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ABSTRACT

In this paper we provide an analytical description for the transverse dynamics of
relativistic, space charge-dominated beams undergoing strong accel_eration, such as thosé
typically produced by RF photoinjectors. These beams are chiefly characterized by a fast
transition, due to strong acceleration, from the non-relativistic to the relativistic regime in
which the initjally strong collective plasma effects are greatly diminished. However, plasma
oscillations in the transverse plane are still effective in significantly perturbing the evolution
of the transverse phase space distribution, introducing distortions and longitudinal-
transverse correlations that cause an increase in the rms transverse emittance of the beam as
a whole. The beam envelope evolution is dominated by such effects and not by the thermal
emittance, and so the beam flow can be considered quasi-laminar.

The model adopted is based on the rms envelope equation, for which we find an
exact particular analytical solution taking into account the effects of linear space charge
forces, external focusing due to applied as well as ponderomotive RF forces, acceleration
and adiabatic damping, in the limit that the weak non-laminarity due to the thermal
emittance may be neglected. This solution, termed the invariant envelope, represents a
special mode for beam propagation which assures a secularly diminishing normalized rms

emittance and it represents the fundamental operating condition of a space-charge
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compensated RF photoinjector. The conditions for obtaining emittance compensation in a
long, integrated photoinjector, in which the gun and linac sections are joined, as well as in

the case of a short gun followed by a drift and a booster linac, are examined.
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I. INTRODUCTION

Quasi-laminar, space charge-dominated relativistic electron beams have become a
subject of great interest with the advent of short laser pulse-driven radio-frequency (RF)
photoinjectors [1,2], which are able to produce electron beams carrying current densities
well in excess of 1 kA/cm2, with the transition from the non-relativistic to the relativistic
regime occurring very quickly. The accelerating gradient required to guarantee that the
beam will be captured in the RF wave at relevant wavelengths (5-25 ¢m) ranges from 10
MeV/m up to 100 MeV/m: the beam is therefore accelerated from rest at the photocathode
emissive surface, up to relativistic energy within a fraction of an RF wavelength, which is a
distance is comparable to one-half of a plasma oscillation period in the transverse plane.

The trapping condition is typically expressed as a> 1/2, in terms of the quantity

o =ekEy / 2kmc?®, which represents the dimensionless amplitude of the vector potential

associated to the accelerating field, of frequency Vgp (k= 2aVgp/c)and amplitude Ep.
Furthermore, the random, thermal component to the transverse emittance is very

small compared to the total rms emittance, which is dominated by the dilution of the

projected transverse phase space density due to correlations in the beam distribution
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function, so that the beam is fairly laminar both in the transverse and the longitudinal
planes. This implies that in the transverse plane trajectories do not cross each other, while
in the longitudinal plane different slices (of length smail compared to the total bunch length)
do not mix with each other. Since neighbouring longitudinal slices additionally do not
behave in vastly different ways, precluding the occurrence of large longitudinal density
gradients in the beam charge density, this final condition implies that the beam may be
broken up, for analysis purposes, into nearly independent longitudinal slices which behave
in the same manner as a continuous beam. Evidence for the validity of this model for
photoinjector beam dynamics comes from both multiparticle simulations, and" from
experiments performed at Brookhaven by Wang, et al.{3] .

This set of conditions, which defines the notion of a quasi-laminar beam in this
paper, is generally attained in RF photoinjectors, in particular when they are operated in the
space-charge emittance compensation regime[4]. This regime implies that the beam
propagates for one transverse plasma oscillation, so that the correlations in the transverse
phase space which develop in the first half of the oscillation are undone in the second half
by properly focusing the beam. Due to the relativistic diminishing of the space charge
forces as the beam accelerates, one can adiabatically nearly terminate the plasma motion and
associated emittance oscillations as the minimum in the emittance occurs, obtaining
maximum beam brightness at the exit of the photoinjector.

In this paper we wish to provide a simple frame work in which the beam dynamics
in such a regime can be analytically described and the space-charge emittance correction
technique can be quantitatively explained. We begin by using an heuristic model of the
plasma and emittance oscillations in a quasi-laminar beam. This model allows the
underlying physical mechanisms involved in the complicated phase space dynamics of the
RF photoinjector to be elucidated. After this discussion, we then construct the quantitative
model for quasi-laminar beam propagation. Analytical expressions for the beam envelope

from the photocathode surface up to the gun exit in a long, integrated RF photoinjector are
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provided and the predictions for optimum photoinjector configuration to achieve emittance
correction are extracted from the properties of the envelope itself. A particular solution for
the beam envelope is found that assures all the bunch slices evolve in transverse space
phase with a common phase space angle, which is in fact the desired final state to achieve
emittance compensation. This particular solution is termed the invariant énvelope, and is in
many ways analogous to the equilibrium Brillouin flow of space charge dominated beams
in constant gradient focusing channels. Although this study is directly applied to a
description of RF photoinjectors, the concept of invariant envelope and the method of
analysis is of interest and applicable to any relativistic beam which is space-charge
dominated and accelerated in high gradient linear accelerators.

The equation we base our analysis on is Lawson's expression for the evolution of

the rms envelope in the paraxial limit[5],
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which governs the evolution of the cylindrical symmetric rms transverse beat spot size
o(z) under the effects of an external linear focusing channel of strength
K, = —F,/ Bz}fmcz. Here the prime indicates differentiation with respect to the
independent variable z, the distance along the beam propagation axis, ymc:'2 is the mean
beam energy and S=v,/c=+1-y? is the normalized mean beam velocity. The
defocusing space charge term in Eq. 1.1 is proportional to the beam perveance «x,, and
final term represents the outward pressure due to the normalized rms emittance, which in

the case of cylindrical symmetry can be written as

g =Pr= %J{rﬁ(r'z) ~ (rr')2 . (1.2)
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We use Eq. 1.1 under a host of assumptions, which we now delineate. Equation
1.1 is of course only valid in paraxial approximation (o’ << 1) and for a narrow energy

spread beam. In our envelope analysis, which is applied only in the region where the beam

has attained relativistic velocities (the mean beam velocity v = Be = ¢), the normalized
acceleration gradient ¥’ is apprbximated as constant, so that ¥{(z,)=¥(z1)+ ¥ (22— 7). In
the case of an unbunched beam the perveance takes the form x;=2I/Iy, with
Iy = ec [ r, =17 KA (for electrons). Since we restrict the discussion to axisymmetric
beams, the focusing gradient can incorporate two different types of focusing, that applied
externally by a magnetostatic solenoidal focusing field, and the ponderomotive RF
focusing[6] produced by the non-synchronous spatial harmonics of the accelerating RF
wave, an effect which is particularly strong in a high gradient standing wave accelerator
such as an RF photoinjector. As discussed in Refs. 6 and 7, these two focusing sources

can be cast into a single expression
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where b=cB,/E, (eE;= 2yim,c? /sin(g), v’ = oksin(¢)) for the particular case of a
constant solenoidal magnetic field, ¢ is the particle phase with respect to the RF field
wave, ¢ =ot—kz+ @, and @ is the RF phase of the bunch centroid at injection. The
quantity 77, which is a measure of the higher spatial harmonic amplitudes of the RFF wave
is defined in Section IIl and is generally quite close to unity in practical RF structures.

We have given the expression for the beam perveance in Eq. 1.1 above for an
unbunched beam of constant current /. In our analysis of the quasi-laminar beam in

Section III, we generalize this quantity to include the case of bunched beam, by

incorporating a geometrical factor[8] g({) in the perveance which contains the longitudinal
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dependence of the transverse space charge field versus the internal bunch coordinate
=z—vpt .

Furthermore, Eq. 1.3 ignores possible chromatic aberration effects on the
transverse phase space dynamics, due to an energy-phase correlation in the bunch — this
analytical study is carried out assuming a monoenergetic bunch. A related source of
longitudinal-transverse phase space correlations in this system arises from the phase
dependence of the transverse RF forces, which gives rise to an emittance increase[9] at the
first iris of the gun (cf. Figure 3). We assume that this source of emittance, like the
chromatic effects, does not give rise to significant changes in the transverse beam dynamics
of a given {-slice of the bunch. This assumption is quite good, in that these correlations
are of a similar form to the those arising from space-charge, but smaller in magnitude in
nearly all cases of interest. In fact, because of the similarity in spatial dependence of the
forces, it has been observed in simulations that the space-charge emittance compensation
process can also partially mitigate this source of emittance[10]. Although the solutions
found for Eq. 1.1 can be extended to any kind of charge density distribution in the bunch,
the actual predictions of the RF photoinjector designed to achieve emittance compensation
will be provided for a density distribution which is Gaussian in all dimensions.

The initial model used for the photoinjector analysis assumes a long multi-cell RF
structure, i.e. an integrated device such as the AFEL injector at Los Alamos[4], and the
proposed PWT injector at UCLA[11]. The analysis is, however, sufficiently broad that
many characteristics of photoinjectors with short (one or two cell) RF guns and a post-
acceleration (booster) linac, where the space charge compensation takes place in drift space
between the RF gun and the booster linac, can be inferred. In fact, the case of a short
(1+1/2 cell) RF gun followed by a drift is discussed in Section VI. The exact solution for
the beam envelope is not found for this case, but the operating conditions needed to achieve

emittance compensation are deduced from the general properties of the envelope equation,
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Radial nonlinearities in the space charge field are not taken into account in this
model, as they have a weak impact on the rms envelope behaviour. The full influence of
these effects are beyond the scope of this paper, but are important nonetheless - they are
more relevant to a discussion of minimizing the residual emittance after compensation.
Some comments on this subject are made in Section IL

In overview, the organization of the paper is as follows. In Section II we provide an
heuristic model to explain the basics of the emittance oscillation due to a small mismatch of
a space charge dominated beam at injection into focusing channel. Section III is devoted to
the detailed analysis of the envelope equation and the model for a multi-cell photoinjectors;
analytical solutions derived in a perturbative approximation around an exact solution are
presented. The concept of the invariant envelope is introduced and illustrated in Section IV,
and its deep relationship with the space charge emittance compensation technique is
discussed. Predictions relevant to photoinjector design characteristics needed to achieve an
invariant envelope operation, i.e. emittance compensation, are presented in Section V
together with comparisons to numerical simulations of existing RF photoinjector designs.
Section VI is devoted to the case of a short RF gun followed by a drift space where the
emittance correction takes place. Finally, the implications of the analysis presented in this

paper are summarized in Section VIL
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II. AN ILLUSTRATIVE MODEL

The simplified model for the complicated motion of the beam envelope and
emittance evolution in high gradient linear accelerators we propose is motivated primarily
by the problem of understanding emittance evolution in RF photoinjector sources. In this
model we view the rms emittance as arising from the differing phase space dynamics of
each longitudinal slice of the beam which is assumed to behave as an independent, cold,
laminar, space-charge dominated plasma evolving under the influence of linear external
forces. In this case, even though the rms emittance of each longitudinal slice can be
neglected in the analysis, the rms emittance of the ensemble can be quite large upon
summation of the entire ensemble making up the beam.

In order to understand how this mechanism causes emittance growth, as well as
how the emittance growth can be reversed by proper focusing of the beam, we begin by
examining a simplified model problem, that of an intense, cold, uniform-density beam
nearly matched to an external focusing channel. While this model ignores the effects of
acceleration and transverse motion due to the high gradient RF fields in the accelerator, it
serves to illuminate the fundamental dynamics of the emittance oscillations in these devices.
When the effects of the high gradient electromagnetic fields are included in the subsequent
analysis, analogies to this simple model will be apparent.

