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Abstract

The interaction of a relativistic beam with the modes of the TM1q pass-band
of a multicell cavity does not cause any problem : although all the modes are
excited by the RF generator, resulting in different cell excitations during the
cavity filling and the beam pulse, the net accelerating field exhibits negligible
fiuctuations from bunch to bunch. However, when the beam is not fully
relativistic, this is no more true. The phase slippage occurring in the first
cells, between the non relativistic beam and the lower pass-band modes,
produces an effective enhancement of the shunt impedances, which is usually

- negligible for a relativistic beam in a well tuned cavity. Moreover, the
voltage jumps (amplitude and phase) occurring at each bunch passage, as well
as the beam detuning caused by the off-crest bunches, vary from cell to cell.
These effects enhance dramatically the fluctuation of the accelerating voltage,
with a dominant beating provided by the pass-band mode nearest to the pi-
mode. The induced beam energy spread has been estimated by the help of two
distinct codes, developed at Frascati and Saclay, with results in good
agreement, While an interaction integral is computed at each bunch passage,
the cavity refilling is calculated by solving coupled differential equations of
the “modes” of the pass-band, driven by a generator linked to one end-cell. It
is shown also that the intermode coupling arises from the external Q of the
drive end-cell, and not from the wall losses. For illustration, we applied the
method to the beam-loading problem in the SC capture cavity of the low
charge injector of TESLA Test Facility installed at DESY.
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1. INTRODUCTION

In addition to single bunch eftects, induced in particular by space charge forces,
multi-bunch effects due mainly to propagation of the RF field wave will affect the
guality of a non relativistic beam accelerated by standing wave structures. The study of
these beam loading eftects, which could limit the performances of injectors involving SW
cavities, led to the development of numerical codes : HOMDYN {1], which includes
space charge effects and transverse motion and MULTICELL (2], which involves the
longitudinal motion.

After a cavity filling time, the cavity is periodically refilled by RF power during
the bunch to bunch interval. We are then first interested in the evolution of the field
amplitude along the structure, driven by a generator, coupled to an end-cell. Although the
generator frequency is set close to the accelerating pi-mode, all the “modes” of the TMgjp
pass-band will be excited. The transient behavior of driven standing-wave structures has
been extensively studied for many years. In Ref. (3], for example, the multi-mode
analysis permitted to explain the distortion of RF field responses to a pulse of pi-mode
RFE drive, by using Laplace transforms. More recently, in the aim to study the beam
loading effect in the superconducting cavity TESLA for a relativistic and on-crest beam,
the multi-mode problem was solved by using systems of first order differential equations
[4] or Laplace transforms [5].

In this paper, we use however another approach, by directly solving the
differential equations relative to each usual mode of the pass-band {6], provided that an
intermode coupling term is taken into account. It can be shown in fact (see Appendices
for further details), with the help of the theory of coupled resonators, that the usual
“modes” of the pass-band, found in the steady-state regime and computed by cavity
codes like Urmel, are coupled through the external ) of the first cell, and not through the
intrinsic wall losses of the cells, due to the orthogonality relation of the eigenvectors. The
excitauons Z,, of these “normal modes” of index m are then found by solving the

following system of coupled differential equations (equation B-3 of appendix B)

- @, - o . 5 1, d ~ - -
Zny +§j'zm + T Eizklnkzk + 0,2, =.#‘T€LEJ.S(’I X H, (r 1) E,,(F) dS

L d (1)
———j J(F.OEQ(F)dV
£ dt Vcav

The first driving terms represents the generator current, while the second integral
along the whole cavity represents the beam interaction with the mode m and will be

computed at each bunch passage.
The coefficient T, is the normalized excitation of mode m at the center of cell n.
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The evolution of the fields for each mode of the pass-band during the cavity filling
and during the bunch to bunch interval is found by numerically integrating the system (1)
with the generator current as driving term. Since we are particularly interested in the
evolution of amplitude and phase envelopes of the RF fields, which are slowly varying
functions, this second order system can be easily transformed to a first order differential
equations system. At each bunch passage, the longitudinal motion of the particles and the
perturbation due to beam-loading on the field envelopes are obtained by numerical
integration.

