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1 Introduction

Electron multipacting is one of the most important problems in superconducting RF
cavities. This phenomenon affects the cavities in various ways, causing e.g. power
losses in accelerator resonators, exessive heating of the walls and breaking of the ceramic
windows. The multipacting is a resonant phenomenon, where the spontaneously emitted
electrons are driven by the electromagnetic field and impacting the cavity wall. If the
orbit is synchronous to the RF field, the electron impact may release secondary electrons
and the number of the electrons on the synchronous trajectry is multiplied at each
impact. This results very rapidly to a drastic increase of electron impacts at certain
points. Basically two different multipacting mechanisms are described in literature ([1],
[3], [4], [7]). In the first one, the model case is two parallel plates with oscillating
voltage drop. The resonant electron trajectories bounce from one plate to another and
back in a time of flight equal to an integer number of RF periods. In the second one,
the electrons are driven by the magnetic field, the flight time being an integer times the
synchrotron period. In this report, a systematic way of finding different and possibly
new multipacting mechanisms is proposed. The electron trajectories are described as a
discrete dynamical system in an appropriately chosen phase space. In this formulation,
the occurrence of the multipacting phenomenon corresponds to fixed or multiply periodic
points of the dynamical system. The general theory of dynamical systems seems to give
potential methods of studying questions such as the stability of the resonant trajectories.
This approach is applied to one model case, a coaxial line. The article [6] contains
experimental results on multipacting in the coaxial geometry. Our method seems to be
able to find new types of multipacting processes in this geometry.

2 The dynamical system

Let us first review the equations describing the dynamics of a relativistic electron in an
electromagnetic field. Let € be a void cavity where a time harmonic electromagnetic
field is supported. The electric field and the magnetic induction are denoted by E(z,1)
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and é(w, t). Assume that the wall of Q, denoted as 92, emits free electrons into  at a
rate characteristic to the material of the wall. Assuming that the effect of the field of
the electron itself on the external field is negligible, the dynamics is generated by the

equations )
= o\ 1/2 B B
e 1) (e ).
dz
dt
where ¢ is the 3—velocity of the electron, v = |¥|,and —e and m are the charge and rest
mass of the electron, respectively, and ¢ is the speed of light in vacuum (see eg. [8]). It
is assumed in the sequel that an algorithm for computing the electromagnetic fields in €2

is available. Thus, by integrating the system (1), the trajectory of an arbitrary electron
is obtained.

(1)

=
_U’

In the sequel, it is assumed that the EM fields are time harmonic. If f is the frequency,
the fields can be written as

—

E(x,t) = FE(z,w)sinwt, é(x,t) = é(x,w) cos wt,
where w = 27 f is the angular frequency.

Let us consider an electron leaving the boundary 9€) at the point z, the exit time being
t. The exit time can be restricted to the period of one full harmonic oscillation of the
field. Denoting by ¢ = wt the phase of the field, we have

0 < ¢ < 360°.

What is more, it is assumed here that the initial velocity of for each electron is normal
to the cavity wall and of constant size,

Uo(z) = U(x,0) = voi(x), wvo = constant.

Here 7i() is the interior unit normal at . Typically, the value of vg is a few eV. Suppose
that the electron is driven by the EM fields according to the system (1), and at the time
t'+nT > t, it impacts the cavity wall at z’ for the first time. Here, n is the number
of full oscillation periods elapsed between the exit and first impact, and 0 < ¢/ < T.
Defining the phase space as X = [0,360°[x {2, we may define the Poincaré map, or the
map of first return by

R: X - X, R(z,0)=(2,¢), ¢ =wt.

This map turns out to be a useful tool in studying the multipacting.
We introduce some simple concepts related to the mapping R. A point p = (z,¢) € X
is a fized point of R, if
R(p) = p.
Similarly, a point p is an n-periodic point of R, if
R'(p)=RoRo...0oR(p)=p,

n times

2
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i.e., p is a fixed point of the n times iterated map. Obviously, a fixed point is also an
n—periodic point, and more generally, if £ is an integer factor of n, a k—periodic point is
also an n—periodic point.

Let us divide the phase space X into an electron emitting and non-emitting parts by
writing X = G U W, where

G ={(z,¢) € X | ii(x) - E(a,/w) < 0},

W ={(z,9) € X |i(z) E(z,p/w) >0} = X\ G.