We begin by writing the rms envelope equation for a cylindrical symmetric, space

charge dominated, coasting, relativistic, charged particle beam in a focusing channel of

constant strength,
2
PR 2 T @.1)
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Given our assumption of space charge-dominated envelope motion, we may ignore the
final term on the right hand side of Eq. 2.1, which represents the contributions to envelope
forcing due to the emittance arising from both random, thermalizing sources as well as the
effects of nonlinear macroscopic forces. In this analysis, we will be using Eq. 2.1 to
describe the evolution of longitudinal slices of a beam (meaning infinitesimally small
lengths 8 of beam about given values of {), assuming that the motion of each slice is
essentially uncorrelated to that of nearby slices, and in fact depends most strongly only the
local (in {) value of the current. This means that the normalized thermal emittance

corresponding to each beam slice, which we define formally as

@) =EL Y0, - .2

where the subscript { indicates that the average is performed only over the distribution
within a given slice.
We next generalize the expression of for the space charge term to include an explicit

dependence on the longitudinal position by I — Ig(C ) where I is now defined as the

maximum current in the beam. The geometrical factor g(g" ), which is less than unity, is

discussed in more detail for a finite beams below; for now let us note that in the limit that

the beam is long (Yo, >> &,) in its rest frame g({) follows the local dependence of the
current very closely.

Upon linearizing Eq. 2.1 about the equilibrium Brillouin flow condition for a slice

c.(2(0)= 1’?%77(5% 2.3)

we obtain the equation for small amplitude motion about this point,

at a given value of ¢,



TESLA-Report 1996-12

Y 21g(¢)
% “)”[K' LB D)

do”(§)+2K,80(¢)=0.

]50’({ )=0 or 2.4)

which gives oscillation frequencies which are dependent on the external focusing strength,
but independent of the beam current. It is this characteristic of the space charge
dominated, quasi-laminar beam dynamics that allows emittance compensation.

This model can be used to illuminate the RF photoinjector case by assuming that the
envelopes in the beam ensemble begin (at the "cathode") slightly mismatched to the channel
with 0= 0y < 0,, and o’ =0. All envelope oscillations proceed with the same frequency,
given only by the external focusing strength, but with different amplitude and about

equilibria which are dependent on the current (if we assume the approximation that g({) is

proportional to the current). We thus have formally

o{z,0)= O'eq(g((_,')) + (0‘0 - O‘Eq(g(é_,')))cos( 2K,z), and (2.5)
0'(2) = —2K, (0, - 0,,(8(¢)))sin(ZK  2). (2.6)

Since the frequency of the oscillations is independent of the value of current, but the
amplitude is not, the rms emittance of the beam ensemble grows, but retums periodically to
minimum values.

This can be seen by noting that under our above assumptions, the rms emittance

defined by Eq. 1.2 can be calculated as follows,

e(2)=+{0*)0?) (00", @.7)

10
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where the bracket indicates an average weighted over the distribution of currents in the
entire beam ensemble, ie. all of the slices. To quantify the effect of the differing
trajectories in the ensemble of beam slices, we assume the long beam limit expand the
effective distribution function in currents to second order about the maximum current (i.e.
near the peak of a symmetric beam current profile which is continuous though its first -

derivative), and obtain the emittance evolution

(2.8)

Figure 1 displays the emittance and envelope evolution for a slightly mismatched
beam ensemble, beginning, as in the case of the RF photoinjector, with a minimum beam
size and vanishing emittance as defined by Eq. 2.7. It can be seen that there are two
subsequent emittance null points, one at the maximum in beam size, and another when it
returns to its original size. These minima occur where the angles in phase space
g= tan_l(a’/ o) are independent of the beam current value. This type of behaviour is in
fact similar to that observed in RF photoinjectors, as is can be seen from the multi-particle
simulation shown in Figure 2, where the beam undergoes one envelope oscillation and two
emittance oscillations from the cathode to the injector end in the UCLA Saturnus
photoinjector. The emittance minimum occurring at the maximum in the envelope is of
secondary interest because it occurs at large beam size and low energy inside of the primary
focusing magnet of the RF photoinjector.

The qualitative similarity between the behaviour predicted by simple emittance
oscillation model and that found in simulation of RF photoinjectors points the way toward
the further analysis of the photoinjector, which differs from the model case in both

acceleration and nonuniform application of focusing. One prediction can be gleaned from

11



TESLA-Report 1996-12

the simple model even before we begin, which is that one should allow the photoinjector
beam to go through only one envelope oscillation, with further oscillations suppressed by
diminishing the space charge forces through acceleration. This must be done with some
care, and our analysis leads eventually to a quantitative préscription for obtaining this
condition in Section V.

This simple model has other aspects which help explain by analogy the behaviour of
RF photoinjectors operated in the emittance compensation regime. The artefact of the oscil-
lation frequency about the equilibrium being dependent only on the applied restoring force
gradient, which is what allows the correlated emittance developing in the beam ensemble to
periodically vanish, is not valid for all amplitudes in the beam envelope system. To lowest

significant order in the mismatch amplitude a(I(C))=(0'0 —O‘,q(I(é')))/ o, (1(0)), the

oscillation frequency is
V(H0) = 2K [t+&a(10))']. (2.9)

This anharmonicity in the beam ensemble generally precludes the vanishing of the
correlated emittance. Thus, there is an additional prediction that can be made on the basis
of this observation: excursions in the beam size should be minimized to produce the best
emittance compensation.

It should also be noted that, assuming laminarity (there is no "wave-breaking" in
transverse phase space) within a longitudinal beam slice is maintained, that phase space
correlations arising from radial nonlinearities must also behave as do the beam slices - that
is they should also be compensated. Maintenance of laminarity also implies that the beam

excursions from equilibrium be limited in amplitude,

12
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III. BEAM ENVELOPE ANALYSIS FROM CATHODE SURFACE TO INJECTOR EXIT

In order to perform the envelope analysis of the multi-cell 1n_]ector presented below,
we must first specify a model for the RF photomjector The model we adopt for the
accelerating structure is geometry-independent, since the accelerating RF field is written in
a Floquet form as a sum of its spatial harmonic amplitudes, and the RF photoinjector cavity
is assumed to be a multi-cell structure indefinitely extending along its symmetry axis. There
is however some specificity in our choice of the model for the static longitudinal magnetic
field produced by the external focusing solenoids: it is assumed to have a hard-edge
longitudinal profile extending over a few cells of the accelerating structure.

A typical multi-cell RF cavity employed in RF photoinjectors is shown in Fig. 3,
displaying the cross section of an axisymmetric iris-loaded structure terminated into a half
cell hosting the cathode (located at z = 0) and operated in a TMp10.x standing mode with
one-half wavelength cells following the cathode cell. The general expression of the RF field

components expanded linearly off-axis is[6]:

E,=E, Ean cos(nkz)sin(@r + ¢g) ;
n=1,0dd

E .= HEO ioln-an sin(nkz) sin(wt+¢g) ; G.1)
2 n=1,0dd

B, = c-]f-CEg 2 a, cos(nkz)cos(wr + ¢g) ;
2 n=1,0dd

where k =271/A = w/c, and a, are the spatial harmonic coefficients which depends on the

actual cavity geometry which can be easily computed by computer codes or derived by

experimental bead measurements. Due to the symmetry of the selected mode, all even a,'s

vanish, @) =1, and E; becomes the amplitude of the fundamental harmonic (speed-of-light

13
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phase velocity) component of the RF wave. All higher harmonic amplitudes are therefore
normalized to the value of the fundamental.

The external solenoid is assumed to be folded around the first 2+1/2 cells of the RF
cavity, producing a constant magnetic field B, = By from z, = A /8 (half way through the
cathode cell) up to z, =114 /8 (a quarter way through the thifd full cell). The beam
dynamics in the photoinjector are described using a three stage procedure:

a) The first one and one-half cells (from z=0 to z=2z,) are treated by using a ballistic
approximation, as described in Ref. 7. In this region the transverse plasma oscillation
begins, driven by the strongly repulsive space charge forces. The transverse dynamics are
dominated by the defocusing effects of space charge and a transient RF kick in the region
of the first ins.

b) In the following cells, i.e. up to the end of the solenoid field at z=z,, the envelope
equation is solved perturbatively with a constant beam size space charge approximation.
Here, the extra focusing applied by the solenoid field, in conjunction with the
ponderomotive RF focusing, overcomes the transverse space charge force and turns the
beam envelope from divergent to convergent.

¢) In the final region of the accelerator (beyond z = z,), the envelope equation is solved
initially as perturbation about an approximate solution, which provides a general solution to
the problem of the beam dynamics up to the end of the photoinjector. In the case of a nearly
optimized injector, this approximate solution can be replaced by a special exact solution
called invariant envelope. In this case, the normalized emittance associated with the
perturbed plasma oscillations is damped gently for a beam nearly matched to the invariant
envelope, while it can be excited to perform additional oscillations if the beam is
overfocused by the solenoid, going through successive minima and maxima.

The beam conditions ¢, and ©; at the second iris, i.e. at the end of the first
region, are reported in Appendix A (y, =1+37a/2 at ¢ = m/2). With the condition

o >1/2, the trapping threshold requirement which holds for any RF photoinjector[9], the

14
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beam at this point is quite relativistic, since typically v, =5-10. Rewriting the envelope
equation assuming B =1 and beam laminarity (neglecting the thermal emittance), Eq. 1.1

becomes

’ , ’ 2 . -
o +o Ly o(~71+b2) Y = Kf(g),' (3.2)
vy \8 vsin(g)) oy

where the normalized beam energy is given to excellent approximation by
y =1+ okzsin(@) + arcos(¢) =1+ ¥z +ocos(d), and we now leave out the explicit
indication of the dependence of ¢ on { and z. The ponderomotive RF focusing term
displays, through the quantity 77, its dependence on the higher spatial harmonic

amplitudes[6],

n=Yal | +a’,- 2a,_ya,,,c08(¢) (ag=0). (3.3)

n=l1

In Eq. 3.2 the perveance k() explicitly retains a functional dependence on the
longitudinal position { of the particular slice in the bunch, so that x5(¢)=21g()/Iy. As

shown through more detailed calculations in Appendix B, the geometric factor g({) is
2

¢
- 2 2
givenby g({) = e —2;? 1+A—2— [ —-c—zj[l-kln(ﬁD—l for a Gaussian distribution
Y oZ A2 \7

. 24 Y £y .
of aspectratio A=0o,/0,,or g({) = 1~ —[1+12 T + 80 T for a uniform
Y

distribution of aspect ratio A= R/ L, where R is the beam radius and L is the beam

length. In this section we will assume, for sake of simplicity, g({) = I({)/1

peat » SO that

x5({) does not depend on y; which is consistent with the relativistic approximation that
the transverse space charge field amplitude follow the beam current distribution. As a

matter of fact, since the bunch aspect ratio A is typically of the order of 1, the rest frame

15
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aspect ratio is such that A1 yz << 1 in the domain where Eq. 3.2 is applied (y> y;).
However, the generalization of the Eq. 3.2 to deal with analysis of bunched beam
dynamics will be performed in following sections, together with the analysis of the
emittance compensation mechanism.