2. THE RELATIVISTIC CASE

The propagation of the RF pulse from the generator location through a multicell
cavity (the 9-cell TESLA cavity) was simulated by using the differential equations
reported in the Appendices. The field envelope at the center of the first and last cells
during the cavity filling are shown on figure 1.
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Figure 1 : field envelope at center of cells during the cavity filling

This transient behavior is similar to the one found in Ref [4]. With an expected
gradient of 25 MV/m, the figure 2 shows the evolution of the E; field at the center of the
first and last cells, but during the beginning of the relativistic TESLA bunch train (bunch
charge of 8 nC and bunch spacing of 1 ps) . The first bunch is injected after the pi-mode
filling time #, = T, Ln 2. Figure 3 shows the accelerating fields, provided by all the
individual cells and after averaging over all cells. It is worthwhile noting that the energy
gain provided by the first and last cells is slightly smaller, because of the fringing field of
the endcells, and that ail bunches gain on average about the same energy amount. For a
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well tuned cavity and with a relativistic beam, the average of the accelerating fields for all
modes vanishes to zero, except of course for the pi-mode. However, since the pi-mode is
coupled to the other excited modes through the Qex, some fluctuation remains. The figure
4, plot of the total accelerating voltage during the entire TESLA beam pulse, points out
the residual oscillations, mainly caused by the nearest mode of the pass-band, decaying
according to the time constants of the modes. The induced bunch-to-bunch energy spread
is nevertheless very small, 3 106 at the beginning to 0.5 10-6 at the end.
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Figure 2 : E, field at center of cells with a relativistic bunch train
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Figure 3 : cell accelerating fields and average with a relativistic bunch train
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Figure 4 : Accelerating voltage evolution during 800 bunches

3. NON-RELATIVISTIC BEAM

With a non-relativistic beam however, the situation changes completely: the effects
of the modes lower than the pi-mode do not cancel any more. The phase slippage
occurring in the first cells, between the non relativistic beam and the lower pass-band
modes, produces an effective enhancement of the shunt impedances, which is usually
negligible for a relativistic beam in a well tuned cavity. Furthermore, since the beam
phase is slipping all along the structure, the field jumps and the detuning due to the off-
crest beam vary from ceil to cell. Some appreciable fluctuation of the output energy
during the beam pulse is then expected. This multi-bunch energy spread is here estimated
for the SC capture cavity of the low charge injector I of the Tesla Test Facility [7].

3.a TTF Injector 1

Figure 5 shows typical plots of the energy gain and the beam phase with respect to the
RF wave for a single bunch going down the 9-cell capture cavity. A gradient of 10 MV/m
and an injection energy of 240 KeV were assumed. Before reaching a stable value, the
phase shift varies rapidly especially in the first celis.

The out of phase component of the energy transfer to the beam will thus vary
along the structure, resulting in frequency detunings, which will change from cell to cell.
The total frequency detuning is about 110 Hz, i.e. almost one third of the cavity
bandwidth. The following table 1 points out the contribution of the different cells to the
frequency detuning, with the largest detuning provided by the second cell.
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1 2 3 4 5 6 7 8 9

16.2 38.5 16.5 10.1 7.15 5.15 423 3.4 9.3

Table 1 : Frequency detunings (in Hz) of the different cells (1 to 9)
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Figure 5 : Energy gain and beam phase shift along the SC capture cavity
(the cavity profile is also shown)
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3.b Beam detuning compensation

When a beam is running off-crest, a cavity detuning, in addition to the critical
coupling, is generally introduced [8] in order to cancel the reflected RF power and thus to
minimize the RF power fed by the klystron. In the steady-state regime and for critical
coupling. the tuning angle must be set to the RF phase with respect to the beam phase

-TAWw, =tany = tan(@,r — @p)

The generator and the cavity voltages are then in-phase. Furthermore, it will be shown
later that this beam-detuning compensation will decrease the cavity voltage fluctuations.
The phasors diagrams are drawn on Figure 6, without (a) and with (b) cavity detuning.