In other words, W consists of those points of the phase space where a free electron is
immediately captured to the wall by the field while the electrons leaving (G are injected
into the cavity by the electric field. We assume here that the initial kinetic energy is
negligible. The set (¢ is called the bright set, while W is called the shadow set. The map
R is defined in the shadow set as

R(p)=p, peW.

The set of those points of (¢ that after n iterations still are in the bright set is called an
n-bright set, and denoted as

G"={peG|R"(p) eG}= ﬁ R7*(@).

k=0

Before going to numerical examples of how these concepts can be used to track the mul-
tipacting, we need also another function. It is known that the onset of the multipacting
process depends not only on the electron trajectories but also on the secondary electron
yield at the walls. Therefore, suppose that the secondary electron yield at x € 9 is
given by the function 6(z, Fiin), where Fiy, is the kinetic energy of the impacting elec-
tron. A typical curve Fy, — 6(z, Fign) obtained from the literature [4] is displayed in
Figure 1.

Let us assume that an electron is emitted at p = (z,¢) € G, and at the time of the
impact the kinetic energy is Exin(p). We define the multiplicity function « as

a: X =R, alp) =462, Exn(p)), where R(p) = (',¢').

Thus, the function « simply tells how many secondary electrons each initial electron in
the phase space will introduce when impacting the wall. Note that in the shadow set
we define naturally

a(p) =0, peW.

Similarly, if p is a point of the n—bright set G™, one can define an n—multiplicity function
a, counting the number of electrons that are launced by one single electron after n
impacts. This function is

an(p) = a(p)a(R(p))a(R*(p)) ... a(R" ™ (p)).
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Figure 1. The secondary electron yield at different impact energies (in eV)
for a niobium surface baked at 300°C

Our aim is to develop methods on one hand to recognize those EM field powers at which
the electron multipacting may occur in the cavity. On the other hand, once a field
power with potential multipacting has been found, it is important to understand the
mechanism of the process. This includes the locating of the process in the phase space
and the computation of the multipacting trajectories.

Let us first look at the latter problem. Assume that we are intersted in one-point
multipacting: An electron emitted from the cavity wall returns after an integer number
of complete oscillation periods of the EM field to the same point of the wall with a
kinetic energy that will launch more than one secondary electrons. In terms of the
mappings K and «, the corresponding phase space point must satisfy

R(p) =p, afp) > 1,

i.e., p must be a fixed point in (G with the multiplicity function greater than one. To
search for the fixed points, we may look at the distance function dy, defined as

di(p) = \/|x — 2|2 + 72| — e¥'|2,  where p = (z,9) and (2',¢") = R(p).

Here, |z — 2’| is the Euclidean distance of the points x and 2’ and v is an appropriately
chosen constant. It will be fixed in the numerical examples later on. The possible one—
point multipacting points are among the minima of the function dy, and at those points,
di(p) = 0. Due to the numerical errors in the trajectory calculations, the criterion for
a fixed point should be relaxed as 0 < dy(p) < &, € > 0 being a chosen tolerance. What
is more, the minimum search must be restricted to the area where a(p) > 1. The order
of the multipacting process is defined as the number of full oscillation periods T' of the
EM fields elapsing between primary electron emission and the first impact.

Similarly, the two—point multipacting points, and more generally, the n—point multipact-
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ing points can be located. They correspond to those minima of the function

dn(p) = \/Iﬂf — 2'|2 + y2ete — |2, p=(z,9)and (z',¢) = R*(p),

where

0<d.(p) <e, an(p) >1.
Note that each one—point multipacting is bound to minimize also the distance function
d,, too, so in order to differentiate between the different multipacting processes the
trajectories must be checked. The order of an n—point multipacting process can be
defined as the number of full oscillation periods elapsing in completing the full cycle of
n impacts.

As mentioned above, an important question is also whether a multipacting process is
possible at a given input power of the EM fields. Therefore, one needs an effective
sweeping method with respect to the field power. To this end, assume that the field
power P is fixed for a while. Choose a number of points p, of G, 1 < { < L, either
randomly or by using a grid. From each point, launch one spontaneously emitted electron
and let the system run for a while. After a chosen number N iterations of the map R,
count how many electrons still remain in the bright region, i.e., compute the number

cn(P) = number of {p, : RN (p;) € G}.

