region (2)
(p > @) has a relative permittivity of £,. The azimuthally independent electromagnetic field is
excited by a current I, flowing along the z-coordinate. This configuration is compared with the
planar structure of Fig.4 which is excited by a y-independent surface current J, backed by a
magnetic wall. This boundary condition has to be enforced in order to make both configurations
comparable for the following reason: Both £, and H, vanish at the center of the circular
structure. Since E, and H, of the planar problem correspond to E, and H,, respectively, it is
evident that these field components must also vanish at z = d if both configurations should be
equivalent which is just guaranteed by the magnetic wall.

ITa) Planar two-layer problem

In the frequency domain, the surface current density J, is proportional to e~7** for an ultra-
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Figure 3: Circular two-layer problem. Figure 4: Planar two-layer problem.
relativistic beam where ko denotes the vacuum wavenumber. Thus J, can be written as
J, = J,ehog, (1)

The quantities €, and J,, are the unit vector in the z-direction and the amplitude of the surface
current density:.

Due to the symmetry of the structure only three components of the electromagnetic field
are excited, namely, £, E; and H,. Let us start the analysis with the wave equation for H, in
region (1) which reads

i a°

dx? " Bz?
The electromagnetic field has obviously the same z-dependence as J, which in particular means
that

HY + 2P =0 . (2)

HY oc eihr (3)
Inserting this relation into the wave equation immediately yields
a4
@H; )=0 . (4)
Consequently, H{" is given by
W _ 44=° ~ikos
HY=1A T+ Ble™ ; (5)

where A and B are integration constants to be determined. Using the equation V x H ) -
Jwe ks (1) we obtain for the z-component of the electric field

_ Zy OHPY 1

() _ - _
k. jko Oz Azojkod

g ikor (6)
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The integration constant B can be eliminated by making use of the boundary condition for
H!Sl) at » = d which 1s

HO| = —J,ed®r | (7

r=d
Substituting the general solution for Hé” from Eq.(5) into the boundary condition (7), we
obtain

B - _Jsz (8)
The electromagnetic field in region (2) is given by a plane wave:
) = ge-ithor-bs) ©

where C' and 3 denote the amplitude of this wave and its propagation factor in the negative
z-direction. According to the separation condition, 3 reads

B= ekl -k} =kov/er —1 . (10)

By making use of V x H® = jweee, E®), we get for the z-component of the electric field in
region (2)
g = %o OHD ) B itkepe)
* jﬁrko a-T' Erk(l

(11)

The unknowns A and C can now be calculated by exploiting the continuity conditions at
z = 0 which are

ngl) = H£2) . , (12)
ED| = EY (13)
=0 =0

For the sake of clarity let us define the impedance Z?gz) which is given by the ratio of £(*) and
Hf) at z = O

(2 Je. —1
7(2) L, - B Zo = Er 120 (14)
P H!SZ) =0 ErkO Er

Note that this impedance is not the wave impedance of a plane wave in medium (2) which is
just Zo/./z,. Taking the definition of Zf} into account, we can rewrite the continuity condition
(13):

EW

— 2
.= ZVHD

(15)

Inserting the field representations from Egs. (5),(6) and (9) into the continuity conditions (12)
and (15), we obtain for the integration constant A:

Jsz
Zo
1+ ——
FkodZ?

= =0

A= (16)

With A according to the above equation we arrive at the following expression for the beam
impedance of the planar two-layer problem:
EW

zZb = b ==l — _ (17)
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It is worth noting that for high frequencies with kod > Zo/ZIS” the beam impedance can be
approximated by
AR Zo
P Jkod
This means that Z? does not depend on the material properties of the dielectric layer in this

frequency range.
It is also interesting to examine the limit of Z:; for kg — 0 which amounts to

(18)

lim 26 = Y&~ 1
ko—0 P Er

Zo . (19)

Note that the beam impedance of a planar structure is real and does not vanish in the dc case.