(a)
v |
o : Vg
4Vb (pc N B ¢b D _
Vace
(b)
V
- b
\
\
\
A Y

Figure 6 : Phasors diagram without (a) and with cavity detuning (b)

In order to have a constant accelerating voltage during the beam pulse, by
balancing the rising generator voltage and the beam voltage, and neglecting the other
modes than the pi-mode, the beam should be injected after the beginning of the RF power

pulse with a delay
o . Vocospy . .
t, = T Ln2 with cavity detuning, and £, = 7 LnT without cavity detuning.
b

3.¢ Energy Spread

The beam loading effects will differ according whether the cavity detuning is
introduced or not, and also whether the power coupler is located upstream or downstream
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with respect to the beam. Computations are now performed with the low charge TTF gun
(bunch charge of 37 pC and bunch spacing of 4.615 ns).

Figure 7 shows the evolution of the energy gain on a short-time scale (1000
bunches). without beam detuning compensation and with the coupler linked to the in-cell
or the out-cell. The accelerating voltage exhibits fluctuations with a main beating due to
the nearest 8n/9 mode spaced 0.76 MHz apart from the pi-mode. The shape of the
oscillations is similar and the multi-bunch energy spread amounts to 9 10 in both cases.

Figure 8 shows the same plots, but with a cavity detuning of -110 Hz. The phase
of the generator is assumed to track the cavity phase, at least during the field rise time.
We note that the accelerating voltage fluctuations are about two times lower, giving a
multi-bunch energy spread of 4 10,

Figures 9 and 10 show the accelerating voltage evolution on a longer time-scale,
like the TESLA beam pulse duration of 0.8 ms (about 173 333 bunches for injector I),
without and with cavity detuning. Without cavity detuning, the average compensation of
the beam loading, by adjustment of the different parameters (generator, beam voltage or
injection time), is not possible, resulting in a large slope on the cavity voltage at the
beginning or at the end of the beam pulse. Conversely, the average compensation can be
obtained when the proper cavity detuning is introduced. We note again that the voltage
oscillations decay with the time constants of the other modes of the pass-band.
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Figure 7 : Energy gain evolution without cavity detuning
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Figure 8 : Energy gain evolution with cavity detuning.
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Figure 9 : Energy gain evolution on a longer time-scale (without cavity detuning).
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Figure 10 : Energy gain evolution on a longer time-scale (with cavity detuning).

3.d Transverse dynamics in the bunch train

We report in this paragraph some computations including space charge effects on
a short time scale (1000 bunches) and without cavity detuning, (see Appendix C). Single
bunch computations are shown in figure 11 at the nominal accelerating field of 10 MV/m.

As already pointed out the in the previous paragraph the dynamics of the
subsequent bunches could be strongly influenced from the field propagation effects : the
beating that produces energy spread affects also the other beam parameters. In figure 12-
16 are shown the effects on length, radius, emittance and Twiss parameters a and B for
the bunch train head (first 1000 bunches) at the exit of the capture cavity. We are
concerned about this effect on a short time scale since, at longer times, a suitable cavity
detuning cancels the average off-set in the energy gain and the natural damping of the
lower modes occurs.

We note that the fluctuations displayed by the emittance parameters are quite small
(within a few per cent).

-10 -
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Figure 11: Single bunch computation: a-Bunch length [mm], b-Bunch radius [mm], c-
rms norm. transv. emittance [mm mrad], versus z [m]
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4. CONCLUSION

Although the propagation effects are not harmful for a relativistic beam accelerated
in a multicell cavity, they have to be taken into account with a non relativistic beam. In the
latter case, the modes other than the pi-mode (especially the nearest mode) introduce
larger cavity voltage beatings. For the low charge TESLA injector, the resulting bunch-
to-bunch energy spread will be lower than 0.1% in any case. This value is nevertheless
very small in comparison with the single-bunch energy spread of 3% . tound with
PARMELA simulations [7]. The impact on the transverse dynamics is also small. The
TESLA cavity geometry is thus well suited to the capture section of the TTF injector.
With a larger number of cells or a smaller cell-to-cell coupling, stronger effects would
have been obtained. On the other hand, we could imagine larger energy spreads induced
by more critical beam parameters, like the bunch charge or the input energy.

-14 -
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APPENDIX A - EQUIVALENT CIRCUIT OF A MULTICELL CAVITY

The multicell cavity consists of weakly coupled resonant cells (Fig.A-1). The
fields in a given cell n are usually expanded in the normal modes. In the single pass-band
approximation, the first monopole pass-band being very narrow compared to the width of
the adjacent stop band, only a single mode can be kept from the expansion

E (F.1)= ZQ‘T ()Epn(T) = gu(1) E4, (F) with the normalization J.Egn dv =1
m

where g, (r) is a time function, the excitation of cell n, and E,, () is the field patern of

the single mode in the cell.