If the points p, are chosen densely enough, the distribution of those points p, that
contribute to the sum above gives a good image of the N-bright set G. Repeating this
electron count for different values of the power P and plotting the function P — ¢y (P),
one should be able to recognize the values of P where the multipacting is likely to occur:
They should stand out as those values where ¢y (P) is relatively large. Notice that in this
sweeping scheme it is assumed that the physical multipacting occurs only if a periodic
point of R is not strongly repelling. Obviously, if the map R has an isolated fixed point
or n—periodic point pg such that all the neighboring points are quickly drifted away to
the shadow set, this type of electron counter will not be able to find it. However, if
the point has a stable basin from which all the electrons drift toward the point pg, the
number ¢y (P) remains clearly positive.

3 Numerical experiments with a coaxial cable

The ideas developed in the previous section are demonstrated here in a simple but quite
important geometry. The cavity 2 is a coaxial line with totally reflecting ends. The
frequency is adjusted so that the electric field in the TEM mode forms a standing wave.
More precisely, let @ and b denote the inner and outer radii, respectively, and h the
length of the cavity. If f is the frequency and U is the voltage drop between the inner
and outer radius, the electric and magnetic fields are given by the formulas

b U . . - U —
E(z,t) = Toa(b/a) sin kz sinwt €, = 5 1Og(b/a)(cos(lm — wt) — cos(kz + wt)) €,
B(z,t) = erTog(b/a) cos kz coswt € = m(cos(kz — wt) 4 cos(kz + wt)) €

5
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Here, k = w/c = 2n /X and (r, 0, z) is the representation of the field point z in cylindrical
coordinates, the origin being fixed at the lett end of the axis of the cavity. In our model
calculations, we use the frequency f = 1.3 GHz, and the dimensions of the cable are
2a = 1.74 cm, 2b = 4.0 cm, the impedance thus being about 50 . The length A of
the cavity is assumed to be h = 2\ = 46.12 cm. From the equations (1) governing the
dynamics, it is easy to see that the analysis may be restricted to the plane § = 0. Thus
the problem is spatially two-dimensional.

Let us start with the problem of finding those field powers that allow a possible multi-
pacting in the cavity. The average (incident) power flow P of the field is related to the
voltage U through the formula

P = Ly
4nlog(b/a)

where 7 is the wave impedance of the vacuum. In our experiment, we search for a
multipacting starting at the outer shell » = b. By the symmetry of the problem, the
consideration is restricted to the segment between the maximum and minimum of the
electric field. Let the z—coordinate of the leftmost maximum of the electric field be at
Z = Zmin, and the adjacent minimum at z = z,... With the dimensions fixed as above,
we have Zmin = A4 = 5.77 cm and zpmay = A/2 = 11.53 cm. Hence, it is assumed
that zmin < 2 < Zmax- What is more, the phase ¢ may be restricted to the interval
[0,180°[. The remaining rectangle [Zmin, Zmax] X [180°,360°[ is in the shadow set W as
one can easily check. In our example, we pick the grid points in the bright rectangle
[Zmin, Zmax] X [0, 180°[ as

k (K + k)X

Zk = Zmin + —(Zmax — Zmin) = . 0<k<K,
Pre = (2x,00), where , K 4K
9%251800, O§K<L

The numbers K and L are chosen as K =19, L = 91, yielding 1800 gridpoints. With
this grid, the function ¢y is computed. The field power is alowed to vary from 0 to
1000 kW, the step length being 0.5 kW. The P versus ¢y plot is shown in Figure 2
for N =10, N = 20 and N = 30. The map R is calculated by solving the system (1)
using 2th and 3th order Runge—Kutta-Fehlberg ODE solver ([5]). The initial velocity
vg 1s chosen vg = 2eV. The plot shows clear power intervals where the spontaneously
emitted electrons do not drift quickly to the shadow region. Notice also that beyond
the field power P = 800 kW, no multipacting phenomena (visible by the described
algorithm) seem to occur. One should observe that in Figure 2, the multiplying effect
of the secondary electron yield has not been taken into account in any way. This effect
is briefly discussed later.