To solve Eq 3.2, we apply a Cauchy transformation by changing the independent

variable from z to y, defined as y =In(y/7;), to obtain

— + Qo = e, (3.4)

with o=o(y) and S(¢)=2I(¢)/Ly,y? =x,({)/y,y”* defined to be the Cauchy
perveance. We obtain solutions to Eq. 3.4 employing two different techniques appropriate
to two distinct domains of propagation. In the first region, defined by

2 <2<z, (0<y<y,) with y, =In[(1+(5/2+1/4)7a)/ y;], the beam is exposed to

external solenoidal focusing. In this domain we  have
Q% =(n/8+b?)/sin’(9), where b=cBy/ Eg. The second domain, 2>z, is solenoid

free and hence Q=0 =(n/\/§)sin(¢). In the first domain the beam size o varies

slightly with respect to 05, allowing the approximation ¢ = @, in the nonlinear term on
the right hand side of Eq. 3.4. The general solution oy of the resulting linearized equation
is
. sin{Qy)
S T —cos(Qy)+ ——=
T i
o,(1+ Q%)

o, =0,cos{Wy) + 5, , (3.5)

where 6=do/dy and &,=0,y,/7 . Setting o, = 0y(y,) and &, = G1(y.), we can

perturbatively solve Eq. 3.4 in the second domain, assuming that the non-linear term on the

16
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right hand side may be represented by a particular solution of the form given in Eq. 3.5.

The perturbative solution in the second region &y then becomes

S{{)e ™ _ S(g)e""*‘-‘" -y, lo,
gll = [O’c - 'LG)T:ICOS[QO()) - Ty£)]+ o +

r .

(3.6)

[C'a Qe a+0,/0,)

o ]sin[ﬂo(y— Y ) Qe

where V¥ = Q% + (1 +6./ O‘C)z. The combination of Eqgs. 3.5 and 3.6 , together with Egs.

A.1 and A.2, allows the description of the beam envelope from the initial conditions at the
photocathode surface up to the photoinjector exit. While this treatment of the behavior of
o, is quite general, it will ultimately prove less useful than one based on the invariant
envelope given in the next section. -

The whole system, i.e. the beam and the external RF and magnetic field, can be

specified by means of ten operational quantities: the main quantities are the laser pulse

characteristics (spot size at the cathode &, pulse length o, =c0o; ), the extracted bunch
charge 0, the RF field quantities (field amplitude Ey and RF frequency v, ), the
magnetic field amplitude of the solenoid By, and the initial and final positions for the
solenoid field distribution, namely z;, and z.. The somewhat ancillary parameters
associated with description of the RF field are 17 and u (defined in Appendix A) which
depend on the set of spatial harmonic coefficients «,. In the following we will consider
the special case of 7= =1, i.e. a pure first harmonic RF field, because it greatly
simplifies the analysis without significant loss of generality. In the following we take also
¢ = m/2, which corresponds to the phase of maximum acceleration.

The beam envelopes resulting from this analysis applied to a multi-cell photoinjector

are shown in Figs. 4 and 5, with several different values for By for a typical set of

photoinjector parameters ( B, = 0 in Fig.4). In the upper diagram of Fig. 4 the bunch aspect
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ratio is A =1.25, with ¢, = 1.5 mm, corresponding to a peak current I=100 Aat g, =1
nC (I=ch/\f2_JEO'Z) and 400 A at O, =4 nC (2, =79 mm, ¥, = 8.7, =1.64); in the
lower diagram A =0.83 with ¢, =2.0 mm, giving 7=200 A at 4 nC (z; =174 mm,
v, =8.6 , o =1.62). The simulations were performed with the codes ATRAP [12] for the
S-band gun (Fig. 4 upper diagram) and ITACA [13] for the L-band case (Fig. 4 lower
diagram). A similar comparison is shown in Fig. 5, where the extra focusing due to the
magnetic field of solenoid is clearly displayed. It should be noted that by switching off the
space charge term in Egs. 3.5 and 3.6 one obtains the dotted curve plotted in Figure 5, for
the case of By = 0.5 kG, which is clearly mismatched with respect of the simulation curve,
indicating the relevance of the non-linear space charge term in our analysis.

It is useful to recall that a transient angular kick Ag’=+7y'c/27y [6] (corres-
ponding to AG =-+0/2) must be added to the secular beam envelope at the gun exit in
order to transform it back into the actual envelope. What is meant by the distinction secular
in describing the envelope is the following: the secular envelope represents the actual
envelope averaged over the cell-to-cell oscillations caused by the alternating gradient
focusing effect associated with the backward component in the RF standing wave, as
discussed in Ref. 6. The good agreement between the analytically predicted envelopes
(dashed lines) and the numerical simulation data (solid lines) gives a significant
confirmation on the capability of the present model to predict correctly, within the domain
of interest, the beam envelope characteristics.

It is interesting to note that the first two terms on the right-hand side of Eq. 3.5,
which scale linearly with the initial conditions ¢, and &, correspond exactly to the linear
transport matrix elements derived in Ref. 6 for the evolution of the secular envelope in RF
linacs as faras b=0, i.e. Q=8 is set. Therefore, Equation 3.5 represents the extension
of the analysis performed in Ref. 5 to the case of an external magnetic focusing added to
the RF ponderomotive focusing, as well as the contribution from the space charge field,

which is given by the third term on the right hand side of Eq. 3.5.
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IV. THE CONCEPT OF INVARIANT ENVELOPE

Due to the excellent agreement between the analytical and numerical solutions to the
envelope equation for space-charge dominated, strongly accelerating beams in the
preceding section, we now extend our analysis to find a particular beam propagation mode.
This mode will be shown to be analogous to the Brillouin flow for space charge dominated
beams in focusing channels discussed in Section IL

First of all, we begin by transforming the envelope description in Eq. 3.4 from the
Cauchy space (0,y) into a dimensionless Cauchy (7,y) space which displays the
fundamental parametric dependence which governs the beam size evolution. By defining
the dimensionless quantity 7= o/ ~/S (we are now, for the sake of compactness, leaving
as implicit the dependence of S on { ), the envelope equation in the éauchy dimensionless

space (7,y) reads

ALY P ) @.1)
a? T

The scaling of the beam size with the square root of the perveance in this analysis naturally
agrees with the scaling laws set down in Ref. 17, in that the beam plasma frequency is the
same for any envelope of the same 7.

We are interested in the third region (z > z,.), where, taking the case of n=pu=1

and ¢ = /2, which imply that Q = Q, =1/~/8, the envelope equation reads

2 e Y
+
dy

2,
a!

|

ola

4.2)

~2

T

which is a universal scaled equation, independent of any external parameter.
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Since the quantity VS (which has units of a length) can be related to the transverse

plasma frequency @, = 1‘47? e ’ U ,’ , it is interesting to note
Y m, IU

f ~y/2 ,y /,},)
that the function 7 can be expressed as r=" L2 with £,=w,/c. In
Yo k, 2

this form it is clearly shown that 7 scales like the ratio between the local plasma

wavelength A, =27 /k,, which sets the defocusing length of the beam, and the local
incremental energy gain length L, = v/ ¥’, which sets both the beam adiabatic damping

and RF focusing lengths.

Equation 4.2 has, like Eq. 3.4, a general perturbative solution,

-y ~y+(e=Y) T/ T,
7 =[rc -eT ::|cos[§20(y-yc)]+ e’ T

= 7.2

s (4.3)
. _y 1 1.' :] \ I ! 2

T2

with =L +[147./7.]* and Qo =1/+8.

Within this family of solutions there is a notable particular solution,

= 8 — Y1
F=of=e2 (4.4)
3
. - ’8 = ,2 3
corresponding to T =.j—e- W2 | T =-—,|—e 2, d E=

characterized by having a plasma frequency Ep =\/§ L}/ which is proportional to the

. This solution is

ponderomotive RF focusing frequency and (imaginary) adiabatic damping frequency up to
a fixed constant. Another way of viewing this is to note that the ratio between the two

fundamental scale lengths, Z, and A - 15 in this case exactly constant, i.e. A L= \/g .
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This is achieved because the scaling of the plasma frequency as ﬁ Y% is exactly

matched to the energy gain, including the reduction of the beam size & with energy, which

~ 4 |1 . . .
2, namely 0 =—; | ——. This constant relationship between Z, and A,

-1/
scales as y 7 \3lor
also explicitly indicates that the invariant envelope is indeed an equilibrium-like solution in
the Cauchy space. Further, it obviously displays the equilibrium-like that there are no
periodic oscillations associated with it, but nearby orbits will oscillate about it; these
oscillations will be studied in Section V.

The invariant envelope 7 has the extremely relevant property that it is the only
solution displaying a constant phase space angle 8 (6 = 7/ 1), independent of initial cond-
itions 7, and 7, in all of the three spaces (Cauchy dimensionless (7,y), Cauchy (o, )),
configuration space (0,z7)). In fact, §=%/%=5/6=-1/2, so that in both Cauchy
spaces the phase space angle is a universal constant, while in conﬁgﬁration space the phase
space angle 8, = Y6’/ &=—7' /2 is a constant (the trace space angle is 6"/ G =~/ 27).

Further, the most important attribute of & on the invariant envelope is that it does

not depend on the beam current, which is embedded in the perveance scaled variables .

and 7. For this reason the solution 7 will be called the invariant envelope; its invariance

in phase space angle with respect to current is exactly the basic condition to obtain a
vanishing linear correlated emittance as the final state of the beam. In fact, it is well known
that the emittance growth from linear space charge effects is due to the angular spread in
phase space distribution of different bunch slices, which receive different kicks from the
space charge field. In analogy to the discussion of the emittance oscillations in the beam
mismatched to the solenoid in Section II, these different beam slices may be represented by
different current amplitudes in Eq. 3.4, with the full beamn represented by the ensemble of

beam slices.
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It is interesting to observe that, under the invariant envelope conditions, the space-

-y

. e ’3 —y/2 . . . ‘o

charge term in Eq. 4.1, —= ge 2 is dominant over the focusing term, which is only
T

one-third of the magnitude of the space-charge term, —g-z-;- ée"y 2

2 . Adiabatic damping
of the angular divergence due to acceleration provides an additional (daﬁping) term which
counteracts the space-charge defocusing in the envelope equation, but it should be noted
that the second derivative of the invariant envelope is always positive, thus classifying this
trajectory as unstable. This in fact must be the case, since a stable trajectory would imply
oscillatory, or nonlaminar, behavior: one of the main consequences of such a characteristic
of the invariant envelope is the simultaneous damping of the beam spot size ¢ and the
beam transverse momentum p, =y0’ =-yG/2 as y 12,

Since we solve the envelope equation under the assumption of laminarity, the range

of validity of such an hypothesis should be investigated. Rewriting Eq. 4.1 by taking into

account also the thermal emittance term defined by Eq. 2.2 we find

2 -¥ fA 1 2
d_'zf + Q' = e_+(_e,,,,,,7 £ °) -1? (4.5)
dy T 21 T

When the beam is on the invariant envelope 7= 7, the second term on the right-

32 while the space charge term decreases as ¢™>'%. In

hand side of Eq. 4.5 grows as e
order to preserve the condition of quasi-laminarity, so that the beam can be considered

space-charge dominated, the space charge term must be larger than the emittance term. This

condition holds up to a position y, =1In §l—,— , beyond which the beam enters the
31E, 477>

region where becomes emittance dominated. This position corresponds to an energy 7,

,8 21
= [2 ) 4.6
v 3Le, Y @0

given by
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Since the thermal emittance £, ,, is typically of the order of 1 mm-mrad, and taking
the relatively high accelerating gradient found in the plane-wave transformer (PWT) linac at
UCLA, which is 7'=30 m-! (E;=30.6 MV/m), we have 7, =6.4/[A]. This energy is
quite a bit larger than that obtained at the UCLA PWT (16 MeV), which like all existing
standing wave photéinjecﬁtofs has a peak energy Jess than 25 MeV, but with peak beam
currents in excess of 50 A considered typical.