Figure A-1 : Chain of coupled resonant cells

We define the surfaces S and §' such that the tangential component of the electric
field to S is zero and the tangential component of the magnetic field to S' is zero. Within
the cell n. volume Vy enclosed by surface S and §', the wave equation gives the
differential equation relative to the field time function qp (Ref. [6], p. 66)

4 d ) . _
Eﬁq"m +-‘é—j—z;q,,(:)+ w2 g = -, cjs(n X En(F11))H y (F) dS

1d - - - 1d - -
+EEJ.S(?1 x Hn(r.t))Ean(r) dS_EZJVHJ(rat)Ean(r) av

where 7 is a outwards normal vector to the surfaces S and §°.

There is a small tangential component of the electric field over the surface S when
losses are considered (S is then the wall surface) but also when cells are coupled through
small holes (S is then the hole aperture). The losses have been already included in the
first member through @, (the weak frequency shift due to the finite ), has been
neglected) while the integral over the coupling holes will give rise to the cell-to-cell
coupling. The second term represents the applied current source of the generator and the
third term represents the interaction between the beam and the cell.

- 16 -
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The coupling integral is written explicitly by expressing properly the boundary
matching of the electric field at the coupling holes, whose the tangential component is
provided by the open-circuit mode e,. For a field of even symmetry with respect 1o the

middle plane of the cell, which is the case of the TMpjo mode, we obtain (Ref.[9])
_ _ - 1 | -
-[S (1 X Ep(F.1))Hp (F) dS = |:-2-—qn_1(t) — g+ 5%4—1(‘)] JS_ (eqn % Hyp)i- dS

where §, is the integration surface of the first coupling aperture of the cell n.

We define the coupling factor K, independent on the celi n

C —
2K = —— _ (e p X Hop)i, dS
a)o Sn ( an an/*z

The differential equation relative to the cell n is then

: 1
-‘an(t)+—iqn(t)+wo gn(t) = 2Kwa[ Qn—l(t)_qrz(t)+lqn+l(t):|
dr” 0, d 2

+——J. (nxH,(r, t))Ean(r)dS———-I J(F. ) Ep(r)ydV

We rewrite this dispersive equation of cell n, driven by a generator current and a beam

current
1 d d
-Kqg, 1)+ (1+2K)q,(1)-Kq,(t) =——= 2 1 qn () — _Qn(t)
. dj (7 X Hy (Fo1) E gy (7) dS — — —j JGF.1) E,p () dV
Emg dils an w an

The intrinsic losses of the cells are represented by Q,, . f3, is the coupling of cell n 1o an
external circuit and @, is the loaded Q of cell n. For a multicell driven by the first cell

for n2l1 O =0,
for n=1 Q=0,/(1+f)

By making the following substitutions

V,()=q,(t) K=LIL LCw}=1
Q, = R,Cw, = R, | (Lwy) = 0, (1+ )

we obtain the equations of the equivalent circuit (figure A-2) for fields of even symmetry
where V, (1) is now the voltage of the resonator n

-17-
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I & 1 d
KV, 10+ {+2K)V,(nN-KV, (O =-——V,(t) - ———V, (+
" " i wid " Quu, dt ntf)
d d
+L~f,,-L—1I
dr 8" dr bn

with the generator and beam currents given by
C{ - - -
Ien = " S(n X Hy(F,1)Eg,(7) dS
C - -
Ipp=—| J(F.0)Egy(F)dV
EJv,

While the beam current term is valid for all cells, the generator current term exists
only for the first cell. The impedance of the generator must be added to the first cell side.
In addition, An inductance equal to the half coupling inductance has been added at both
ends of the circuit in order to get the so-called flat pi-mode, when the excitation is the
same in all the cells in the steady-state regime.

