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Abstract 
 

In this report we estimate long- and short-range wake functions for new elements to be used 
in TESLA Test Facility (TTF) – II. The wake potentials of the LOLA-IV structure and the 3rd 
harmonic section are calculated numerically for very short bunches and analytical 
approximations for wake functions in short and long ranges are obtained by fitting procedures 
based on analytical estimations. 
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1 INTRODUCTION 
 
In this report we estimate long- and short-range wake functions for new elements to be used 
in TESLA Test Facility (TTF) – II. The wake potentials of the LOLA-IV structure and the 3rd 
harmonic section are calculated numerically for very short bunches and analytical 
approximations for wake functions in short range are obtained by fitting procedures.   
 The analytical model for short-range wake functions is based on analytical estimations 
of short range wakes of different elements. It is a combination of terms corresponding to  the 
case of an infinite periodic cavity-like structure, a structure of finite length and the case of a 
step transition (step collimator).          
 To estimate the long-range wake function the wake potential for long distance up to 2 
meters after the bunch is calculated. It allows to estimate the low frequency spectra of the 
wake potential and to obtain an analytical form of the long-range wake function. 
 The numerical results are obtained with code ECHO [1] for high relativistic Gaussian 
bunches with  RMS deviation σ  up to 15 mµ . The calculations are carried out for the 
complete structures (including bellows, rounding of the irises and the different end cell 
geometries) supplied with ingoing and outgoing pipes. 
 The low frequency spectra of the wake potentials is calculated using the Prony-
Pisarenko method [7].  

 

2 LONGITUDINAL WAKE FUNCTION OF LOLA-IV STRUCTURE 
 
The LOLA-IV transverse deflecting cavity has to be used as a diagnostic for measuring the 
length of very short bunches in  the TTF-II.  

The LOLA structure consists of 104 cells. The gap g  for the middle cells is equal to 
29.1338 mm and for the end cells -  to 29.0957 mm. The irises with radius 22.4409a mm=  
are rounded and have the thickness 5.842 mm. The initial part of the geometry is shown in Fig 
1. The total length of the structure is equal to 3.6m∼ . 
 

/z cm

/r cm

/z cm

/r cm

 
 

Fig 1. The geometry of the LOLA structure. 
 

The calculated longitudinal wake potentials (solid lines) 
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together with analytical approximations (5) (dashed lines) are shown in Fig. 2. 
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Fig 2. Comparison of numerical (solid lines) and  “analytical” (dashed lines) 

longitudinal wake potentials in the LOLA structure for Gaussian bunches with 
25,50,100,250,500,1000 mσ µ= . 

 
 The LOLA cavity can be treated as a periodic structure of finite length. As shown in 
Ref. [2] the high frequency behavior of impedance is complicated. The high frequency 
dependence of impedance for an infinite periodic structure is 3/ 2ω−  that differs essentially 
from finite structure 1/ 2ω−  behavior. As the LOLA structure has a finite length there is a 
transition region where the frequency behavior of impedance changes from 3/ 2ω−  to 1/ 2ω− . 
The above argument explains  the complicated oscillated behavior of the wake potentials for 
the shortest bunches (see Fig.2). To describe the oscillations the one cell solution [3] is 
modified by a cosine factor preserving the original asymptotic behavior. 

To find an analytical approximation of the wake function a fitting process was used. 
As an analytical model we used a combination of the modified one cell and periodic structure 
solutions: 

0/0
||

cos( )( ) ( ) s s sw s s Ae B
s Cs

α

β

ωθ − 
= − + + 

.    (1) 

The first term in equation (1) describes a periodic (1), 0,O s →  behavior and as shown in Ref. 
[2] the first coefficient can be estimated as 

  9 120 0
2 2 2

4 48.994 10 3.6375 260 10
4 0.02244total total

Z c Z cA L L
a aπ π

= = = ⋅ = ⋅ . (2) 

The expression for estimation of the coefficient 0s , suggested in  Ref. [3], results in 