To gain more insight into the dynamics, let us take a look at a typical value of P where
the multipacting seems possible. We choose P = 650 kW. In Figures 3a—3d, we have
plotted a gray scale topographic image of the distance functions dy and dyq, and the
multiplicity functions aq and aqq, respectively. The value of the constant v was chosen
as v = (L — 1)A/(4nK) = 8.69 cm so that one discretization step in phase direction

6
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affects d,, roughly as much as one in the distance direction. In the distance function
plot, the minima correspond to the darkest shading. Moreover, in the plot 3¢ of dio,
those pixels that have drifted to the shadow region before the 10th iteration are marked
with white. Hence, the tinted area in the dig plot represents the n—bright region G"
with n = 9 at the present discretization level. In the plots 3b and 3d of the multiplicity
functions «,, the maxima correspond to the darkest shading, and pixels where o, < 1
(i.e. no multipacting possible) have no shading. Thus, the tinted area in the «, plots
provide a mask for reading the distance function plots.

It is informative to look at the dynamics generated by the map R in the phase space X.
Consider four different values of the power where the ¢y plot indicates the presence of
multipacting, P = 650 kW, P = 610 kW, P = 500 kW and P = 405 kW. Figures 4a—4d
present the images of 500 randomly chosen points in a rectangle [A/4, (1 + 0.25)\/4] x
[0°,100°] in the phase space after ten iterations of the map R. Those electrons that are
at the inner shell r = a are marked with an asterisk while those at the outer shell r = b
correspond to circles. Two characteristic phenomena should be observed here. Firstly,
all the points off the maximum of the electric are slowly drifted away from the maximum
of the field, and eventually they hit the shadow region and die off. Secondly, the process
is strongly phase-focusing, i.e. all the electrons near the electric maximum are clustered
to well defined phase values. Thus, there are points that are weakly repelling in the
spatial direction but weakly attractive in the phase direction.

Motivated by this observation, we compute a different multipacting indicator. This
time, we restrict the grid points to the maximum of the electric field only, i.e., we search
for multipacting at z = A/4. Let the grid points p, be

(
Pt = (Zmin, P2), @1 = Z180°, 0</(<L.

Again, we have I = 91. Figures ha—hHc display the functions ¢y(P) with N = 10,
N = 20 and N = 30 obtained with this grid. Clearly, there is a clear correlation with
the previous plots in Figure 2, since the maximum of the electric field is the dominant
location for the phenomenon.

With this new grid, we perform yet another experiment that turns out to be very
informative. We compute the distance function dso for different values of the power.
Notice that in this case, the spatial variable z is kept fixed, so the distance function
depends on one single variable, the phase. This enables us to plot the distance function
in the power versus phase plane as a topographic image. Figure 6 depicts a gray scale
landscape of dsg. Again, white areas indicate those points that have drifted to the
shadow region, and the darkest areas mark the minima.

In this picture we see an intersting self-similarity: some of the patterns repeat them-
selves shifted and dilated. In fact, a closer study of the electron orbits producing the
patterns show that the similar patterns arise from the same type of orbits having only
different order. Based on this plot, several distinct potential multipacting processes can

be identified.
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Figure 6. The gray scale contour plot of the distance function dzy when
the primary electron emission is restricted to the maximum of the electric
field. The darkest shading corresponds to the minima. Initial phases cor-
responding to electron trajectories that end up to the shadow are marked
with white.

Consider first the power interval 580-720 kW. From this interval, we pick two typical
sample powers. First, let P = 650 kW. At this field power, the distance function has a
single minimum at ¢ = o = 62°. The distance function is plotted in Figure 7a. Figure
8a shows the electron trajectory starting at the location of the minimum. Clearly, the
trajectory is very accurately synchronous to the EM field, and it seems to correspond
a first order one—point multipacting. Next, consider the field power 610 kW. At this
power, the distance function has two separate minima at ¢ = 54° and ¢ = T4, see
Figure Th. The electron trajectory in this case turns out to be more complicated than
in the previous case. In Figure 8b, the orbit starting at o = 54° is plotted. We see that
the first electron touchdown takes place not at the same phase as where the trajectory
started but at the second minimum, ¢ = 74°. Thus, the two minima do not correspond
to two separate synchronous trajectories but rather to a more complicated process of

order 1+1.

The power interval 480-520 kW is next under consideration. Figure 7c shows the dis-
tance function profile and Figure 8c depicts the trajectory of the electron at 500 kW,
starting at the phase pg = 6° corresponding to the minimum of the distance function.
The trajectory in this case is a "pitch—catch” trajectory starting at the outer shell of
the cable, hitting the inner shell at the phase ¢ = 224° and returning after one cycle of
the EM field. The behavior could be anticipated by Figure 4c. The process is roughly
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of the order 2/3 4+ 1/3.