Ly
R T D ——— T —
| ’n I |
Ig 1 L E-_ 1 Bl:'l 1
o = <R, = — — -
| Ly/2 | I N | - | IR T | e | — Lo /2
Figure A-2 : Equivalent circuit (with lumped elements in parallel)
We define the generator and beam voltages V, =R I . 1
g EES Vep 1+6, gn bn 1+ 6, bn
With the new notations, the mesh equations of the equivalent circuit are finally
for the first cell
1 4&° 1 d 1 d 1 d
1+3KV( - KW({) = ———W (1) - —W()- — V() + —V, (¢
( W) (1) wg e 1(0) G, d 15 G, ds p1(t) O, d 2 (1)
for the cell index n
1 4° 1 d 1 d
-KV,_1(O+Q+2K)V, (1) - KV, (1) = ——5—V, (1) - —V, (1) — — Vi (¢
n 1( ) ( ) n() n+]() wg dj‘z n() QO(J)O dr n() Qoa)o Az bn()
for the last cell N
1 d° 1 d 1 d
KV 1(D+A+3K)Vy(t)=———Wy (1)~ — Wy () - — Vpn (1)
N-1 N a)g'dtz N 0,0, dt N 0,00, dt bN

-18 -
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APPENDIX B - MODAL ANALYSIS OF THE PASS-BAND

The dispersive equations governing the time-dependent excitation of the cells, driven by a
beam source and a generator in the first cell, can be written in a matrix notation

1 . . . . '
"'-C;)?V—BV—BVb'FBVg (B-1)
[}

AV=

where V , V}, and V,, are a column vectors giving the excitation of the cells. the beam

induced voltage and the generator voltage, respectively.
Y [ Vot |
V2 Vo2

VN _VbN i L 0

A and B are square matrices with the dimension N, the number of cells

[1+3K -K
1/ (Qw,) 0 T
x 0
0 1/(Q,0,)
A= -K 142K -K B=
-K
0 i ll(Qoa)o)_
i -K 1+3K|

The second order matrix equation B-1 can be solved by standard algebra, after
transformation into first order matrix equations. Instead of that, we prefer to look for the
matrix equation involving the usual modes found by solving the steady-state homogenous
system. These steady-state modes are moreover computed by cavity codes like Urmel.
For that purpose, we have to diagonalize the matrix A. We take the transformation
matrix T, such that V = T Z. The system B-1 can be then written

TIATZ=-—5 Z-T'BV-T BV, +T BV

B-2
2 . (B-2)

The transformation matrix is the modal matrix if the matrix A = T A T is diagonal. The
diagonal elements of A are the eigenvalues of A

-19 -
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(28]

@

A= A, with A, =24 =1+2K(I—cos—n;v—n)

0" %

The column vectors of the modal matrix are the eigenvectors

wl (0 G2 vl [4]

. mi
Vﬂ = 7;1]. Tn’n T;TN Zn with ann =Cy sin (H—E)—A;-

| VN v Tyw |

. "

The constant ¢, is chosen with the normalization z 1}12,” = N, while the eigenvectors
n
belonging to different eigenvalues are orthogonal 2 amine =0 for m#k

n

__l_T!
N

The excitation of the cell n is now expressed in terms of the modesm : V,, = 2 Tz

The inverse matrix is then given by the transpose matrix T !=

n

Performing the matrix multiplications of equation B-2, we find for the differential
equation relative to the mode m (row m of the system))

1 . T : T v
A Z = 7 - nm__yo4 im V
mem wz m E 'NQ, @, nt NQlwo E 'Nano bn
n

0

We replace the excitation of cellnby V, = z T.xZ; . and rearrange the terms
k

. o, - ) @, .- w, -
Zm + ;Tmnak N—(Snzk + Oy, = EntN_(Sl"Vg - ;T;WFQQ;VM

We note that the modes are coupled through the damping term. After substitution of the
Q, expressions for a multicell driven by the first cell

for n2l Q,=0,
for n=1 Q =0,/(1+f)

the damping term becomes

2Tannk Qn Z Z nm nkzk"'-ﬁm_"_z,rlkzk
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The first term represents the well-known mode coupling from wall losses while
the second term represents the mode coupling from the external Q of the first drive cell.
However, because of the orthogonality property of the eigenvectors, the intermode
coupling due to wall losses vanishes when we consider the modes of a single pass-band

z LTy =0 for m#k

and only the intermode coupling due to the first drive cell is relevant. The damping term