ITb) Circular two-layer problem
In the circular configuration the current I along the z-axis is given by
I = Lye~#Foz (20)

where I, denotes the amplitude of I. Similar to the planar structure only three components of
the electromagnetic field are excited by I which are E,, E; and H,. After eliminating E, and
E, from Maxwell’s equation, it is found that the azimuthal component of the magnetic field in
region (1) H{" satisfies the equation

10 (pHY) 8?HW®
a%; (ap“’)+ o +kHD =0 . (21)

Note that the former differential equation is not Bessel’s equation. The general solution of
Eq. (21) reads

Hél) — (Ap + g) e~ikoz (22)

where A and B are integration constants which are to be determined by the continuity condi-
tions at p = 0 and p = a. By making use of V x H® = jue0EW in cylindrical coordinates,
we get for the axial component of the electric field in region (1)

o (pHM .
ZO (P ¥ ) = ‘_Z—OQAB—Jkoz . (23)

B — _
Jkep  Op ko

z

The coefficient B can be calculated by invoking Ampere’s law:

lim ¢ HWpdp = Ipe~i*oz (24)

—0Jc, ¥
Insertion of H, 5,1) from Eq. (22) into the previous equation yields

_ L

B =
27

(25)
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The wavenumber of the electromagnetic field in region (2) is \/€,ko. Thus the axial compo-
nent of the electric field in this region fulfills

18 aE(2
90" Bp

+ (e —1)KE®D =0 (26)

which is just Bessel’s equation. The solution of Eq.(26) is a radially outward travelling wave
which can be written as

E® = CHP (kyp) e7i00* | (27)

where € and Héz) are the still unknown amplitude of this wave and the zeroth order Hankel
function of second kind. The transverse wavenumber &; is equal to the phase factor 3 of Eq. (10):

kt = 6 = ko\/ Ep — 1 (28)

After some straightforward manipulations we obtain

1 )
H® = —Ck H (k) e~ 7%07 29
@ JkOZU {_ ¢ ( fp) ( )

&

for the azimuthal magnetic field in medium (2).

Before we make use of the continuity conditions at p = a, let us introduce an impedance
Z® which is equivalent to Z{? of Eq. (14). The impedance Z{?) is defined as the ratio of E{?
and Hf) so that the Poynting vector which corresponds to these field components is directed
along the negative z-direction. Therefore Z(?) is defined such that the corresponding Poynting
vector is outward directed (in the positive p-direction):

(30)

Tnserting Eqs. (27), (28) and (29) into Eq. (30) and keeping in mind that H'(k,a) = —H{? (k,a)

leads to :
Z® = H((]z)(kta) IZO ; (31)
Hl (kta) Er

If we exploit the continuity conditions at p = @ which are

ED| = EP|_ (32)
Hé,l) p=a = Hg!)‘p:a ! (33)
we get for the integration constant A
Iy jko
A=  4ma k Zo (34)
N D + Z(2)

Let us define the impedance Z° as the ratio of E(!) at p = a to Iy/ (27a/2). The latter
quantity represents the surface current density if we uniformly distribute the current fy over
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the circumference of a circle with the radius a/2. Substituting the expression for A according
to Eq.(34) into Eq. (23), we obtain for Z!

z |- 1 Z
b_ =0 __ 0
zZ = ~I, =% e N 7 (35)
2maf2 Ikog z®
From the asymptotic behaviour of the Hankel functions [11} which is
(2) 2-7 y — T
H*)(z) = —i"e Z for o0 (36)

it is found that the impedances Z(» and A (2) converge to each other for high frequencies:

lim Z = Z = Z(z) (37)
kg —+co Ep
The large argument approximation of the Hankel functions has also been used in [12] where
it is denoted as “plane wall approximation”. If we now compare the expressions for Z° and
Z? according to Eqgs. (35) and (17), respectively, the equivalence between the planar and the
-::1rcula,1 two-layer problem becomes obvious: Z! is just one half of Zb if we choose the distance
between the magnetic wall and the dielectric layer for the planar structure as one half of the
radius of the interface between the regions (1) and (2) of the circular structure. Thus we can use
the planar configuration as a model for the circular one if we take into account the corresponding
scaling laws. Furthermore the agreement between the two models becomes better, the higher
the considered frequency is.
Nevertheless, it is also interesting to investigate low frequencies. If the considered frequency
is low but the large argument approximation of the Hankel functions is still valid we get for
the beam impedance of the circular configuration

27! = B ey _ 20 gor PO O 8
c......'-—-“-—I—-B——-——p or _2'<< 5,.—]_ " (3)
2ra

Comparing the low frequency approximations of the beam impedances of Egs. (19) and (38),
it turns out that Z! equals two times Z? which is nothing else than the axial electric field
at p = 0 divided by the surface current density fo/ (27wa). If we consider low frequencies it is
consequently more convenient to make use of the equivalence between a circular and a planar
structure by setting ¢ = d and distributing Iy uniformly over the circumnference of a circle with
the radius a in order to get the surface current density for the planar model.