Another relevant assumption made above was that of longitudinal laminarity, which
means that different slices do not mix with each other. This assumption is not violated in
general since, as previously discussed, the longitudinal plasma period is much longer than
the typical time scale of emittance compensation (i.e. of one plasma oscillation in the
transverse plane). Since the longitudinal plasma frequency, which is suppressed in
comparison to the transverse frequency by a geometrical factor @, = @, (0, )_1 -1,
where for large beam rest frame aspect ratios g =1, the number of plasma oscillations in
the longitudinal plane is typically much smaller than one. The major result of this
longitudinal plasma motion, which unlike the transverse motion has little restoring force, is
to lengthen the pulse in a laminar fashion; there is relative motion of the beam slices, but
they do not overtake each other.

When the beam leaves the accelerating structure one must add a positive
(defocusing) kick Ag’=+y'c/2y, as previously mentioned, to obtain the correct
connection between the secular envelope in the gun and the actual envelope outside. Since
the corresponding kick in the Cauchy space is A6 =+0¢/2 , and in Cauchy dimensionless
Ar=+1/2, it can be clearly seen that a beam propagating through the structure on the

invariant envelope, for which T=-7/ 2, will exit the RF structure as a parallel beam, i.e.

4 I
Of=— , 4.7)
Iy V oYy

with T=0=0"=0 and
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where 7y, is the exit beam energy. This condition is a useful experimental diagnostic of

emittance compensation in practice.
The parallel exit condition on the beam envelope points out the analogy between the
invariant envelope and the Brillouin flow. In fact the two flows can be matched at the exit

of a standing wave linac; equating Eq. 4.7 with Eq. 2.2 one can find that a focusing

gradient X, = (\E ;: J produced by a solenoid of field amplitude B, = \[g MY can
f e

achieve this match, preserving the beam's mean angle in phase space to be vanishing after
the linac.
The converse of the exit condition just discussed is the following entrance

condition: a beam entering a standing wave linac must have initial beam size given by

4 [1
o, =— , (4.8)
Y\ 3Ly,

with vanishing divergence. In other words, the beam must also enter on a parallel

trajectory. The implications of this condition for operation of a split photoinjector,
consisting of a short RF gun followed by a drift space and a booster linac, are discussed in

Section VI,
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V. EMITTANCE COMPENSATION

External control of the beam spot size and emittance evolution in a long RF photoinjector is
accomplished through the variation of the solenoid field strength, which allows one to launch, at
z=7,, a beam envelope which may be optimized for achieving low emittance performance. It is
obvious from the previous section's discussion that this particular envelope solution is of interest
from the point of view of emittance control, and so we now concern ourselves with two
examination of two issues. The first is how to achieve this "matching” of the beam to the invariant
envelope at the end of the solenoid, while the second is the investigation of the subsequent phase
space dynamics of a real beam ensemble with a spread in trajectories. Both of these issues are
critical in understanding the phenomenon of emittance compensation. We have argued that
operation on the invariant envelope is the condition for optimum erﬁittance compensation, in the
sense that the beam (the ensemble of all beam slices) fully matched to the invariant envelope
displays no further emittance oscillations. It will be shown below that this is only part of the story;
beam slices which are not directly on the invariant envelope perform stable oscillations around the
invariant envelope, leading to secular damping of the normalized emittance of the full beam
ensemble.

At this point, we now wish to find here proper gun operating conditions, in terms of the six
free parameters (spot size at the cathode o, pulse length &, bunch charge O, RF field amplitude
Ey and frequency vy, magnetic field amplitude By), able to achieve a beam matched at z =z, to
the invariant envelope. In order to reduce the number of free parameters we need to specify the

matching conditions in the Cauchy dimensionless space, we turn to a set of four free parameters,

a, A, A.and &, defined by

,AEJ",AE--—-{-—— EE—I?Q-. (5.1)
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These quantities are physically described as follows: « is the dimensionless amplitude of the RF
vector potential, 4 the bunch aspect ratio, A the Cauchy current density and & the magnetic-to-RF

focusing ratio. These tuning parameters are linked to the six previous free parameters by
k=2nvgr/c, y’=éE0/mcz,"I:Qc/w./braz, while the Caiuchy current density A is

given[14], in terms of the current density / by A= 3% and is linked to the Cauchy perveance .§
Y

by A=2Iy> iz The merit of the set of four parameters given in Eq. 5.1 consists in the
or

possibility of expressing the beam conditions 7 and 7, at the exit of the second cell (z=2z)

entirely in terms of these four, as reported in Appendix A, instead of the previously used six
parameters.

The matching conditions at z =z, can be expressed as

[e"y ¢ —cos(Qy, ) +sin{Qy, )}/ Q]

\Ee'yf/z = 7, cos(Qy, ) + T sin{Qy, ) / Q +

1.'2(1 +92)
e ¢ —Qsin(Qy, ) - cos(Qy,
\/ze_ycf2 = Q7 sin(Qy, ) — 75 cos(Qy, )+ [ ( c)2 ( c)] (5.2)
3 T2(1+Q )

where 7o =17(a,A,Ab) and 1) =7(a,A,Ab) are given by Eq. A.1, while
Ye=In[(1+(5/2+1/4)ma)/(1+3mer/2)] and 0?2 =(1/8+b2). The first two parameters are
restricted by practical considerations to a limited range, thatis 0.7< <3 and 1/4<A<2.
Therefore, we solve the two expressions in Eq. 5.2 by expressing their roots as A; = A (¢, A) and

by = by(a, A) which can be well approximated by the expressions

2
23526600 + 2834 - 1880A + 8042 — 5.343 - 15.64—13.24
AsliAl= 1.33+0.94A (33)
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and

77.8+4.8A
all4

JAs(a,A)[%—o.SM0.28A)—7.1A

5700 —28.5+ ~0.15A, (a0, A)+

b, =107 (5.4)

These quantities are plotted in Figs. 6 and 7 respectively, as functions of a at different

values for A, i.e. A=2,1, 1/2 and 1/4. In general, the Cauchy current density A, increases with
 up to a maximum @, beyond which A is no longer defined. The behavior of the values of
b, are plotted in Fig. 7, for the same values of A, up to each corresponding O,y -

The upper part of the operating diagram in Fig. 6, the region above the dotted 1ine, is in fact
forbidden, because in this region the bunch charge is in excess of the maximum which can be

extracted from the cathode surface. This fundamental limitation, as i)redicted theoreticalily[15] and

observed experimentally[16], sets the maximum achievable current density Ji;,,, according to the
non-relativistic Child-Langmuir law, in the form Jy,,[A/ cm?]=300 v’ /o[ ps], valid for short

bunches ( o[ ps]<< 1180/ ¥*). The condition can be cast in terms of Ay, as

324

— 5.5
o oyl 1] )

Anax[kA]=

The dotted line plotted in Fig. 6 represents the limitation A, for a typical bunch length of

Oy = 2°. Clearly, the optimum operating points should be relatively far from the A, line,

because of the severe energy spread induced by the longitudinal space charge field at extraction
from the cathode surface (if operating on the line, the photoelectrons in the bunch tail would
actually see a vanishing accelerating field at the cathode surface due to the cancelling of RF field by
the space charge one). Such a correlated energy spread, i.e. the dependence of energy on the phase

or slice position in the bunch, produces chromatic aberrations in the transport through the solenoid
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field and RF focusing channel, which can prevent the emittance correction process from proceeding
correctly. An obvious cure is the use of off-crest acceleration to compensate the space-charge
induced energy spread with an opposite effect from the RF field. In practice, this may imply
operation far off-crest if the Cauchy current density approaches the limit given by Eq. 5.5.

It is interesting, for sake of illustration, to plot the current density J and cathode spot size

o, corresponding to the line A (&, A =1), drawn in the Cauchy operating diagram of Fig. 6, once
the RF frequency vy =27@ has been fixed to some representative values, namely 650 MHz, 1.3
GHz, 2.856 GHz and 6 GHz, as shown in Fig. 8 and 9. As anticipated from the Cauchy operating
diagram, each frequency has a definite window in the RF field amplitude in which operation of the
injector in the space-charge compensation regime is possible: the dashed lines set the maximum

current density limit corresponding to, for the upper line, a bunch length of 5 psec, and for the

lower line of 10 psec. The cathode spot size &,, plotted in Fig. 9, corresponds to a bunch charge

ces - . c A . - .
of 1 nC; it is given by the relation o, = }/ Ef—;’/; , showing the expected scaling as Q}y 3 as

anticipated in Ref.17 .

In order to better illustrate the predictions of the operating diagram in Fig.6, we choose a

point on the diagram, specifically one onthe A=1lineat & =1.3 , which corresponds to A, =144
kA. Choosing the RF frequency to be 1300 MHz (L-band) we obtain F, =36 MV/m for the peak
cathode field and &, = 0.87 mm for the cathode spot size and o, =1.36" RF for the bunch length,
once we choose the bunch charge ¢, to be 1 nC. The peak current comes out to be 7 =137 A while
b, = 0.85 implies a magnetic field B, =1.02 kG . The three representative currents, corresponding
to three slices, are in this case (cfr. Appendix B Eqs. B9 and B10) /=137 , I =163 and I =97
. The numerical integration of the envelope equation are shown in Fig.10(a) (solid lines), where the

case for B, =0 (no solenoid focusing) is also plotted (dashed lines). The corresponding three slice
emittance is shown in Fig.10(b): as predicted, the normalized emittance is actually corrected only

for the case of a beam following the invariant envelope.
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We now are in a position to discuss in more detail how the emittance cotrection process
works when the injector is operated under the invariant envelope mode, i.e. it is set at the
prescribed A and b for a chosen A. Let us rewrite Eq. 3.4 in the third region (y>y.) by
explicitly showing the dependence of the Cauchy perveance § and the ponderomotive focusing

frequency Qg on the slice position C in the bunch:

d* 1 S -
+ o(yp.6) = 5.6
L’)’gz 85in2((¢)—kg)} Og:4) O'(J’g,C)e G0
where the Cauchy perveance now becomes S(Q):—-—zé‘c@—f, the average accelerating
Iyy DY (&)

gradient y'($) = aksin({¢)~ k) (with (@) defined as the bunch average phase) and the initial
normalized energy y.({)=1+ -%% sin({¢)— k{) + orcos({p}—k{). As indicated by the subscript
¢ in the independent variable y, , Eq. 5.6 represents actually a family of equations, one for each

slice located at a distance { from the bunch central slice, in the variable

(9, [1+a-kz-sin((¢)_k§’)+acos((qb)—kC)
=1 —_— :1
& “[n(o} ' 720

transformed, in analogy to Eq. 4.2, to read

]. This family of equations can be

i ‘ 00D = 5.7)
+ (yr ) = :
b2 Tsn((@)-k0) | T wW0¢0)
where 7(y,,8) = G(zi,;)‘) . The invariant envelope then reads
2¢7Y/2 5.8)

T= ,
1
1
\F 2sin2((9)~ k&)
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which in configuration space is simply

__2 215(4)
@0 Y'(§)

(5.9)

1

As already discussed in Section IV, we know that the condition to have a vanishing
correlated emittance growth is that the phase space angle of different slices are equal. In this
respect, any effect which induces a correlation, i.e. 2 ¢ -dependence, will produce an emittance
increase through the spread of phase space angles of the different slices. The RF effects are
basically chromatic, and their phase dependence is typically quite a bit weaker than the dependence
of the effective perveance in Ig(C ) in Eq. 5.8, since A>>0,. We thus neglect the chromatic
contributions to the dynamics, and concentrate on the charge dependent effects in which the
longitudinal correlation of the transverse space-charge field gives the Cauchy perveance § a slice-
dependence through the geometrical factor g(£). This condition makes the transformation from
Cauchy space (0,y) to the dimensioniess Cauchy space (7, y) dependent on {, an effect which
is absent in continuous beams, as previously discussed in Section IT and analyzed further in Ref. 7.
In this spirit we also set the average phase of the bunch to 7 /2, which corresponds to maximum

4 Ig({)

acceleration. We therefore write Eq. 5.9, under these approximations, as 6(z, H=— EwR It
Yo

obviously is straightforward to generalize the following analysis to include arbitrary accelerating
phase.