amounts finally to
Ty Tk (. Z +Tlm Tikzk
n,k NQR

where @, = % is the global external Q of the multicell cavity for the pi-mode.
1

The mt differential equation is then

a, 2
Z+°Z+T T.Z, +w-Z =T "V T "V
Qo m ng; 1k<k mem 1m Ql - nm NQn bn

We replace the beam voltages by the current sources Ip, =Vp, / R, , and we use the

property of the inverse matrix, by transforming the beam interaction with the individual
cells to the beam interaction with the mode m

|

Zm + E‘?Zm + Tim __LZ lezk + CDmZ Tlm JI.bm

Qex & TG
Substituting the original expressions of the generator and beam voltages, we obtain

) d _
2+ QOZm+T1m-‘LZﬁAZk+me Tin J(an(rt)) o(7) dS

(B-3)
———I J’(r NEF(Fydv

where the beam interaction term has to be integrated along the whole cavity.

Once the evolution of the time functions z,, is found, the excitation of cell n and the net

field along the cavity are given by summations on these modes

=Y Ty zal  EG.O= Y 24(0) E} ()
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Field envelopes - During the field rise time or between two bunch passages,
the modes are just driven by the generator through the end-cell. In addition, when
superconducting cavities are considered, the external coupling is high (@, >> @,,) The

differential equation (B-3), relative to mode m, can then be written

N 2 . 2 3. )
Zm + 1__2 Tikzk + a)mZm = T_VE (B-4)

n i 4

where we defined a RF time constant 7, for the mode m

H

_20m _ 1 20,

wm Ii m wm

Tm

We note this evidence that the more the excitation of the mode in the drive cell 7}, is
large, the more the loaded Q of this mode is small. Priven by a RF generator and the
beam current, the time field function will oscillate also at high frequency. Since we are
interested in the envelope equations, we define amplitudes and phases for all quantities

jo,t

Iy = Ay, o) Om x ¢ for the excitation of the mode m

Ve =4, 798 x eI for the generator voltage

where all the phases have been defined with respect to a reference frequency @,,
generally fixed by the beam. Assuming slow amplitude and phase variations on the time
scale of the RF period, it is straightforward to transform the second order differential
equations of (B-4) into first order ones. The evolution of the amplitude and phase
envelopes is then given by a system of first order equations

T A+ (B + 80, )| e + ZquAk e/ = A, o7 (B-5)
k

where A®,, = @, - @y, is the frequency deviation between the resonance of the mode m

and the reference frequency.

Separating real and imaginary parts, we obtain a system of 2N coupled differential
equations of first order, which can be easily numerically integrated. The excitation of cell
n of the cavity is obtained from a summation on the modes of the pass-band

. ot
Vo = zTnm Iy = ETnm Ay e/ x /O
m

m
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Beam interaction - The longitudinal motion of the injected particles is calculated
by numerical integration along the accelerating structure. The phase variation of a particle
i during the transit time and the net voltage gain for vanishing space charge are given by

- TALE WS LTS
ot cpilz it e ‘

n

where all phases have been detined at a reference plane (the cavity entrance for example).
The space charge effects, which have been neglected in the previous equations, can be

added when the bunch charge is not so smali [1].
On the other hand, the particle i produces the RF current ( ¥ P is the number of particles

per bunch and 7, is the dc current during the beam pulse)

I{(z,0) = 2y ¢ 10i(D) 5 (IO
P

The beam interaction integrals of the equation (B-3) can then be computed

JOr 2o [ =i6i(D gy gr g

-l-d-j JFDEMF) dV =—
edrlv,, p Jeav

They will generate amplitude and phase jumps in the excitation z,, of the mode m

during each bunch transit.
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APPENDIX C - THE HOMDYN MODEL

A fast running code (HOMDYN) has been developed to deal with the evolution of
high charge, not fully relativistic electron bunches in RF fields of an accelerating cavity.
taking into account the field induced by the beam in the fundamental and higher order
modes. and the variation of bunch sizes due to both the RF fields and space charge. It has
been tested by comparing single bunch results with that of ITACA [1] and PARMELA
[10]

We use a current density description of the beam and slowly varying envelope
approximation (SVEA) for the evolution of the cavity normal modes. Motion and field
equations are coupled together through the driving current term.