 
1.8 1.6 1.8 1.6

3
0 2.4 2.4

0.02244 0.02913380.41 0.41 4.8 10
(0.005842 0.0291338)

a gs
L

−⋅
= = = ⋅

+
.  (3) 

The second term in equation (1) should describe a finite structure 0.5( ), 0,O s s− →  behavior as 
well as oscillations seen in Fig. 2. As shown in Ref. [4] the coefficient B can be estimated as 
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Fitting the wake function in form (1) to the numerical wake potentials shown in Fig.2 the 
following analytical expression is obtained 

  3
0.72

0 3.96 10
|| 1.23

cos(1760 )( ) ( ) 257.6 1.16
1600

s s Vw s s e
pCs s

θ −−
⋅

   
= − +   +    

.  (5) 

The numerical coefficients in Eq. (5) are consistent with approximations (2)-(4).  
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Fig 3. The “analytical” longitudinal wake function (dashed line) for the LOLA 

structure and numerical (solid lines) wake potentials for Gaussian bunches with 
25,50,100,250,500,1000 mσ µ= . 

 
 Fig. 3 shows wake function (5) together with numerical wake potentials (solid gray 
lines) outlined earlier in Fig.2. We see that the wake function tends to be an envelope function 
to the wakes. 
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Fig 4. Comparison of numerical (lines) and  “analytical” (points) longitudinal integral 

parameters for the LOLA structure. 
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 Fig. 4 shows the analytical (solid lines) and numerical (points) loss factors and energy 
spreads for Gaussian bunches with 25,50,100,250,500,1000 mσ µ= . The coincidence of the 
results let us use analytical expression (5) as the short range longitudinal wake function. 
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Fig 5. Comparison of numerical (solid line) and  “analytical” (dashed line) longitudinal wake 
potentials for one cell (left) and ten cells (right) of the LOLA structure. 

 
 As the next check the above results can be compared to the analytical estimations 
given in Ref. [5], p.243. The impedance of structure consisting of N  pillboxes at the high 
frequency limit can be estimated by an expression 
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       Fig. 5 shows comparison of the numerical and analytical (6) wake potentials in one 
and ten middle cells of the LOLA cavity for a bunch with 100 mσ µ= . Equation (6) is 
obtained in Ref. [5] for square irises. To take into account weakening of the wake fields due 
to rounding of irises an effective iris radius 1.13a a=  is used in calculations and coincidence 
of the numerical and analytical curves can be seen in Fig. 5. 
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Fig 6. Comparison of numerical (solid line) and  “analytical” (dashed line) longitudinal wake 

potentials for 100 mσ µ=  (left) and 25 mσ µ= (right) in the LOLA structure. 
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For the complete 104 cells LOLA structure the results are shown in Fig.6 for bunches 

with 100 mσ µ= (left) and 25 mσ µ= (right). We see that equation (6) is not able to describe 
transient behavior presented by cosine term in Eq.(1). 
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Fig 7. The long-range numerical (solid line) and  “analytical” (dashed line) longitudinal wake 

potentials for Gaussian bunch with 1mmσ =  in the LOLA structure. 
 
The numerical results were checked by densening of the mesh by factor 2 for  

Gaussian bunch with 50 mσ µ= . The wakes for different mesh resolutions coincide 
graphically and the loss factors are different less than by 0.5%. As the second argument to 
confirm the accuracy, the closeness of the wake potentials to the envelope function in Fig.3 
can be used, because of the mesh for shorter bunch is two times denser as before. 
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Fig 8. The longitudinal low-frequency impedance in the LOLA structure. 
 
 To estimate long range wake fields the wake potential for Gaussian bunch with 

1mmσ =  is calculated for distance up to 2 meter after the bunch. Fig.7 shows numerical 
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(solid line) and analytical (dashed line) wake potentials up to 1 meter after the bunch. 
 The longitudinal wake function can be approximated by expression 

 ||
1

2( ) ( ) 2 cos( ) ( )i i
i

w s s K f s R s
c
πθ

∞

=

 = − +  
∑ ,    (7) 

where summation over the cavity modes is supplemented by term ( )R s  because of the pipes 
on both sides of the structure. To obtain an approximation of the long-range wake function we 
keep in Eq. (7) only a finite number ( 10N = ) of addends corresponding to the lowest 
frequencies. 
 

if , GHz  2.11 5.09 5.57 6.93 7.62 10.5 11 11.7 13.4 14.3 

iK , 1210  34.6 3.26 5.76 4.7 6.4 1.3 2.6 2.8 0.42 1.8 
 

Table 1. The lowest frequencies and their amplitudes for long-range longitudinal wake 
function of  the LOLA structure. 