If we really consider ko —+ 0 we may use the small argument approximations {11] instead of
the large argument approximations for the Hankel functions which are

HMz) = 1 —j2In(z) for z—0 , (39)
2 (z) = o +j522 for z 0 . (40)

Inserting the above approximations into Eq. (31) yields that Z{2) vanishes for ko — 0. Therefore
Z! also vanishes in the dc case according to Eq. (35). Keeping in mind that according to Eq. (19)
the beam impedance of a planar structure approaches a real constant which is different from
zero for kg — 0, we see that both configurations have a completely different frequency behaviour
in the frequency range where the large argument approximations of the Hankel functions cannot
be applied.
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X .
* magnetic wall

Figure 5: Definition of the grating dimensions.

ITI. Field analysis of a planar grating

Let us now start with the mode matching analysis of the planar grating with the dimensions
which are defined in Fig.5. The volume density of the exciting current is given by

J(z,2,t) = i—q; cod(z — d) f(z — cot) s, (41)
—~

9%
where ¢ and g are the velocity of light in vacuum and the charge density per unit length in
the y-direction. 4 and f denote the Dirac delta-function and the function which desribes the
bunch shape along the z-direction. The latter function is normalized according to

[ f©de=1 . (42)
The mode matching analysis is a frequency domain technique. Hence we make a Fourier trans-
formation of J(z, 2,1) yielding

~— o . ~ .

o mw)= [ I(emt) et = gib(e — d) (ko) eore, (43)
t=—o00o

where f* denotes the complex conjugate of the Fourier spectrum of f. From now on we dis-

tinguish between a time domain quantity and its Fourier transformation by marking the corre-

sponding frequency domain quantity with a “~”. From the boundary condition for the magnetic

field at z = d we get . B .
A0 (z,0)],_, = —aF (ko) e . (44)

Note that the dimension of EESI) is “(current / length) * time” and not only “current / length”
hecause it is a frequency domain quantity.

For the field representation above the grating (0 < z < d) we make use of the so-called
Rayleigh expansion which is just the superposition of the infinite number of spatial harmonics
corresponding to the periodic structure. This expansion is known to be complete which means

9



TESLA Report 1998-23

that it can be used to represent any kind of pseudo-periodic field. Nevertheless it must be
modified for an ultra-relativistic beam travelling with the speed of light. According to Eq. (43),
the phase advance of the exciting current is in this case equal to the vacuum wavenumber which
means that the zeroth order spatial harmonic satisfies Eq. (4). Consequently we have to use a
constant and a linearly increasing function in the z-direction instead of the zeroth order spatial
harmonic of the standard Rayleigh expansion. The field expansion for 0 < = < d finally reads

HO(,20) = 3 Busin(Ba(z — d)) e 4 (=gt (ko) 4 a1 (2 — ) e0% , (45)
Mo
E‘g”(:ﬂ,z,w) = Zo Z B cos (Bn (z — ))ebj““z—i-;k g~ Ikoz , (46)
n=—ocd 0
n#0

where the expansion coefficient of the nth harmonic is denoted by B,; and the phase advance
in the z-direction is given by

2m
Qp — kg ad nz— . (47)
For the phase advance in the y-direction we can write according to the separation condition
kZ — o2 , ko> oy
ﬁn={ O (48)
—2 an - kO ’ kU < Gy

Note that the representation of El(,” according to Eq. (45) already satisfies the boundary con-
dition (44).