The code allows to follow the evolution of both the longitudinal and transverse
envelopes of each bunch in a train. By slicing the bunch in an array of cylinders, each
subject to the local fields, one obtains also the energy spread and the emittance
degradation due to phase correlation of RF and space charge effects. The present version
deals only with TM monopole modes.

Because of the long interaction time the field equations require also an excitation
term represented by an on axis localized generator in order to take into account the cavity
re-filling from bunch to bunch passage.

THE FIELD EQUATIONS:

We represent the electric field in the cavity as a sum of normal orthogonal modes:
E(r,) = 2 a,(0) e,(r) sin(w,t +6,(1)
=2 (o, meme +a,m e me™™)

= T (AL e + A0 ex(0)

with complex amplitude:

ag(t) i(wg+d e,

AL = a e =5

and field form factors:

e (r)
i

e (r)=

that are solutions of the Helmoltz equations:
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2 2
Ve, +ke,=0

*
fek.en dv=26,,
v
and the normalization relations:

1
A=) 2 fe)mp ] —ESE
2e 207,

where ES°® are the electric field and US% the corresponding stored energy, as

computed by the standard field codes (SUPERFISH, URMEL, etc.).
Considering only the longitudinal component on the cavity axis en(z)=en(r=0.z) the

with the orthogonality conditions:

wave equation for the electric field complex amplitude in the cavity 1s:

2

d A, 2 ldf *
+® A == Je (z) dv

dt2 oo 8dt[V n

As a driving current densities we consider the superposition of three terms J = Je +

Jo +Jy . The first term Jc is a dissipation current density on a point like dielectric on the
cavity axis at z. , representing the flow of energy out of the main coupler and the inter-
mode energy exchange on the coupler position. We neglect the dissipation due to wall
losses. The term J, is a feeding sinusoidal current density , representing the power
supply. The third term I, represent the beam current density.

The dissipation term. - We consider an "ideal but lossy” cavity [11], i. e. a
cavity with perfectly conducting walls but filled with a dielectric with finite conductivity
G. We assume the loss term mainly due to dissipation on the coupler port considering it
as a point like dielectric on the cavity axis at the coupler position z. .

From Ohm 's law we obtain:

J = 68(z-2)E(z) = 08(z-2) Y A (Ve y(2)
k

the integral becomes:

d * d * d *
a [LJ Je dv ] = cga{Ak Lek'e  ozzd dv:|= Gg{aAk ey(z c)] e (zo

and substimting in the wave equation:
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2

d'A 2 ol d *
21‘[ + (DnAn = ﬂZ{&'Ak ﬂk(z()J en(z‘)
dt €k

Setting now:

,‘.

e
|
o | Q

©

we obtain:

2

dAn ®
Qng[ek(z) - ] n(zc)+(oA =0

where the term between brackets accounts for losses of mode n through the coupler and
towards the others modes. We obtain therefore a system of N coupled equations [2].

The power supply term. - Considering now a driving term due to a generator
represented by a sinusoidal current density on the coupler position zg :

To=J, sin(wt + \pg) 8(z-zg) = (J,(0 + J;(t)) 8(;-2}3)

where:
1,0 = g l((l.)l+l|!;
(0=
Setting:
El(zg) =Agle1(zg)
and evaluating:
* JEz)| P
17,8(z-z -)e @)ldv =|Joel(z )|=I gl _ el
'f;f 8 g1 g g Ag1 2|A81|
2
<Pg> TSR 0)128|A31| 25‘”1, |
= - - Ay

IAgll IAgllQl IAgllQl Ql

we can define the amplitude of the constant driving term as:

Tol=E= 260, 1Al

2 le ()
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The driving integral becomes:

* *
% [LJg'cndv ]: ml[f;l]g(t)ﬁ(z-zg)en(z) dv :|=colj g([)e:(zg)

and setting:

2
_ 2('01 [Agll
Q, Ie1(3g)l

g

the wave equation becomes:

d’A,

c:lt2

@ d, 15, —
+ Ej:%{ek(z':) 'cEAk] en(zc)+ oA, = —Kgcn(zg) el("’l‘ vy

The beam term. - The basic assumption in the description of beam dynamics
consists in representing each bunch as a uniform charged cylinder, whose length L and
radius R can vary under a self-similar evolution, i.e. keeping anyway uniform the charge
distribution inside the bunch. The present choice of a uniform distribution is dictated just
by sake of simplicity in the calculation of space charge and HOM contributions to the
beam dynamics.