 
 Fig. 8 shows the frequencies and amplitudes used in Eq. (7) to obtain the wake 
function shown in Fig.7 by dashed line. The values are obtained using the Prony-Pisarenko 
algorithm [7]  and are given in Table 1. The Prony-Pisarenko algorithm is a method to fit a set 
of decaying oscillation characterized by amplitudes, phases and damping constants to a given 
curve or data set and is used in our paper as alternative to the discrete Fourier transform. 

    

3 TRANSVERSE WAKE FUNCTION OF LOLA-IV STRUCTURE 
 
In this section we repeat the exercise for transverse case. The calculated transverse wake 
potentials (solid lines) together with analytical approximations (dashed lines) are shown in 
Fig. 9. 
 

-2 0 2 4-2500

-2000

-1500

-1000

-500

01

/ /
W

V pC m
⊥−

/s σ

25 mσ µ=

1000 mσ µ=

-2 0 2 4-2500

-2000

-1500

-1000

-500

01

/ /
W

V pC m
⊥−

/s σ

25 mσ µ=

1000 mσ µ=

 
 

Fig 9. Comparison of numerical (solid lines) and “analytical” (dashed lines) transverse wake 
potentials for the LOLA structure. 

 
 To find an analytical approximation of the wake function a fitting process was used. 
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As an analytical model we used a combination of the one cell and periodic structure solutions: 

( )1/1
1 1( ) ( ) 1 (1 / ) s sw s s As s s e B sθ −

⊥
 = − + +
 

.   (8) 

The first term in equation (8) describes a periodic ( ), 0,O s s →  behavior. The expression  for 
estimation of the coefficient 1s , suggested in  Ref. [6],  results in 

   
1.79 0.38

3
1 1.170.169 2.4 10a gs

L
−= = ⋅ .     (9) 

And as shown in Ref. [6] the first coefficient can be estimated as 

   120
1 12 2

2 2 4951 10total
Z cAs s L

a aπ
= = ⋅ .     (10) 

The second term in equation (8) should describe a finite structure 0.5( ), 0,O s s →  behavior. As 
shown in Ref. [4] the coefficient B can be estimated as 

   120
2 2

22 5467 10totalZ c L
B

a aπ
= = ⋅ .     (11) 

Fitting the wake function in form (8) to the numerical wake potentials shown in Fig.9  the 
following analytical expression is obtained 

 31 11.7 10
3( ) ( ) 10200 1 1 9200

11.7 10

ss Vw s s e s
pC m

θ −−
⋅

⊥ −

     
 = − + +     ⋅ ⋅      

. (12) 

The numerical coefficients in Eq. (12) are consistent at least in order with approximations (9)-
(11).  
 Fig. 10 shows wake function (12) together with numerical wake potentials outlined 
earlier in Fig.9. We see that the wake function tends to be an envelope function to the wakes. 
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Fig 10. The “analytical” transverse wake function (dashed line) for the LOLA 
structure and numerical (solid lines) wake potentials for Gaussian bunches with 

25,50,100,250,500,1000 mσ µ= . 
 

 Fig. 11 shows the analytical (solid lines) and numerical (points) kick factors and kick 
spreads. The coincidence of the results let us use the analytical expression (12) as short range 
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transverse wake function. 
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Fig 11. Comparison of numerical (lines) and  “analytical”  (points) transverse integral 

parameters for the LOLA structure. 
 