The electromagnetic field within the parallel-plate wavegmdes is represented in terms of its
eigenmodes [13]:

F!Sz) _ Z"‘.’A:n;:’os(kzm z) ejk::mx , (4‘9)
m=0
E‘iz) _ ZO Z _A -—"——-COS sz) ejk:ma"’«’ , (50)
m=0

where A,, is the amplitude of the mth field expansion function and k.., is determined by the
height Lg of the parallel-plate waveguides:

kam = —— (51)
Thus the phase advance of the mth waveguide eigenmode in the z-direction reads

k _ kl% - kfm ) kﬂ 2 kzm (52)
o "'..7 Y; kgm - k(2l 3 ko < kzm

Note that the summation of Eq. (49) starts at m = 0 and not at m = 1 because the complete
set, of eigenmodes of a parallel-plate waveguide also includes a TEM mode with respect to the
z-direction. This eigenmode which has no z-component of the electric field corresponds to a
constant term of a Fourier series.

The still unknown field expansion coefficients A,, and B, of the waveguide modes and the
spatial harmonics can be determined from the continuity conditions of the electromagnetic field

10
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at the grating interface (z = d). The axial component of the diffracted electric field is equal to
that of the waveguide field for 0 < z < L and vanishes for Ly < z < L:

(2
= E‘g ) z=0 ’ LO (53)
=0 | 0 , L— L

If we multiply both sides of Eq.(53) by e’*7* and integrate the resulting equation over one
period of the periodic structure we arrive at

B

a1
_— =0
[e2e] kxm L - b p
Z ‘Am?—"qcpm = Jkoﬁ 3 (54)
m=0 o L B,,ijcos(ﬁpd) , p=—00,...,—L,+1,...,40
0
where the coupling integrals C,n, are given by
1 rlo - .
Com = —-—-/ cos(k.mz) €8°7%dz . (55)
Lo z=0
The coupling integrals can be evaluated analytically:
_ 1 jaP m _joplL
Com = Lo, — o2 ((—1) %P0 — 1) (56)
For the magnetic field we have the continuity condition
HO =HP|_, , Lo - ' (57)

Multiplying the above equation by the waveguide eigenfunctions and integrating over Lo we
obtain
1 + o,

2 == 3 Busin(6ud) C, — (a0 (ko) + d) G, (58)

n==—00

n#0Q

Aq

where &, denotes Kronecker delta.
The diagonal matrices [A,], [Ac], [Ag] and {As,], {An] which corresponds to the spatial
harmonics and the waveguide modes are defined as

[A;) = diag{sin(B,d)} , p=-—o00,...,—1,41,...,400 (59)
[A] = diag{cos(B,d)} (60)
) = ding{ 2} 1)
A = diag{%} , q=0,...,00 (62)
An] = diag{”j""} - (63)

The coupling integrals according to Eq. (55) are combined in the matrix [C'] for p # 0. Moreover
it is useful to define a column vector V' which consists of the complex conjugate of the coupling

11
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integrals between the zeroth order spatial harmonic and the gth waveguide mode:

Cso
o1
V=] (64)

=
Og

If we furthermore combine the field expanion coefficients A,, and B, in the column vectors A
and B, respectively, and eliminate .A from Eqgs. (54) and (58) we get the following linear system
of equations for the determination of B:

(I 1)+ 52 [V AR AT O A]) B = i VA A GF G VL (65)
where the quadratic matrix {A] reads
(8] = [An] + 52kodV V¥ [As] (66)
After solving Eq. (65) the amplitudes of the waveguide modes can be calculated from

A= —[A][CT" [A) B — g f (ko) V (67)

and the expansion coefficient corresponding to the zeroth order spatial harmonic is finally given
by

o = j%kov‘* AL]A . 68)

IV. Computation of the beam parameters

In this section it is shown how we can obtain the beam parameters from the results of the field
analysis which has been presented in the previous section. There it has been assumed that the
electromagnetic field is excited by a bunch with a shape described by a function f(z — cot) with
respect to the axial coordinate. Hence it is possible to compute the electromagnetic field and
subsequently the wakefield and the loss parameter.