Zi L(t)

M =1

Zi Zv Zh

Figure C-1: Bunch representation in N-slices
The linear beam current density term J, can be written for each bunch as follows:

Jp= E%EE (ﬂ(Z-ZD - Tl(Z-Zb))

where 1 is a step function and the indexes b,h,t refer to bunch barycenter, head and tail

position respectively.
The interaction term becomes:
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f(dlb V=aqf[9_%£f (n(z-z,(l))—n(z-z,,(l))) e;(z)dz
Zh(t)
_ [qu f 1;‘(2)&
z{t)

Qﬁ C R 1dB, B & i
1= (e )% —en(sz%) * Qe E'd_tb__b“(&)f 22

2
= ﬁlj’c (c;(zn) - e;(zJ) + % (e:(z,,) + e:(z‘)) d_dEB

where we made the approximation:

z1) * *
[ “eiwe = [

z(t)
and we used the following identities:

dz,, 1 dL dz, _ 1dL

=B+ P By~ S d
The tull wave equation becomes now:

dzA

LI 32[3;;(29 thk}c (z(,)+(,) A = ngn g) n{mlt+\|;g)+
nk

- .i_ [q—lib‘i (e - ex@) + % (eia+ e (ZJ) ]

The Slowly Varying Envelope Approximation. - Substituting in the
previous equation A, (t) =0, (t)e'nt and applying the SVEA approximation hypotheses:

2
do,

dt

0 2
2Ol g << Wy,

dt2

we can neglect the second order derivative and we obtain the first order equation for each
mode:
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da 1 i i0
n 4 1 I‘-""’ —_
i () oo™ =

WL QBb ( A en(zg) ( ez + € (zJ) ] -ie ‘}

where we defined the detuning shift Qg .= (0O — 0, ), .4= (®; — ®, ) and

Q.= Qn_

Ienl

THE BEAM EQUATIONS
The equations for the longitudinal motion of the bunch barycenter are:
de dﬁb

e
oL Rt LD
mocyb

The bunch lengthening is simply given by the head-1ail velocity difterence:

dL
a - C( - Bt)

The energy spread inside the bunch is derived by specifying the energy associated
with N slices each one located at a different position z; and adding to the first order

component coming from fundamental and HOM modes, the space charge effects:

dy‘
e EE[} E (z; t)+E (zt)

where i=1,N and N is the number of slices.
The longitudinal and radial space charge fields at a distance Z = zj - z; from the
bunch tail, see figure C-1, are given by [12]:

EG)=—3 (1/ L3+ R? +9,(25L) - WD) +R )

21ce°be2L

2 )
dne RL (Y2 +R /\/ YLD+ R?

sc~_(P dEz)R__ T
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where p = 1s the charge density.

q
nR2L
The evolution of the bunch radius R is described according to the envelope equation
under a quasi-laminar tlow approximation [13], including RF-focusing (first term), space
charge elfects (second), thermal emittance (third), damping due to acceleration (fourth)

and solenoidal lens (fifth), transformed into the time-domain:

dR;  eR, [Caﬁgz¢)+_ﬁbaﬁgz¢)_+quRhE)

a2 Zmeocl dz ot mo‘lz
2 2
+ (En.oc) _ 72 dﬂb dR; _ tn’B'z(z) .
bib dt dt !
2 3 2m Y
YoRj o

where g, 1is the rms normalized beam emittance and the RF focusing force
Frize[E (r,z,1)-BcBg(r,z,1)] has been expressed through the linear expansion off-axis of
the Ez(0,z,t) tield.

In order to evaluate the degradation of the rms emittance produced by longitudinal
correlation in space charge and RF forces, we use the following expression for the

correlated emittance:

£, = gli}i>’\/ EiRiz ZiR'iz“ ( EiRiR'i)2

where N is the number of slices, R; is the i-th slice radius, R'j its divergence and g, , the
thermal emittance. The total rms emittance will be given by quadratic summation of the
thermal emittance and correlated emittance:
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