Finally, let us look at the distance function 7d, which corresponds to a composite tra-
jectory in Figure 8d, found at the field power 405 kW. The trajectory consists of one
outer-to—outer round trip plus one pitch—catch round trip. Here the touchdown phases

are @ = 49°, o = 7° and ¢ = 249° at the inner shell. The order is 2+2/3+1/3.

The distance function plots in Figure 7 give some idea of the stability of the synchronous
trajectories. Around the synchronous phase, there is a neighborhood where the distance
function dsg 1s linear. this means that all the electrons that started in this sloped region
around the synchronous phase have glided to the attracting phase. In terms of dynamical
systems, we might call the sloped regions the basin of the attractor. Since the primary
electron emission is a random process, we may deduce that the larger the basin is the
more likely the onset of the multipacting is.

In our analysis so far, the emphasis has been mostly on the stability of the trajectories.
To obtain the full picture, the secondary electron yield must be taken into consideration.
For some stable trajectories, it may be prohibitively low for multipacting. In Figure
9, we have plotted the counter function czo(P) appearing in Figure 5e, but this time
each electron is counted according to the multiplicity describing how many secondary
electrons it has caused after 30 impacts. If the kinetic energy passes the window where
the secondary electron yield is large, the enchancement is considerable. We see that the
effect of the multiplicity function is quite dramatic.

x 10° alpha_30(P)

|

1‘ n
o l‘ Al i A

o 100 200 300 400 500 600 700 800 900 1000
power [kW]

Figure 9. The electron counter czo of Figure 5c¢, each electron being en-
chanced with the corresponding multiplicity function as,.

Finally, we examine the question whether the multipacting phenomena described above
obey some simple scaling laws. The first natural question is what the ratios of the field
intensities are corresponding to the same multipacting process of different order. In the
one—point multipacting case in cylindrical cavities as well as that between two parallel

9
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plates, the field levels scale inversely proportionally to the multipacting order ([1],[4]).
To answer this question in the case of a coaxial line, one has to identify multipacting
processes belonging to the same family with different order. For this somewhat am-
biguous identification, Figure 6 is quite suggestive. We pick the shaded regions with
the dark minima forming a Y-shaped valley. This shape seems to repeat itself in the
picture. At the present discretization level, only two are clearly visible. By using a finer
grid, one can find more of them at lower field powers. As it was pointed out in the
discussion above, each one of these regions correspond to basically two different mul-
tipacting process, depending on whether the distance function has one or two minima.
In Tables la—1b, we have listed six of the power intervals where the one point process
occurs and four of those where the process with two minima occur, and by checking
from the trajectory calculations, the orders of the corresponding multipacting orbits are
listed. In Figure 10, the maxima of the electric field at the outer shell are plotted versus
the inverse of the order plus one. Note that the electric field maximum is related to the
field power by the formula

1 4nP

b\ wlog(b/a)

The dependence of the electric field maximum is roughly linear, i.e.,

Emax =

B ~ ——
n+1
‘ Single minimum process ‘
Order | Power ([P] =kW) | Phase | Double minimum process |
1 631-715 50°—65° Order | Power ([P] =kW) | Phase
2 332-353 40°-55° 141 600-630 50°-80°
3 169-173 50°-60° 2+2 320-331 40°-70°
4 103-104 50°-65° 3+3 166-168 50°-60°
5 68 60° 444 102-103 50°-65°
6 49 60°

Next, we check the effect of changing the frequency f of the field. We compute the
function en(P) plotted in Figure 5 with several frequencies. It turns out that at different
frequencies, the functions ¢y are dilated copies of each other, i.e., the shape of the
function is affected negligibly by the frequency scaling. Therefore, the power shift of
the multipacting phenomena is easily tractable. We choose the one—point multipacting
trajectory shown in Figure 8a as the reference case. The higer order order multipacting
processes belonging to the same family were given in Table la. In Figure 11a, we have
plotted the shift of these multipcating processes when computed with four different
frequencies. The frequencies used are 0.65 GHz, 1.3 GHz, 1.95 GHz and 2.6 GHz. The
vertical axis gives the square root of the peak value of the electric field at the outer
shell of the line. The dependence seems to follow a linear rule, i.e., at multipacting

10
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RF powers, the value of the electric field seems to be proportional to the RF frequency
squared.