 To estimate long range transverse wake fields the wake potential for Gaussian bunch 
with 1mmσ =  is calculated for distance  up to 2 meters after the bunch. Fig.12 shows 
numerical (solid gray line) and analytical (dashed black line) wake potentials up to 1 meter 
after the bunch. 
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Fig 12. The long-range transverse wake potential  for Gaussian bunch with 1mmσ =  in the 
LOLA structure. The analytical approximation is shown by black dashed line. 

 
 The transverse wake function can be approximated by formula 
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2( ) ( ) 2 cos( ) ( )
2i i

i
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f c

πθ
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To obtain approximation of long-range wake function we keep in the Eq. (13) only finite 
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number ( 12N = ) of addends corresponding to the lowest frequencies. 
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Fig 13. The transverse low-frequency impedance of  the LOLA structure. 
 

 Fig. 13 shows the frequencies and amplitudes used in Eq. (13) to obtain the wake 
function shown in Fig.12 by dashed line. The values are obtained using the Prony-Pisarenko 
algorithm [7] and are given in Table 2. 
   

if , GHz  2.87 4.81 5.60 5.93 6.45 7.67 8.32 10.7 11.6 13.0 13.7 14.3 

iK , 1610  8.17 0.47 1.94 0.27 0.79 2.38 1.11 0.25 1.87 0.13 0.31 0.12 
 

Table 2. The lowest frequencies and their amplitudes for long-range transverse wake function 
of  the LOLA structure. 
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4 LONGITUDINAL WAKE FUNCTION OF THE 3RD HARMONIC 
SECTION 

 
 For the phase 2 of the TESLA test facility (TTF 2) it has been planed to use a cavity section 
operated at three times the 1.3 GHz frequency of the existing TTF1 cavities to compensate 
nonlinear distortions of the longitudinal phase space. The 3rd harmonic section consists of 4 
TESLA-like (but reduced by factor 3) cavities with 13-fold bellows in between. The iris 
radius is 15a mm= . The cavities are connected with pipes of the radius 20pa mm= . On both 
ends of the section there are step transitions from pa  to 39b mm=  as shown in Fig 14. 
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Fig 14. The part of the geometry of the 3rd  harmonic section. Only one cavity is shown. The 

whole structure includes 4 cavities and 3 bellows. 
 
 The calculated longitudinal wake potentials (solid lines) together with analytical 
approximations (dashed lines) are shown in Fig. 15. 
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Fig 15. Comparison of numerical and “analytical” longitudinal wake potentials in the 3rd 
harmonic section for Gaussian bunches with 15,25,50,75,150,250,500,1000 mσ µ= . 
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Because of the step transitions from pa  to b  the model (1) is not sufficient to describe 

the wake function of the structure and  Eq.(1) should be supplemented by an additional term 
for the step collimator. For a high relativistic bunch, 1γ � , the high frequency impedance of 
a step collimator does not depend on the frequency and is the following constant [5]  

   0
|| ( ) ln paZZ

b
ω

π
= , 1b

c
ωγ > � . 

Hence a Dirac-delta function has to be added to Eq. (1) and it reads 

0/0
||

cos( )( ) ( ) ( )s s sw s s Ae B D s
s Cs

α

β

ωθ δ− 
= − + + + 

.   (14) 

The first term in equation (14) describes a periodic (1), 0,O s →  behavior and can be 
estimated as 

  9 120 0
2 2 2

4 48.994 10 1.3838 221 10
4 0.015total total

Z c Z cA L L
a aπ π

= = = ⋅ = ⋅ . (15) 

The expression for estimation of the coefficient 0s  results in 

   
1.8 1.6 1.8 1.6

3
0 2.4 2.4

0.015 0.03230.41 0.41 2.2 10
0.03844

a gs
L

−⋅
= = = ⋅ .  (16) 

The second term in equation (14) is intended to describe the finite structure 0.5( ), 0,O s s− →  
behavior and oscillations. The coefficient B can be estimated as 

     9 120 0
2

2 2 2 2 1.38388.994 10 0.64 10
4 0.0152

total totalZ c L LZ cB
aa π π ππ

⋅
= = = ⋅ = ⋅

⋅
. (17) 
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      Fig 16. The “analytical” longitudinal wake function of the 3rd harmonic section.  
 