Nevertheless it is more convenient to use f(z — cot) = 8(z — cot) as a source which makes
the method modular in the following sense: Once we know the electromagnetic field for a
delta-function excitation we can easily calculate the wakefield and the loss parameter for an
arbitrary bunch shape without having to repeat the actual field analysis. In the following three
subsections it is therefore demonstrated how these beam parameters can be calculated from
the results of the field analysis for such an excitation.

IVa) Beam impedance

The beam impedance is defined as

Z(ko)z-:; P Wis)ehds (69)

8==00
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where W94 and s are the longitudinal wake function of a “point charge” and the usual wake
coordinate in the negative z-direction emerging from the position of the exciting charge. For
the wake function of an infinite periodic planar structure we have

W"(s)—ihmi/’ . (1)(d£,t—3;:f)d§ : (70)

9 oo Do

Note that W?¢ according to the previous equation does not give the total change of momentum
of a test particle which is actual infinite for our structure but its average value per unit length.
Inserting the expression for W of Eq. (70) into Eq. (69) yields

Z(ko) = = lim [ j B (4,6, 7) ¢ 7dr 0Kl (71)

qo =30 2z

B¢ ’(d.c.w)

where the inner integral represents the Fourier transformation of E{!). Substituting EW by the
corresponding field expansion series of Eq. (46) for the diffracted field, we obtain

ZO i ]- Z J TE ]. z
= —— E n d .
Z(kO) (; n=—0o B JkO z-—}oo 22’ /_ -z df +Jk zl'{}rgc 2z _/ f‘ (72)
n#0 —
=0 1

It is obvious that the higher order spatial harmonics do not contribute to the beam impedance.
Thus Z(kq) reads

Zo a)

Z(ko) = —— 73
(ko) Qo Jko (73)
Let us introduce the dimensionless quantity

ay 1 a1

—_—= 74

Jke g0 ko (")

which is @ /jko normalized to the surface charge density gg. The computer code which has been
implemented for the numerical evaluation of the presented method returns this value for the
excitation of the zeroth order spatial harmonic. By making use of this quantity, we simply get
for the beam impedance

Z (ko) = %Zo : (75)

IVb) Wakefield

The wake for a bunch of particles which is characterized by the shape function A(s) = f(—s)
can be calculated by the convolution of A(s) and W¥(s):

Wi(s) = ] Z_w s — ") Wi(s") ds' (76)

Expressing W*(s) in the previous equation by the inverse Fourier transformation of the beam
impedance and substituting s — s’ by £, we obtain

W(s)= 2 7 Z(ko) el j°° ME) eEde dky (77)

27 kg=—co E=—0o

Nka)
13
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where the inner integral is just the Fourier transformation of the bunch shape A(s). Conse-
quently W{s) is basically the inverse Fourier transformation of the beam impedance times the
bunch spectrum: -

W(s) = — Z (ko) X(ko) e7** dkq (78)

. 5-7; ko=—00

Usually a Gaussian distribution is assumed for the bunch shape:

1 .)2
,\(s) = 6_%(;) ; (79)
2no
and the corresponding spectrum reads
Nko) = e ¥koe)l® (80)

IVc) Loss parameter

The loss parameter per unit length k for an infinite periodic planar structure is defined as

k=—

1 . 1 z oo 00
o7 lim 5 fg=_z / ~ ft=_w E.(z,6,t) J.(z, 6, 1) didod . (81)
The quantity k represents the averaged energy loss per unit length of a bunch of particles.
Substituting £, and J, by the corresponding Fourier transformations and evaluating the integral
in the z-direction leads to

Co

. 1 z (o] - =
b= o i /{ [ Bd k) T, ko) dhodt (82)

Inserting the expression for J, according to Eq.(43) into the above equation and making use
of Eq.(71), we arrive at

CO [eo]
—271' kg=—00

~ 2
k= Z(ko) [Nko)| dito . (83)
Thus the loss parameter is proportional to the integral extending over the entire frequency
range from kg = —oo to oo of the beam impedance times the absolute value of the bunch
spectrum squared.