Under the assumption of a monoenergetic bunched beam, the Cauchy transformation from
21

’

z to y is again {-independent, and we now write 5= S(§)= 5 8(£). We have already

shown that the invariant envelope is characterized by a phase space angle independent of the
Cauchy perveance S5, and hence on the current. We now demonstrate that this condition

corresponds to a vanishing correlated emittance growth. Since we are dealing with transverse forces

30



TESLA-Report 1996-12

which are linear in the radial coordinate, the transverse trace space distribution of the quasi-laminar
beam {r,r’) is represented by an ensemble of straight segments, one for each slice in the bunch, as
depicted in schematically in Fig. 11. In this figure only two of these line segments are drawn, one
for the central slice (located at { =0, having spot size ¢, and divergence 07), which is subject to
the peak space ¢harge field, another for a slice located at {-= o, (with trace space variables o_ and
"), where the space charge field is smaller for typically encountered current distributions, and this
reduction is represented by the geometrical factor g(o;)<1. The normalized rms transverse
emittance, defined by the relation &,(z) = Bye(z) = ¥&(2), with &(z) given in Eq. 2.7, is explicitly

evaluated as

£,(2) = %J(O'i +02)o7 +07)-(0i0, +0lo. )
(5.10)

= l;--\((()'+0': —0_61)2 = -72:|o‘ ol -0._0’|

As can be seen from Eq. 5.10, the rms emittance in this two-slice case is identical to the common
geometrical definition of emittance; it is simply the area of the triangle given by the origin and the
two rms phase space points corresponding to the slices.

Tt should be emphasized at this point that each slice is represented for simplicity by a straight
segment in phase space, which is a zero emittance distribution, because we are neglecting the

thermal emittance £, ,, according to our assumption of quasi-laminarity. In practice, this emittance,

which is added in squares with spatially correlated sources of emittance, can be estimated to

beeg, , = o',«/ki'"/mec2 , where the effective (rest frame) temperature T of the beam electrons is

determined by the photoemission process, which for metal photo-cathodes is less than 1 eV, and
semiconductor cathodes is expected to be one order of magnitude smaller. With these thermal

effects, each beam slice's phase space would be a bi-Gaussian distribution whose rms ellipse has

an area (the slice emittance) proportional to the thermal emittance 7€, ,,. The emittance £,(z)

defined by Eq. 5.10 represents a reversible emittance growth which can be corrected by proper
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beam manipulation, as we are discussing, while the thermal emittance ¢_,, does not arise from

reversible transformations and is, in this sense, a true Liouvillian invariant, as discussed in Ref. 15.
It should also be recalled that we are neglecting the emittance due to nonlinear space-charge fields in
this discussion as well.

Assuming for the sake of discussion that the two representative slices follow their own

- = _-_ [8 e 4 ,
invariant envelopes, we have 7, =7_=7= %e 2 which implies oy = ? Tl'y g({=0) and
0

G_zi\/Lg@':o'z). For the invariant envelope, we have ‘.?/?——-—1/2, and thus

Y N3y

’ ’

4

(ol =~2L o, and o’ =—-2Lc'_. It is readily verified that under these conditions that the
Y 14

normalized emittance defined by Eq. 5.10 vanishes; the invariant envelope is the propagation mode
where all the bunch slices are aligned in the transverse phase space.

Clearly, to achieve this ideal beam propagation mode every slice in the bunch must be

matched at the invariant envelope, that is o_({) / NS =7, = ge‘ﬂ'ﬂ = ,}gi Vv . This is an
Ye

impossible condition to fulfil, and in practice, only a small section of beam can be exactly matched.
In this regard, the matching discussed in previous Section, dealing with the conditions A_ and b,
necessary to operate the photoinjector on the invariant envelope, is clearly an rms matching,
because the beam conditions 7, and 7; (Egs. A.7 and A.8) are given in terms of the RF and space
charge kicks averaged (in the rms sense) over the Gaussian charge distribution. Because of this,
only a beam slice equivalent to rms beam is matched, the other beam slices can be considered in
general to be mismatched from their invariant envelopes. The dynamics of these mismatched
envelopes can be analyzed by perturbation of Eq. 5.6 or its equivalent about the invariant envelope
of the matched slice. We thus assume in the following an rms matching and take the equivalent rms
beam slicetobe o_ =6 = '?E , with §;5 =5, = 5({ = 0,), matched to the invariant envelope
7, while 0, =(7+67)y/Sy (with S, = S({ =0)), is slightly mismatched by a quantity &7 from its

invariant envelope.

Y

Substituting o, and o_ in Eq. 5.10, and recalling that ¢"=-—1+/§, we obtain
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y’Sr

£,(2)= §|(o'_ +80)0” - 0_(0 +80’)| = L5 |67 + 264 (5.11)

Expressing £,(z) interms of physical quantities associated with the invariant envelope, we

find that

2 I
g,(z) = y’ g( )]507 ‘+2y80'|=— 1507 +2?’5‘7| (5.12)

where we set g(0) =1. We can see that the normalized emittance is proportional to the beam size,
which is monotonically decreasing on the invariant envelope; we shall now show that the term
inside of the absolute value sign is in fact bounded, and so the emittance also displays a generally
monotonically decreasing behavior. -

We first study the behavior of deviations from the invariant envelope in Cauchy space, by

linearize Eq. 5.6 around the solution represented by Eq. 5.7 to obtain, for the small amplitude

motion about the invariant envelope

§t+ Q25— f'r:ah[m%ﬂar:o (5.13)

showing an oscillatory behavior

ot =0r, cos[a)(y - yc)] +%sin[w(y— yc)]
w

(5.14)

L .

ot = --E)—sm[a)(y— yc)] + 81, cos[co(y-— yc)]

for &t around the invariant envelope with frequency @ = \/2(22 +1/4, with the constants of

integration derived from conditions at y =y,. Since Q2 =(1/8)sin?(¢)=1/8, the motion around
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the invariant envelope is stable, so that any beam injected slightly mismatched to the invariant
envelope will follow a trajectory oscillating about it.

This stable motion has, like the small amplitude oscillations discussed in Section II,
frequency independent of the space-charge strength. This is in fact a general property of the
superposition of a linear focusing force with associated frequency. Q and a repulsive inverse
power law force (power —a) which has a particular equilibrium-like solution, in this case the
invariant envelope. The small amplitude oscillations about this particular solution then have
frequency 1+ aQ, which depends on the power exponent of the repulsive force, but not its
strength, and is always proportional to the linear focusing force strength.

Tt can be seen in this case that the total potential must exhibits a local parabolic well at the
intersection point of the attractive and repulsive force terms. The potential terms which give rise to

these forces are shown by the Hamiltonian associated with Eq. 5.7,

2 2 :
H()’,C)=—pz'f'+[£} -e )glnf s Pr=T, (5.15)

in the conjugate variables (7, »,). The Hamiltonian // is not a constant of the motion, as indicated
by the explicit dependence on the independent variable y. The perturbed Hamiltonian, however, is
a constant for small amplitude motion about the invariant envelope. The resultant simple-harmonic
small amplitude motion can be seen to be manifestly Liouvillian, and the (7, 7,) phase space area
(an emittance, which we discuss further below) is a constant of the motion as well. This fact
guarantees that the normalized emittance must damp as 7—” 2 as illustrated by the two-point
emittance given by the second form of Eq. 5.11.

To further illustrate these points, it is perhaps more instructive to view the oscillations
around the invariant envelope in physical variables at this point. The physical space analogue to Eq.

5.13 which describes oscillations about the invariant envelope can be written as
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Yo 1(7Y
30'”+[—)60"+——[-Z—] 56=0. (5.16)
Y 2y

This equation has the general solution

8o = 8o, cos(y)+~2 [Z‘;J&J: sin(y), with
4 (5.17)
1

e (Lo

where ¥ = —\;?ln(}}-’;-), do.=0,- —;% \/;E and éo, =0, + 3{04?% 7 for the mismatched
(core) envelope. Tt can be seen that the determinant of the matrix of the (30‘, 60") transformation is
simply ¥,/ ¥, which is expected from adiabatic damping of the transverse oscillations. Thus we
see that the normalized offset emittance associated with the phase space of the perturbed
oscillations centred on the invariant envelope is conserved. This is to be expected from the
Liouvillian nature of the perturbed envelope system.

Before discussing a general distribution, we first examine the behavior of the two-slice case

introduced in Eqgs. 5.9. In this case the emittance is given by

2 |(Ig(o,)
'\ 3Ly

£,(z) = (60, + 2807y, )cos(w) +(807y, - 8o,y W2sin(y)| .  (5.18)
Equation 5.18 shows the expected y‘” 2 damping of the normalized emittance, with anharmonic

oscillations of periodicity 2 times shorter than the period of the perturbations about the invariant

envelope.
For the case of a general n-slice distribution, with a symmetric spread in mismatch

amplitude about the invariant envelope, it can be shown by extending the above arguments that the
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normalized emittance that is projected by this distribution of phase space orbits offset from the

origin in phase space, has the form

£,(z) =Y \f(502>(5d'2)—(50'30")2 +62[(50’2) 2i(rScr&:r )+[%) (60'2>]

T

where we have defined used the definition of the normalized offset emittance of the distribution,

, (5.19)

= \/ejﬁ, + &2[((760 ) )+ y'{8c(v60”)) (

M|‘<

Eq = 7{00°N80%)~ (600"Y’, (5.20)

and the indicated averages are over the n-slice distribution. The normalized offset emittance is a

constant of the motion; it can be evaluated, for example, at the beginning of invariant envelope

propagation as £, = yJ(Eo*f )(5022) ~{85,607)" . 1t is also clear from Eqs. 5.17 that the term

inside the square brackets in Eq. 5.19 is bounded and oscillatory. Therefore we can write the

general form of emittance evolution as

£(2) = \/e§ﬁ+6'2(a+bcosz[w+ 6.]). (5.21)

where a,b and 6, are constants describing the orientation of the offset distribution, and
w =4kz//3.