Finally, the last coefficient is 

   120 ln 0.024 10paZ cD
bπ

= = ⋅ .      (18) 
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  Fitting the wake function in form (16) to the numerical wake potentials shown in 
Fig.15 the analytical expression is obtained 

  4
0.83

0 8.4 10
||

cos(5830 )( ) ( ) 318 0.9 0.036 ( )
195

s s Vw s s e s
pCs s

θ δ−−
⋅

   
= − + +   +    

. (19) 

The numerical coefficients 0, , ,A B s D in Eq. (19) agree well with approximations (15)-(18). 
 Fig. 16 shows wake function (19) together with numerical wake potentials outlined 
earlier in Fig.15.  
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Fig 17. Comparison of numerical (solid lines) and  “analytical” (points) longitudinal 
integral parameters for the 3rd harmonic section. 

 
 Fig. 17 shows the analytical (solid lines) and numerical (points) loss factors and 
energy spreads. The coincidence of the results let us use analytical expression (19) as the 
short range longitudinal wake function for 3rd harmonic section. 
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Fig 18. Comparison of numerical (solid line) and  “analytical” (dashed line) 

longitudinal wake potentials for the 3rd harmonic section. 
 

Fig. 18 shows comparison of numerical (solid line) and analytical (19) wake potentials 
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for bunch with 25 mσ µ= . We see that formula (19) describes very well the transient 
behavior available in the numerical solution. 

The numerical results are checked by densening of the mesh by factor 2 for Gaussian 
bunch with 50 mσ µ= . The wakes coincide graphically and the loss factors  are different less 
than by 0.5%. For example we obtained for bunch with 15 mσ µ=  the loss factor is equal to 
606.5 for the mesh resolution with 5 points on sigma and is equal to 606.2 for the mesh 
resolution with 5 points on sigma that confirms a high accuracy of the numerical results.  
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Fig 19. The long-range longitudinal wake potential for Gaussian bunch with 1mmσ =   

in the 3rd harmonic section. 
 

 To estimate the long range wake fields the wake potential for a Gaussian bunch with 
1mmσ =  is calculated for distance  up to 2 meter after the bunch. Fig.19 shows numerical 

(solid line) and analytical (dashed line) wake potentials up to 1 meter after the bunch. 
 

0 5 10 15 20
0

0.5

1

1.5

2 x 10
130

||Z
TΩ

/f GHz
0 5 10 15 20

0

0.5

1

1.5

2 x 10
130

||Z
TΩ

/f GHz  
 
Fig 20. The longitudinal low-frequency impedance for the 3rd harmonic section 

 
To obtain approximation of long-range wake function we keep in the Eq. (7) only a 
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finite number ( 14N = ) of addends corresponding to the lowest frequencies. 
 Fig. 20 shows the frequencies and amplitudes used in Eq. (7) to obtain the wake 
function shown in Fig.19 by dashed line. The values are obtained using the Prony-Pisarenko 
algorithm and are given in Table 3. 
   

if , GHz  3.90 5.65 5.73 6.97 7.54 7.69 8.65 

iK , 1210  18.3 0.73 0.61 0.20 7.44 3.08 0.22 
 

if , GHz  9.98 10.7 11.6 12.5 13.9 15.3 16.3 

iK , 1210  0.63 0.72 2.08 0.60 1.25 0.34 0.41 
 

Table 3. The lowest frequencies and their amplitudes for long-range longitudinal wake 
function of 3rd harmonic section. 

 
 

5 TRANSVERSE WAKE FUNCTION OF THE 3RD HARMONIC 
SECTION 

 
The calculated transverse wake potentials (solid lines) together with analytical 
approximations (dashed lines) are shown in Fig. 21. 
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Fig 21. Comparison of numerical and “analytical” transverse  
wake potentials in 3rd harmonic section for Gaussian bunches  

with 15,25,50,75,150,250,500,1000 mσ µ= . 
 