V. Numerical results

Let us start the discussion of the numerical results checking the continuity conditions of the
electromagnetic field at the grating interface (z = 0). In Fig. 6, the real parts of the normalized
axial electric field corresponding to the diffracted and the waveguide field are compared. The
agreement of both fields over the waveguide aperture (0 < z < Lo) is good. Furthermore the
diffracted field vanishes for (Lg < z < L) as it should be. From Fig. 6 it can also clearly be seen
that the axial electric field tends to infinity at the waveguide edges (z = 0 and z = L) [14]. The
strong oscillations of the curves are typical for a Fourier series representation of a discontinuous
function [15]. This phenomenon even remains if we increase the number of expansion functions.

Fig. 7 presents the corresponding curves for the y-component of the magnetic field. The
magnetic field is parallel to the edges of the parallel-plate waveguides and thus shows no sin-
gularities. Therefore the agreement between the diffracted and the waveguide field is almost

14
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perfect. Note that in contrast to the axial component of the diffracted electric field the diffracted
magnetic field does not vanish for Lo < z < L. It is rather equal to the surface current density
on the metal part of the grating interface.

Before we look at the beam parameters of periodic structures we have to remember that
the mode matching technique has been applied to a planar structure. The relations between a
circular configuration and its equivalent planar structure have been derived in Section II. There
it has been shown how the beam impedance of a circular symmetric structure can be obtained
from the analysis of a corresponding planar structure. Nevertheless we have to mark clearly to
which geometry the presented numerical results belong.

Therefore let us briefly summarize the relations between the two classes of problems. If
Zﬁ(d = a/2) and ZY denote the beam impedance of the planar two-layer structure where the
distance between the sheet current and the grating surface is just one half of the radius of the
corresponding corrugated beampipe and the beam impedance per unit length of the circular
structure, repectively, then the relation

E,| _ 1 a
b Flp=0 _ - gbla_ =

7y = = o (d 2) (84)

follows directly from Egs.(17) and (35). From Egs.(78) and (83) it is evident that similar
relations also hold for the wakefields and the loss parameters:

1 a
¢ 2
Wc - zﬂ_aWP (d 2) b (85)
; i a
K= gab(i=3) (86)

The quantities corresponding to the circular and the planar structure are marked by the sub-
scripts “c” and “d”, respectively.

Fig.8 shows the real part of the beam impedance for a planar grating as a function of
frequency. The maximum normalized wavenumber which is koL = 200 corresponds to a fre-
querncy of about 10 THz for a period length of the grating of 1 mm. The beam impedance is
calculated at 32768 frequency points and 200 spatial harmonics are taken into account. Even
for this parameter set the cpu-time and memory requirements of the mode matching method
are moderate due to its high numerical efficiency.

In the frequency range 0 < koL < 7 none of the higher order spatial harmonics is propagat-
ing with respect to the z-direction. Thus the beam impedance is a smooth function of ko L. On
the other hand the curve starts to oscillate rapidly at koL = # for the following reason: Accord-
ing to Eq. (48) the spatial harmonic characterized by the index n = +1 turns from evanescent
to propagating with respect to the z-direction at exactly this frequency which leads to standing
wave effects between the magnetic wall and the grating interface. The spectral density of these
resonances is very high because d = 35mm >» L = 4/15 mm. Nevertheless it can clearly be
seen that the “pattern” of the curve changes every m where the number of spatial harmonics
which propagate in the z-direction increases. Fig.9 presents the beam impedance of a planar
grating where the distance between the grating interface and the magnetic wall is even less
than one grating period. In this case the spectral density of the resonances in the z-direction
is therefore much less than in Fig. 8.

The frequency axis in Fig.9 starts at koL = 0. From this figure it can clearly be seen that
the beam impedance of a planar grating approaches a constant which is different from zero
for koL — 0. Note that a corresponding statement is also valid for a planar two-layer problem
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Figure 8: Real part of the beam impedance for a planar grating as a function of frequency.
Parameters: L = 4/15mm, Ly = 0.5L and d = 35 mm.
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Figure 10: Comparison of the wakefields between the presented mode matching analysis
and the MAFIA computer code. Parameters: L = 4/15mm, Ly = 0.5L, a =

5mm and ¢ = 1 mm.

which has already been found out in Subsection Ila). From the investigation of the dc case for
the circular two-layer problem it is expected that the beam impedance of a corrugated circular
beampipe vanishes at koL = 0. This statement is also supported by the results which are given
in [16] where the beam impedance of two tubes connected by an infinite radial line has been
calculated. Therefore we cannot use the planar structure as a model for the circular one for
very low frequencies for which the large argument approximations of the Hankel functions is
not valid.