A schematic picture of the phase space of a beam which is matched in the rms sense to the
invariant envelope is shown in Fig. 12. For the sake of illustration, the familiar form of an ellipse
is used to indicate the offset phase space distribution boundary. This ellipse has an invariant area
T, , and rotates with the same frequency as the envelope oscillations, @ = 4w,/ V3. Fig. 12
shows the "secret” of emittance compensation; reassuringly, there is a Liouvillian space of orbits

about the invariant envelope with conserved phase space area - the phase space-centred rms
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emittance of beam damps as the offset from the origin (6,6} of the distribution approaches the
origin in phase space. The normalized offset emittance can be therefore thought of as a strict lower
bound on the phase space-centered normalized emittance of the distribution. One cannot actually
extrapolate the damping .of the emittance to this level, however, as this would violate the
assumption of quasi—léminaﬁfy, which requires that thé offset be larger thah the spread of beam
sizes in the distribution. This argument implies the normalized emittance must be several times

larger than £, when the emittance compensation process is halted by nonlaminar (cross-over)

beam trajectories.
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VI. THE CASE OF A COMPACT GUN WITH BOOSTER LINAC PHOTOINJECTOR

While the long RF photoinjector analyzed thus far is encountered in practice, with the noted
examples of the' LANL photoinjectors APEX and AFEL, it is much more common experimentally
to employ a compact RF gun ( N+1/2 cells, N< 3) followed by a drift space, and a booster linac.
In this configuration, the beam is focused by a solenoidal field applied as it exits the short gun. The
beam then drifts after focusing, undergoing a diminishing portion of an emittance oscillation as the
beam becomes smaller, eventually minimizing as a beam waist is reached. The booster linac
entrance is placed at this point to begin acceleration, extending further the process of emittance
compensation. This waist should be chosen to both give a small emittance at the waist point and to
match onto the invariant envelope associated with the beam current and energy, as well as the linac
accelerating gradient. An illustrative example of such a system i;1 shown in Fig. 13a, which
displays the rms envelope and emittance evolution of the beam in the TTF-FEL photoinjector as
obtained from a PIC simulation performed with ITACA [13]. The analytical prediction of the
correct invariant envelope in this case is shown for comparison in Fig.13b. It is very close to this
optimization found by performing many such simulations, thus validating the approach to
photoinjector design we have deduced from this analysis.

The number N of full cells in the gun is variable in this analysis, but the validity of the
approach followed here is confined to a few cells. The most commonly encountered case in
practice, of course, is one full cell. We will also consider, as a particular case, the possibility to
slightly vary the length of the first half cell, as it is known from experience that a slightly longer
(typically 0.625 instead of 0.5) first cell gives better performances in terms of emittance correction.
This generalization, while a departure from the model employed in the previous sections, is
necessary for an accurate comparison of the theory to actual RF photoinjector configurations.

The basic strategy of the analysis presented in this section, in which we must specify the

optimum envelope behavior in the drift space, is not a search for an invariant envelope-like

38



TESLA-Report 1996-12

solution, but a matching of the beam envelope from the drift space to the invariant envelope of the
booster linac. The model in this case is slightly changed with respect to that shown in Fig.3: first,
the point z. is now located at a variable position given by z. = [(1 +d)/2+N ](%) , which becomes
the end of the RF gun cavity structure, and the beginning of the drift section. Here the quantity d
accounts for a change in the first half cell length, i.e. d=0.25.indicates a 25% lengthening (0.625
cell). We will also show that the optimum field profile for the solenoid magnetic is different from
the previous (long gun) case, where the magnetic field begins at zp; =1/8 and ends at
4y =(5/4+1/8)}t. For the compact injector the field start position is shifted downward at
zg1 = A/2 , while the end position is shifted downward at zgy =(7/4)A . As discussed in the
following, the longer magnetic field profile is needed basically to provide more focusing from the
solenoid in a case where the ponderomotive RF focusing in the following cells is not only missing,
but the exit defocusing transient kick at the end of the gun must be overcome.

The beam energy y. (at z=z.) becomes "7c=y2+(/V—1)Jra, with

=14+ 3 Jra:| 1+ i ad- (é + E—)ﬁ again the energy at the second iris position (as derived in
nET 2°7\2773 )24 &Y P

Appendix A). Since the drift space downstream of z. is free from any accelerating and/or focusing

force, the envelope equation becomes, in this case,

2

4 P El’l
o’ - — - 22 =0, (6.1)
c oY,
»_ 40 : . .
where 0" = — and P = 2% is now defined as the beam perveance (the assumption y,.>>1 is
< 0l

understood). According to the assumption of quasi-laminarity, we neglect the emittance term and

cast Eq. 6.1 into the space (v,z) as

= 0, (6.2)
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where v(z)=0(2)/ \NP. Typical values for the perveance are, in case of a 100 A beam at

y,=1+57/2=9 P=16-10", so that for a 1 mm beam spot size the quantity v is of the order

of 1, as isv' when ¢’ is a few mrad. Eq. 6.2 can be derived from a Hamiltonian
2

H= 221’- =-Inv (with p, = v'), where /A is now a constant of the motion, so that

vV =4vi+2In{v/v,), (6.3)

which gives the trajectory solution for Eq. 6.2 in integral form

viv,

j dx _(z=2)
L yv2i+2lnx v,

6.4)

The integral in Eq. 6.4 is not analytically solvable unless the ”approximation l-v/v|<<1

is done, which is in fact typical of an RF gun operated in the emittance compensation regime, as the
beam size oscillations must be kept small both to prevent nonlaminar trajectories and to keep the
oscillation frequency nearly independent of the perveance. Indeed, in practice, the beam exits the
gun with a small negative divergence o7, so that it is transported up to a space charge-dominated

waist with a spot size usually slightly smaller than o_. In this case the approximate solution is

2
(1+v2)/ [14] L ¥e22 6.5)
¢ V.V.+Az

where Az =z -z, . The initial conditions (V,, v..) are given, in terms of the beam conditions at the

'
v, - V.Az

W=v<2-
@)=V, V.V + Az

gun exit (7,7, ), by
T, Y2 ..\ 7
Ve =—5,75 vé=(tc+—‘) —y (6.6)
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recalling that (v, v;) correspond to actual envelope variables, which Eq. 6.6 connects to (1. %),

secular envelope variables.
In order to match to the invariant envelope at the entrance of the booster linac, we need to
find, the conditions uiider which the phase space angle corresponding to the solution to Eq.6.2is

invariant with respect to the beam current I, or, equivalently, to the perveance 7. This is

equivalent to requiring
y 4 d v r
do’/o) (V/v)=~17(v£!——v’ﬂ]=0. 6.7)
dP daP 1% dpP dP
Since v . { v (see Eq.6.3), we have d(v/v)= 1 (1- ’z)ﬂ. Therefore,
dP Vv'vdP dP Vvl dP
d(o’/o)

P =0 ifeither V2 =1V z (which is not possible to fulfil, because it is not a solution of

Eq. 6.2) or % =0. Since v depends on 2 through the initial conditions (v_, v.), the condition

av . .
— = 0 is equivalent to
dP

dv. 4av.
___C - ——c - 0 N 6-8
P dP (6.82)

which in turns is equivalent to the condition

. , (6.8b)

where the Cauchy current density is given by A =

(vo,)
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It should be noted, however, that the invariance of the phase space angle at the end of
the drift given by Eq. 6.7 is achieved only through the invariance of the initial conditions
versus the current. The reason for this is that the phase space angle v’/ v associated with Eq.
6.5 is not intrinsically invariant, unlike the case of the invariant envelope, where the phase
space angle is a constant £/7=-1/2. In this respect, Eq..6.2 does not display any invariant
envelope solution, i.e. any solution for which v’/ v = consz. equivalent to the Brillouin flow

condition given in Eq. 2.2, where the phase space angle is again a constant o, /g, =0.

To better clarify this point let us examine the equation for small deviations dv around

an equilibrium solution v, of Eq. 6.2. Assuming dv/ v, <<1, we find

v + — =0, (6.9)

giving stable oscillations with frequency 1/ v, around the equilibrium solution 1. As far as the

beam envelope can be represented by the approximate solution (Eq. 6.5) in the drift space,

implying that the beam size varies slightly between the initial condition v_and the beam spot at

the waist v,,, we may identify v, roughly with the expression of Eq. 6.5, so that the drift

space up to the waist (and slightly further away) is comparable to a quasi-Brillouin flow
condition with a local stability condition similar to the one described in Section II. Since the
beam size, in absence of any focusing, grows indefinitely after the waist, the frequency of
oscillation 1/ v, around the equilibrium solution is decreasing and the nonlinearities (see Eq.
2.7) in the oscillations preclude any further vanishing point in the correlated emittance, as
clearly illustrated in examples shown below.

It is interesting to notice that Eqs. 6.8 are equivalent to a vanishing correlated emittance
at the waist position; this requires that the waist position Az = 7, — z, and the waist beam spot

size V,, are independent of the perveance,
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1
=0 Az, =V f V' =
4r with ) e,{-ﬁ,ﬂ/v *+2Inx.  (6.10)
dP=0 v, =ve

The function /(v ) is plotted versus V. in Figure 14. For the purpose of further

analysis, we note that /(v/) can be approximated (within a 5% error) by the function

109V s
g(Vr)= m+0.423vc€_0'296 )

< 6. This range easily covers all RF

photoinjectors of interest, as a larger value of |v;| implies a strongly convergent beam which

will be susceptible to nonlaminar behavior near the waist. The conditions in Eq. 6,10 are now

written explicitly in terms of the initial conditions at the start of the drift as

v, ,, A

1) QRIS
¢’ ap € ch . (6.11)
dv, ; _
1P V.V, =0
. . . . av, av. . .
This system of equations allows solutions different from —< = —= = 0 if the determinant of
. . _ N i L] . . L
the coefficient matrix, detM =-v | v/f(V/}+ |8 vanishing. By applying the Leibniz
VC
_ . df (v’)
formula for the derivation of definite integrals, we find T =1-v.f(v.), so that
. s V. _dv;
det A/ = —v_, which can never be vanishing, =—=%=0 and
dP dP
[dAZ dv = O:I are in fact equivalent.
dP dP

In order to derive the solution to Eq. 6.8 in terms of the beam conditions (7,,7,) at the

second iris position (z=z,), as reported in Appendix A, we approximate the envelope
equation in the region of drift with applied solenoid field (i.e. zy<z< zp,) as

v+ Kv= — (6.12)
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where v, = % , and X, =[b—j/)2, and so the space charge term is taken as a
271(473) Y2

constant, its the value assumed at the gun exit. This is valid only for a 1+1/2 cell gun, for

which the beam energy at the exit, 7,, is constant all over the drift space: however, the

treatment can be easily generalized to the case of a N+1/2 cell gun. In the N=1 the drift space

is divided into two parts. In the first one, from z =z, =(3/4)A up to z=2z. =257 =(7/4)A,

the beam is subject to a focusing solenoid field, while for z >z, the drift is in free space.