Because of the step transitions from pa  to b  the model (8) has to be supplemented by 
an additional term for the step collimator. If we suggest that the relation [6] 

 ||2

2( ) ( )cZ Z
a

ω ω
ω⊥ = , 

which is true at high frequencies for cavity-like structures, holds for collimators too, then a 
constant has to be added to model (8) 
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( )1/1
1 1( ) ( ) 1 (1 / ) s sw s s As s s e B s Cθ −

⊥
 = − + + +
 

.  (20) 

The first term in equation (22) describes a periodic ( ), 0,O s s →  behavior. The 
expression for estimation of the coefficient 1s results in 

   
1.79 0.38

3
1 1.170.169 1.1 10a gs

L
−= = ⋅ .     (21) 

And the first coefficient can be estimated as 

   120
1 12 2

4 4255 10total
Z cAs s L

a aπ
= = ⋅ .     (22) 

The second addend in equation (22) is intended to describe a finite structure 0.5( ), 0,O s s →  
behavior. The coefficient B can be estimated as 

   120
2 2

22 11290 10totalZ c L
B

a aπ
= = ⋅ .     (23) 

Finally, the last coefficient is 

   120
2

2 ln 120 10p

p

aZ cC
a bπ

= = ⋅       (24) 

Fitting the wake function in form (20) to the numerical wake potentials shown in 
Fig.21 the analytical expression is obtained 

    31 0.56 10
3( ) ( ) 2232 1 1 5441 88.5

0.56 10

ss Vw s s e s
pC m

θ −−
⋅

⊥ −

     
 = − + + +     ⋅ ⋅      

. (25) 

The numerical coefficients in Eq. (25) are consistent at least in order with approximations 
(21)-(24).  
 Fig. 22 shows wake function (27) together with the numerical wake potentials outlined 
earlier in Fig.21. We see that the wake function tends to be an envelope function to the wakes. 
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Fig 22. The “analytical” (dashed line) transverse wake function for the 3rd harmonic section 
and wakes for Gaussian bunches with 15,25,50,75,150,250,500,1000 mσ µ= . 

 
 Fig. 23 shows the analytical (solid lines) and numerical (points) kick factors and kick 
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spreads. The coincidence of the results let us use the analytical expression (25) as the short 
range transverse wake function of the 3rd harmonic section. 
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Fig 23. Comparison of numerical (solid lines) and  “analytical” (points) transverse integral 

parameters for the 3rd harmonic section. 
 

 To estimate long range transverse wake fields the wake potential for Gaussian bunch 
with 1mmσ =  is calculated for distance  up to 2 meter after the bunch. Fig.24 shows the 
numerical (solid line) and analytical (dashed line) wake potentials up to 1 meter after the  
bunch. 
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Fig 24. The long-range transverse wake potential for Gaussian bunch with 1mmσ =  in 3rd 
harmonic section. 

 
To obtain approximation of long-range wake function we keep in the Eq. (13) only a 

finite number ( 14N = ) of addends corresponding to the lowest frequencies. 
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Fig 25. The transverse low-frequency impedance of LOLA. 
 

 Fig. 25 shows the frequencies and amplitudes used in Eq (13) to obtain wake function 
shown in Fig. 24 by dashed line. The values are obtained using the Prony-Pissarenko 
algorithm and are given in Table 4.  
 

if , GHz  4.13 4.82 4.94 5.45 7.67 8.81 9.07 

iK , 1610  0.10 3.37 2.13 3.02 2.56 1.94 1.39 
 

if , GHz  9.85 10.4 12.1 12.87 15.5 16.2 17.4 

iK , 1610  0.66 0.71 0.37 2.75 0.07 0.08 0.06 
 
  

Table 4. The lowest frequencies and their amplitudes for long-range transverse wake 
function of 3rd harmonic section. 
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Fig 26. The longitudinal and transverse wake potentials for Gaussian bunch with 
1.77mmσ = . 

 
Fig. 26 shows the longitudinal and transverse wakes for Gaussian bunch 
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with 1.77mmσ = as it can be a possible bunch length choice due to optimal compensation of 
non-linear distortion. The integral parameters for this case take values: energy loss – 52.9 
V/pC, energy spread – 21.3 V/pC, transverse kick – 711 V/pC/m, kick spread – 533 V/pC/m. 