In Fig.8 a logarithmic scale is used for both axis. Thus a curve which is proportional to
w2 corresponds to a straight line with a slope of ~3/2 which is also given in this figure. From
the two curves it can be concluded that the averaged beam impedance also drops as w™3/2
which has already been shown in [3}.

In Fig. 10 the wakefields corresponding to the presented mode matching analysis and the
MAFIA computer code {17], [18] are compared. For the MAFIA calculations a corrugated
circular beampipe with a length of 200 periods is assumed. The wakefield corresponding to the
mode matching technique is obtained by scaling the result from the equivalent planar model
according to Eq. (85). The agreement of the two wakefields is quite good which confirms the
validity of the presented method.

The dependence of the wakefield on the bunch length is investigated in Fig. 11. The results
which are presented in this figure are also obtained by transforming the results of an equiv-
alent planar structure according to Eq.(85). The curves converge to an asymptotic wakefield
corresponding to an infinitely small bunch length. For the given parameters the wakefield gets
very close to the asymptotic curve (¢/L = 0.1) for a bunch length in the order of one grating
period. Such an asymptotic wakefield has also been used in [9] where it is approximated by a

special fit.
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Figure 11: Dependence of the wakefield on the bunch length. Parameters: Lo = 0.5L,
a = 262.5L and ky, = 200/L.

Fig. 12 presents the loss parameter per unit length as a function of bunch length for the
same structure that has already been considered in Fig. 11. It indicates that the loss parameter
approaches a constant for small values of ¢/L whereas it begins to decrease significantly for
bunches which are longer than one grating period.

In Fig. 13 the loss parameter of the accelerating structure of the S5-Band Linear Collider
(SBLCY[9] is presented as a function of bunch length. Each of the 6 m long sections of the
SBLC consists of a constant gradient disk loaded structure with 179 cells plus one coupler cell.
Although the iris radius is tapered in the original structure, we assume a constant iris radius
(¢ = 12mm) for our investigations. The results which are given in [9] are also based on this
assumption. They are derived by making use of an asymptotic representation of the wakefields
for short bunches. The agreement of the results corresponding to both methods is quite good.
Nevertheless it seems to be that the mode matching technique yields a smaller limiting value
of the loss parameter for very short bunches.

VI. Conclusions

The beam impedances of a circular and a planar two-layer problem have been calculated.
The results have shown that the planar structure can be used as a model for the circular
configuration if the parameters of the planar structure are properly chosen. Then the mode
matching technique has been applied to compute the electromagnetic field excited by a bunch
of ultra-relativisitic particles traversing a planar grating. It has been shown that the standard
Rayleigh expansion which is usually used to represent the beam above the grating has to be
modified for such an ultra-relativistic beam. It has been demonstrated how the beam impedance,
the wakefield and the loss parameter can be obtained from the result of the field analysis. Due

19



2.4¢-06
G 22¢06
[ =]
ij? 2e-06
= 1.8e-06
&
= 1.6¢-06
g
5 1.4e-06
~
% 1.2e-06
5 le-06
[
é’ 8e-07
6e-07

0.1

TESLA Report 1998-23

c/L

10

100

Figure 12: Loss parameter per unit length as a function of bunch length. Parameters: see

ey
asymptotic wakefield

grating analysis

DN

A

Fig.11.

35
E
U 3
[+
Z
~ 25
=
al)
3
é 2
=
5
[a R
5 1.5
:
51
]
3

0.5

0.001

0.01

ol/L

0.1

Figure 13: Comparison between the loss parameters calculated using the mode match-
ing technique and those presented in [9] for the SBLC accelerating structure.
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to the equivalence of the circular and the planar two-layer problem it has been concluded that
the calculated beam parameters are also approximately valid for a corresponding corrugated
circular beam pipe. For various structures the beam parameters have been calculated. The
validity of the presented mode matching technique has been checked by reference results which
have been obtained using the electromagnetic field simulator MAFIA.
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