Under this approximation Eq. 6.12 can be easily solved to find

(l—cosa)+ ,sin@

v, =V,cos0 + v,
vk, VK, (6.13)
sin 8 )

V==V, /K sin@+ + Vv, cos @
VZ \‘Kr .

where 8=+K (z-2), and hence

dv, dv, (1-cos@®) | dv,siné
—L=—=lcos8 - > +
dP  dP VK, dP K,
i d - v (6.14)
e Vo) K, sin@ - szm +22 0050
dP  dP v K, | dP
. . e s 1-cos@ .
The determinant of the coefficient matrix is derived to be detM, =1+ YT which clearly
2%y
. T .. dv, av, .
implies det M, >1 , indicating that the only solutionis —==—=%= 0, which we know to be
ar dP
equivalent to
dt, (6.15)
%29
dA
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where 7, and 7, are specified in Eqs. A.7 and A.8 as functions of (&, 4, A, ). Following the
same procedure as in Section V, we solve these two equations by expressing their roots as
A=A(a,4) and &=5(a,A). The system is highly non-linear, so that we start by
expressing the first of Eqs. 6.14 as

dt 1] A A 1
dr, 1] AL ®E@) _Iny | pl_g (6.16)
dA A\ 21, 4 Y1

which can be solved for the variable b=~2 \j”(l_n_i(‘?ﬁj[l_ﬂ] / 1:{-"—2].

0 721 1f)
Substituting back into the second of Eqs 6.15, we obtain an equation in A, and 4. By a

fitting procedure we obtain the following solutions

A7 [kA}=573-124a +2.630* +26.2A —1.780A +1.86A° 6.17)

and

=149 LT 207

The Cauchy perveance A is plotted in Fig. 15 (solid lines) as a function of o for
some usual values of A. It is interesting to note that A” is nearly independent of o for
o 2 1.5, while it decreases almost linearly with o for « <£1.5. Its dependence on A is fairly

linear in most of the diagram, so that the following scaling laws hold:

AP e A if x21.5

, _ (6.19)
AP < AB-a) if ax<1.5
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which can be cast in terms of the bunch charge @, cathode spot size o, accelerating gradient

¥’ and RF wave number k

0,=c’y? ifazls
Q, <o y*3-y'/k) if <15

(6.20)
which resemble the scaling laws reported in Ref. 17.

As in Fig.6, the Cauchy perveance A_, (see Eq. 5.4) compatible with the maximum

charge limit is plotted in Fig.15 (dotted lines) for a bunch length ¢, = 2" (the higher line) and
o, =4’ (the lower line).

The parameter b%, which represents the ratio between magnetic and RF focusing,
turns out to be nearly independent or the aspect ratio A, as shown in Fig.16, where b% is
plotted as a function of « for different values of A (it should be noted that Eq. 6.18 displays a
simplified form for b*' which has already removed the very weak dependence on A4). It
should be also noted that #”" is much higher than the analogous parameter b, (see Fig.7)
required in the case of the indefinitely long photoinjector. This is due to the fact that the
additional RF focus.ing applied in the long photoinjector is missing here, causing the need of an
enhanced extra-focusing from the external solenoid.

The current density J corresponding to the A, lines is plotted (solid lines) in Fig. 17,
for some selected RF frequencies (650 MHz, 1.3, 3 and 6 GHz), at aspect ratioc A =1, The
maximum limits for the current density are also reported, in case of o, = 5 psec (higher dashed
line) and o, =10 psec (lower dashed line). The required cathode spot size &, (for the case of
a 1 nC bunch charge) are plotted in Fig.18, for the same set of frequencies and at different
bunch aspect ratios.

It should be noted that the operating point to achieve the emittance compensation shown
in Fig.13a and 13b has been derived by the operating diagram in Fig.13, selecting the point
a=18, A=1/2, A=56 kA, giving at L-band E =50 MV/m, o, =0.76 mm and
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o [mm] = ——— (6.23)
’ 1 2 2
7' [m™1] 0.9140A - 0.11“A - 0.150A

_ JTTA] [3.76+1.5600~1.58a + 0260 +0.564 +}

As an example, for an L-band injector operated at v, =13 G4z, with Ep =56
MV/m(y’=55 m™!, and a =2) the optimum A at A=1 will be A7 =68 kA, while
BoP* = 0.92, so that the solenoid field will be Bg=1.7 kG. Assuming a bunch charge

Q, =1 nC, the laser spot size at the cathode &, will be, recalling that &, = ;{’% f ;;42 ,
¥4

A
o. = 0.84 mm. The beam current will be givenby I= Qe = Qc =142 A, so that
’ gvensy 1= Jars, <27,

the beam spot size at the waist will be o%" = 0.94 mm, while at the gun exit ¢, =1.9
mm. The waist will be located at z%P' = 0.793 m. It is remarkable to note that the waist
position scales with explicit dependence only on the RF field and wavelength, not the
bunch charge and/or current (which are derived quantities), in agreement to what is
observed in Ref. 17.

In case the first half cell is lengthened by, say, twenty percent, as is done in many

new RF gun designs, we have re-calculated A+ and &, to obtain

Aort [£A]=58.33-11.83c +2.5202 +27.344 - 1.81604 +1.8842, and (6.24-a)

por =138+ 222 186 (6.24-b)

\/E s’

i.e. behavior very close to that one of the standard half cell. The predicted position and spot

of the waist now become

z,‘j,P’ = (Z)ﬂ. + 1 9.940 + 2.590% + 0.18A — 2.6504 — 2.96 (6.25)
4 y’
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J 5242140 —1.77a% +0.27a° +0.19A +
¢ %' [mm] = ,I[g ) ) (6.26)
¥ Im 1} 0.9504 - 0.0580%A — 0.1904

Taking the same example as before, i.e. for an injector operated at L-Band
(Ve =13 GHz)and £,=557 MV | m (hence Y =54.6 ) and o = 2) the optimum
A,at A=1,is now A» =70.4 #A , while Ao =0.89, so that the solenoid field will be
Bg=1.64 kG. With a bunch charge g, =1 »C, the laser spot size at the cathode ©, is now
c,=0.83 mm ,and the beam current becomes /=144 A, so that the main parameters
are almost unchanged, as for the waist position, which is z0P'=0.804 m . On the

opposite, the beam spot size at the waist is now larger, being o' =13 mm .
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VII. CONCLUSIONS

We have discussed, in some detail, the properties of the invariant envelope, which
is a particular beari propagation mode characterized by a phase space angle which is a
globally constant. Under the hypothesis of quasi-laminarity, which is equivalent to the
assumption that the beam is space charge dominated and the number of plasma oscillations
considered are small (in order to avoid transverse and longitudinal mixing), we have shown
that the invariant envelope is a mode propagation which damps the correlated emittance -
provides emittance compensation - as 1/ W , so that the possible emittance dilution of a
beam, due to longitudinal-transverse correlations caused by either space charge or any other
source (RF, etc.), can be corrected by transporting the beam under an invariant envelope
mode. While we have concentrated here on standing wave linacs, the invariant envelope
exists in other types of structures, with and without externally applied focusing forces, as
summarized in Table L. In general, RF linacs allow acceleration under invariant envelope
both in standing and traveiling wave operation where the correlated emittance oscillations
are damped due to acceleration as the invariant envelope beam spot scales like 1/ \/? . Drift
spaces, on the other hand can be operated in the invariant envelope only with an external
focusing to set up a true Brillouin flow condition: the drift space after a compact
photoinjector is, in this respect, only an approximation of invariant envelope.

Also, this In any case, the emittance oscillations are not damped in drifts, so that
one must quickly accelerate the beam after the drift, starting from the first emittance
minimum, if the onset of thermalizing processes, which transform the reversible emittance

oscillation into an irreversible temperature emittance growth, are to be avoided.
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Beam Transport Invariant envelope Space Emittance damping |
Standing wave linac Secular Cauchy Yes
2z
dimensionless
2sin2 < ¢ >
Standing wave linac Secular Cauchy Yes
e—_)'f 2
plus solenoid dimensionless
an
g 1
+ —
\ sinf<¢> 4
Travelling wave Actual Cauchy Yes
linac e 2 dimensionless
Travelling wave Actual Cauchy Yes
g—_‘l‘f 2
linac plus solencid D 1 dimensionless
P ——— + —
\j;ﬂ <¢p> 4
Dnift No Real dimensionless No
Drift plus solenoid Brillouin Flow Real dimensionless No
P
g, ==
X,

Table L. Properties of invariant envelope flow, where possible, in various types of

beam transport and acceleration.

As shown in the table, travelling wave linacs operated with an extra magnetic focusing,

provided by a solenoid surrounding the accelerating section, may be in principle equivalent

to standing linacs, where the focusing is

provided by the RF ponderomotive effect, as long

as the magnetic focusing ratio & = ¢4, | E, is chosen to have the value b=+nl2.

A transport line made by different sections which are all operated under their own

invariant envelope mode is of course a gl
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final design of a photoinjector which must be operated in the emittance correction regime
will be therefore made up by a Lego” -like array of accelerating and drift sections
properly matched and operated under invariant envelope. Care must be taken that this array
include the final transport from the booster linac to the application, so as to avoid emittance
growth after initial compensation. In general this means, for transport which is longer than
one-quarter of a plasma wavelength, that the beam be focused often enough (typically by
quadrupoles) to approximate Brillouin flow after the photoinjector linac, with the beam
controlled so as to not make large excursions in spot size. For discrete focusing elements
such as quadrupoles, this means that the elements must be placed within one-quarter of a
plasma wavelength of each other.

In matching different sections one should however be careful about what kind of
orbit the invariant envelope is expressed to: secular or actual. In standing wave linacs the
envelope is given in terms of a secular orbit, i.e. an orbit averaged over the cell-to-cell
oscillations, so that at the entrance of the structure one must subtract a focusing
Ao’ =—y'c | 27 kick to the beam envelope conditions of the previous section in order to
match to the secular envelope. In case the previous section is the drift space between short
RF gun and a booster linac, one should position the space charge dominated waist directly
at the entrance of the linac, as discussed in Section VI: the initial divergence of the secular
envelope in the booster will be in this way o’ =-y'c/ 27y, which is exactly the first

condition to be on the invariant envelope. The second condition, 1e. 0=—;

Y {34y

, can be

easily achieved by simply tuning the accelerating gradient y’ for a given energy, current
and spot size of the beam at the booster entrance. It is remarkable to note that this
prescription on the matching condition has been observed in several simulations of RF
photoinjectors[18].

If the booster linac is a travelling wave structure the matching conditions are

different because the envelope is expressed in terms of the actual orbit and no transient kick
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must be applied at the booster entrance. A converging beam should be injected into the
booster, in this case, in order to match the invariant envelope conditions: this is again in
agreement with the results of multiparticle simulations[19].

Finally, in case of a long multi-cell RF photoinjector structure we recall that the
beam, if transported under the invariant envelope, must leave the photoinjector cavity with
zero divergence. Due to the typical high energy of the beam, as in case of the 10+1/2 cell
AFEL photoinjector [20], the beam envelope is assumed to stay parallel for a long drift
after leaving the photoinjector(21]. Therefore, a parallel matched beam emerging from a
long multi-cell photoinjector is therefore a sign of proper operation in the emittance

compensation regime, as experimentally observed[22].
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APPENDIX A

The expressions for the beam exit conditions ¢, and o} at the second iris location
7z =z, are reported in this Appendix. The expressions given have been derived for a
Gaussian charge distribution in the bunch, of dimensions o, and ©,, with the range of
validity is specified by o > 1/2 and Qp[nC} < Eg{MV/mJ/10, as extensively discussed
elsewhere[7]. The formulae reported here correspond to the particular case ¢ = /2
examined in Ref. 7, augmented with the focusing effects of the solenoidal magnetic field.