 

6 DISCUSSION 
 

The TESLA cavity is a main element of the LINAC and it is reasonable to compare 
the obtained wakes to ones of the TESLA cryomodule [8]: 

31.74 10
|| ( ) ( ) 41.5

s
cryo Vw s s e

pC m
θ −−

⋅  
= − ⋅  ⋅ 

, 

30.92 10
3( ) ( ) 121 1 1

0.92 10

s
cryo s Vw s s e

pC m m
θ −−

⋅
⊥ −

     
 = − +     ⋅ ⋅ ⋅      

. 

The above expressions are given on unit of active length and obtained for the case of infinite 
periodic structure (see [8] for details). 
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Fig 27. Comparison of the longitudinal and transverse wake functions for the cryomodule, the 

LOLA structure and the 3rd  harmonic section. 
 

The active length of the LOLA structure is 3.64totalL m= . And the normalized short 
range wake functions of the LOLA read 

 3
0.72

3.96 10
|| 1.23

cos(1760 )( ) ( ) 70.8 0.32
1600

s
LOLA s Vw s s e

pC ms s
θ −−

⋅
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= − +   ⋅+    
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311.7 10
3( ) ( ) 2804 1 1 2530
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s
LOLA s Vw s s e s

pC m m
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⋅
⊥ −

     
 = − + +     ⋅ ⋅ ⋅      

. 

The active length of the 3rd harmonic section is 36 0.03844 1.3838totalL m= ⋅ = .  And 
the normalized short range wake functions of the section read 

4
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s
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. 
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 Fig. 27 shows comparison of the wake functions. The solid lines represent regular part 
of the functions and the dashed lines on the left figure correspond to the first term in the 
formulas and describe the behavior in infinite periodic geometry.  

The increase of the wakes for the new elements comparing to the cryomodule can be 
explained by the reduced apertures of the new elements and the scaling law of the wakes [9]. 
If all dimensions of the structure are modified by the scaling factor λ  the wakes scale as 

2
||w λ−∼ , 3w λ−

⊥ ∼ . 
     The wake functions of the new elements include two terms. The first term describes 
behavior in an infinite periodic structure and plays the main role for long smooth bunches. 
The second term is caused by finite length of the structure and it is important for short or 
nonsmooth bunches. 
 The LOLA structure operates with bunches of the length 50 mσ µ=  and the second 
term in the wake expressions has to be taken into account. However, the 3rd  harmonic section 
is used to linearize the energy-length correlation before the bunch compressor and therefore 
we are interested in bunch length of the order of 1mm. In this range the second term can be 
neglected and the effect of the step transition described by the third term in the wake 
expressions can be considered separately as it is shown in Fig. 28. 
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Fig 28. Comparison of the longitudinal and transverse wake potentials for step transition, the 

3rd harmonic section without step transition and with it. The dashed curve describing the 
sum of the element effects is  indistinguishable from the solid curve describing total 

structure effect. 
 

Fig. 28 shows the wake potentials for Gaussian bunch with 1mmσ = . The wakes of 
the step transitions and the 3rd harmonic section without step transition are calculated 
separately and shown by dashed lines. Their sum is shown by dashed line too and is 
indistinguishable from the solid line presenting result of the direct simulation for the 
combined structure.  
  

 loss, V/pC energy spread, V/pC kick,V/pC/m 
step 6.41 2.65 31.7 

section  64.95 27.84 520.3 
section with step 71.39 28.84 542.1 

 
Table 5. The integral parameters for step transition, the 3rd harmonic section without step transition 

and with it. 
 

 As shown in the Table 5 the effect of the step transition for smooth long bunch (Gaussian 
bunch with 1mmσ = ) is below 10%. 
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CONCLUSION 
 
The short- and long-range geometric wake fields of new elements to be installed in TTF-II are 
studied. The analytical forms of short- and long-range wake functions are obtained.  

The numerical results confirm the theoretical estimations. The very short-range 
behavior of wake functions is dominated by one-cell term for the LOLA structure and by step 
transition term for the 3rd harmonic section. 
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