Let us define the beam energy 7, and 7, at the first and second iris location,
namely 7, =1+7a/2 and 7, =1+ 370/ 2. The solenoid field starts at z, = A/8 and
extends to due z, = (1/8+ 5/4)A, and the transverse forces imparted to beam electrons
during acceleration, are represented by a defocusing RF term Ap”- , a defocusing space
charge term Agc and a focusing term Ag produced by the magnetic field of the solenoid.
Expressed in terms of two auxiliary quantities, U =ia,, ( p=1 for an ideal first

1

harmonic field for which @ =1, & =4;=...=0) and [, = ‘—5]—5%%., they take the form
Y2

r

Apﬁf =“[1+# _#}Og '}’1)]_ n(l—(a!4')2)108(72)[1+u_%@] (Al)

71 8 2(n-D
1
Age = +;u.;c)[1"—qgﬁ,2_).‘l (A.2)
7,1
Ay =5%1log*(7, Fy)l2 (A.3)
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In practice the RF term, which is a function only of ¢, is nearly constant with a
slight oscillation around the value 1.06 all over the range 1/2< <3, as shown in Ref.7, for
the case of i =7 =1. In the following we will therefore take Ap#F =1.06.

Finally, the beam exit conditions ¢, and 0} are:

g,=0,(1+ A —A,) (A.4)
Gy =0, — 2};2 o (A.5)

where o is the secular envelope divergence, while o’ , is the actual orbit divergence

o, = %—0',(1. 06+ 1t ;o — 28 4(L+ Age — A ) 1og(¥, 1 7,)) (A.6)

2

The space charge impulse factor u - contains a geometric form factor £(A4) (see

Appendix B), which depends on the bunch aspect ratio A, approximately as
1

S = 518245 ~ 0,554

According to the normalization applied in Section IV to transform the transverse
27

LY?7,

beam size & into the dimensionless quantity 7, defined as 7= ol \/3 with §=

L]

we give here the corresponding quantities 7, = 0, /S and 1,= -—7,2—33-}. Using the
Y

quantity A defined in Section V, A = pzye the dimensionless beam conditions 7, , 7,
Y

r

and 72% become:

7, = 1}%{” [u + ”%}1)" ][1 - 1‘;3(_7_’21)]— 521082 (¥, 1 75}/ 2} (AT
2
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oss_ ) [1 _ 108(7’2)]+ l(AA (1 N 1og(m}+ 10gx( X)) 4-
R 3 A S T 7, -1 % | g
\2n
b2log(12 )[1 + [u + TEAA )AJ[I - M)_ 57 1ogi(12)/ 2]
| 5 44 v, -1 s )
106 + FEAA
; Ly, 0
T;rb = 072 (AS'b)
b*log(L2)| 1+ (u 4 A J(l _ log( 72)) ~ b log*(L2)/ 2]
Ve 41, Y21 Ys

which are functions of only four parameters: o, 4, A and & (recalling that 7,, v,, and
¥, are functions only of a).

Let us assume now that the first half cell may be different, in length, from an exact
quarter of RF wavelength, so that the first iris is located at z, = (1+d}A/4 and the second
one at z, =z, +A/2. Following the calculations by Serafini (L.Serafini, in Advanced

Accelerator Concepts, 45 (AlP, 1993)), we can express the beam energies ¥, and ¥, in

the form
2 2
yo=1+ 2 1424 (5+”sz Dy =148 4 -S—d 5,504\ (a9
2| a9 \16 2 2 273 j24
while the term Ap® and A, become
#{1+H—M;g(}f)]—
- 2
AphF =4 ) (1 +24- -‘3—] (A.10)
n(l—(a/4t))logm){lwmulog(n%)} 2
L g 207, -1)
=[p(1+0.2475d)+usc]-[1-19}%“'—21)]. (A.11)
—_
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The actual orbit divergence at the second iris, o7, , is found to be

’ 2
Cop = %o;[l.%(l +—§-d —%—)+usc —2A,(14 Ay — Ap) / log(y, / y,,)] (A.12)

2

Finally, the dimensionless beam exit conditions 7, and 72 at the second iris are:

n{(A)A log(7,)
1.7 1+ (,u(l +0.2475d) + TJ':] - —-2—:| -  and

T, = “‘27 0 7, -1 (A.13)
b log’(y, 1 ¥,)12
i 2
].06[1.;.2‘1_9_]4_@_
30 2 41,
[T
L =1f£—jf< 1+[,u(1+0.2475d)+ ”ﬁf)/‘ )(1—]°g(721)]— . (A14)
bz ]og(—h) 0 72
L b log2(L2)/2
b o
APPENDIX B

The transverse rms kick due to the space charge field is represented by the

factor i~ in Eq. A.2 for a Gaussian distribution of transverse size o, and

longitudinal o,, with total charge Qp. As extensively reported elsewhere {7], U;c

is calculated by averaging (in the rms sense) the transverse electric field component

of the bunch £ (at rest in the laboratory frame),
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L D
2l o2(l+r) ¥ (l+ A%

o ~ e
Ex(r,f)= d B.1
)= e o, oy @+ 270+ A22) ®D
N 9, rr_ ¢
d distrib $)= - - , to get
over the charge density distribution p(r,{) (23)3 ,20'305 eXp - 267 207 0 ge
y2
(4 1
Usc= #{Zjﬂp(n OB (r,{)rdrdpd( } (B.2)
0 r v,
which can be cast in the form p ;. = M—,
4y 20
1
) =1 [ anf ar [ararm)aeazey+2+ A+ )T g
o o T2 [A+5)A+x5)+2+5+n]
£(A) can be represented within 1 % error in the range 0 < A < 6 by the function
|
&(4)= (B.4)

2.45+1.824%4 —0.554%"

Since u. is actually the global rms space charge kick on the bunch, we are
interested in evaluating the kick ut. applied on the central bunch slice, located at {=0, and

the one 3, applied to the slice located at {=0; . These are given by

Zx oo 1/2
TORNLLY ¢ T B LT 0)£2(r,0)rd d 55
i 2:%7'6,[\EQJO cpjnp(r, )E2(r,0)rdr | , an (5.5)
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r L 12
Hie =5 [\E % [dofptrorE O'Z)rdr] : 5.6)
0 r 0 0
7/S*( . mle(4)
which can be cast in the form 1}, = 4;’;’,20_; and p5. = I}(,é?;o'—f ,
1
2 PR e L )
Er)=4[ dn [ dr [+ 425 X0+ 422,)] , and (B.7)
[(1+.r1)(1+x2)+2+x1 +x2]

g-(y={ [ an [ a, Bal-1-Uaraim)-Uasan)/2) |1 oo
_ y B
] [(1+I1)(1+A‘2)+2+.13 + 1) [(1+A2'1’1X1+A2x2)]”2

It is convenient to re-define the kicks u*. and uj, in terms of re-scaled currents /+

nl(A)S(4) /- (A)E(A)

and /- : pi-= 47,707 d uz = 47,720

, where

2.45+1.82A% - 0.55A"
I )
1.84 +1.95A% — 0.65A%

I*(A)= (B.9)

2.45+1.82A% —0.55A%?
I(A)=1 B.10
(A) 3.84 +1.74AY* —0.34AY? ( )

are valid approximations for /* and /- in the range 0 £ A < 6. At A=1 we have
I'=119-Tand I =0.71-1.

In order to calculate the geometrical form factor g({) we consider here only the
linear component E,({) of the space charge field in Eq. B.1, i.e.

1§

203(1+I’x)

8O =E, @)= dx

, which is the source of the perveance term
(1+x)2J(1+A x)

x5(¢) in the envelope equation; we want to study its dependence on the slice position ¢
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for low aspect ratios A = A/7 in the rest reference frame. For highly relativistic beams,

i.e. ¥ >>1 the transverse space charge field dependence versus the longitudinal position {

resembles the behavior of the charge density distribution: in fact, we have
2

g&)—=— exp[—-z%-z—], as expected, For small A we approximate g(£) with its Taylor

expansion up to second order in A around A =0, to obtain

H

S 2
gl) = e {1+Zzl:(l-?J(%+logK)—]}} + O(A%) (B.11)
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FIGURE CAPTIONS

1. Emittance and envelope evolution for a slightly mismatched beam ensemble beginning

with a minimum beam size and vanishing correlated emittance, in linearized limit.

2. (a) Envelope, and (b) emittance evolution of 1300 MHz RF photoinjector design, from

PARMELA multiparticle simulation.

3. Schematic cross section in the (r,z) plane of a typical RF multi-cell cavity of a
photoinjector gun: the RF field distribution on-axis is plotted together with the electric field

lines of the TMpjo.r mode in use for electron acceleration.

4. Beam envelopes through two different 10+1/2 cell RF guns (vrr=2.856 GHz E; =100
MV/m upper diagram, vgr=1.3 GHz E, =45 MV/m lower diagram). Dashed lines give the

secular orbits analytically predicted, while solid lines are numerical simulation results.

5. Beam envelopes through a 10+1/2 cell L-band RF gun (& =45 MV/m, 1=200 A,
Op=4 nC) at different amplitudes By (in kG) of the solenoid magnetic field.

6. Operating diagram in the (¢, A) plane for an indefinitely long multi-cell Photo-Injector.

7. Parameter 5, , plotted as a function of ¢, at some values of the bunch aspect ratio A, for

an indefinitely long multi-cell Photo-Injector.

8. Current density J plotted (solid lines) versus the cathode peak field £, [MV/m], at

different RF frequencies (indicated in MHz), for a multi-cell Photo-Injector operated in the
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emittance correction regime. The dashed lines show the limit of maximum J for two

different bunch lengths.

9. Cathode spot size Gy, plotted versus the cathode peak field £, [MV/m], at different RF

frequencies, for a multi-cell Photo-Injector operated in the emittance correction regime.

10. (a) Envelope and (b) emittance evolution as predicted by the operating diagram in
Fig.6, obtained by numerical integration of the envelope equation, with and without

solenoid focusing applied (solid and dashed lines respectively).
11. Description of a bunched beam via two representative slices in the trace space (r,r).

12. Schematic drawing of the phase space of a photoinjector beam rms matched to an

invariant envelope. The offset phase space area is a Liouvillian invariant.

13. (a) Envelope and emittance evolution of the beam in the TTF-FEL photoinjector as
obtained from PIC simulation. The analytical prediction of the correct invariant envelope in

this case is shown for comparison in (b).

1
14. Plot of the function f (v;’ ) = de/ q/vf +2Inx (dots): the solid line gives a fit of the

R

function, namely g(v/)= %}3’—2— +0.423v7g 02967

3

15. Operating diagram in the (o7, A) plane for a short (1+1/2 cell) Photo-Injector.

16. Parameter b , plotted as a function of o, at some values of the bunch aspect ratio A.
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17. Current density J plotted as a function of the cathode peak field E, [MV/m], at different

RF frequencies, for a short Photo-Injector operated in the emittance correction regime.

18. Cathode spot size o, plotted versus the cathode peak field E, [MV/m], at different RF

frequencies, for a short Photo-Injector operated in the emittance correction regime.
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