The effect of geometric dimensions of the coaxial line is studied in the similar fashion.
Let both the inner and outer diameter of the line vary so that the impedance of the line
remains unaltered, i.e., b/a =constant. Similarly to the previous case, we may locate
the multipacting RF powers of different order. Figure 11b depicts the shift of the peaks
when both ¢ and b were scaled by a factor 0.5, 1, 1.5 and 2. The horizontal axis is the
outer radius of the line, the vertical axis is the peak value of the electric field at the
outer shell. The dependence is again linear.

We may summarize the scaling laws obtained so far in the following fashion: Let d
denote a size parameter of the coaxial line, i.e., « = ad and b = (d, where a and [
are dimensionless shape parameters of the line, @ < 3. The maximum value Fy,y of
the electric field when multipacting occurs depends on the RF frequency f, the size
parameter d and the order of the multipacting as

fd

EmaXN—y
n+1

In terms of the input power of the line, the scaling rule translates
44
(n+1)*

Pinput ~

This scaling law agrees with the experimental ones found by Woo in [6].

4 Conclusions

The concepts arising from the theory of dynamical systems seem to provide effective tools
for analyzing the multipacting phenomenon. The use of the general theory developed
for dynamical systems (see e.g. [2]) is still quite limited in this work, and we believe
that the analysis can be developed much further by using e.g. probality densities in
connection with supeconducting structures.

The present work is aimed mainly to develop and to demonstrate the general ideas
how to find multipacting levels. In forthcoming works, the ideas will be applied to
more specific geometries. In particular, while the scaling laws give some idea of the
multipacting levels as functions of different parameters, the multiplicity functions do
not scale according to any simple scaling law. Therefore, a complete analysis of the
multipacting levels in a given geometry requires always some recalculations.

11
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Figure 2. The electron counter function ¢y (P) at different RF field powers
with N = 10, N = 20 and N = 30. The initial number of electrons was
1800, and cy(P) gives the number of the electrons remaining in the bright
region after N iterations.
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Figure 3a—3b. The distance map d; at the RF field power 650 kW at the
outer shell of the coaxial line (Fig. 3a). The horizontal axis is the distance
from the maximum of the electric field in units A/4, the vertical axis is the
phase. The darkest shading corresponds to minima. The corresponding
multiplicity function «; is is plotted in the same coordinates (Fig. 3b).
Here, the darkest shading corresponds to maxima. White areas indicate
that a; < 1. In this example, the secondary electron yield at the maximum
of the electric field is prohibtively low for multipacting.
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Figure 3c—3d. The distance map d;o (Fig. 3c) at 650 kW and the multi-
plicity function aqq (Fig. 3d). In the distance function plot, the white areas
are those points that have ended up to the shade region.
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Figure 4. The dynamics generated by the Poincaré map R. The figures
represent the locations of 500 randomly chosen points in the enchanced
rectangle after 10 iteration steps at different RF powers. The points in
the outer shell are marked with a circle, the ones in the inner shell with
an asterisk. The points that have drifted to the shadow region before the
tenth iteration are omitted.
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Figure 5. The electron counter function ¢y (P) with electrons restricted to
the maximum of the electric field. As in Figure 2, we have N = 10, N = 20
and N = 30. The initial number of electrons was 90, and ¢y(P) gives the
number of the electrons remaining in the bright region after N iterations.
Notice the similarity with Figure 2.
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Figure Ta—7d. The distance functions dz, for different RF powers at the
maximum of the electric field. The synchronous trajectories correspond
to those phases where the distance function vanishes. Electrons with the
initial phase in the neighborhood where the distance function is linear have
drifted to the synchronous trajectory.
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Figure 8a—8d. The synchronous electron trajectories starting at the min-
ima of the distance function. The RF powers coincide to those in Figure
7.
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Figure 10. The peak values of the electric field at the outer shell of the
coaxial line. The horizontal axis is 1/(n 4+ 1), where n is the order of the
multipacting. The circles indicate the widths of the multipacting bands.
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Figure 11a—11b. In Figure 10a, the curves represent the effect of varying
the RF frequency. In the experiment, the radial dimensions of the coaxial
line were kept fixed. The labels indicate the order of the multipacting,
and the curve indicates the square root of the peak value of the electric
field at the outer shell at which the multipacting occurs. In the experiment
of Figure 10b, the RF frequency is fixed and the radial dimensions of the
coaxial line are changed, keeping the impedance of the line fixed, i.e., the
ratio of the inner and outer radius is unaltered. The horizontal axis is the
radius of the outer shell, the vertical one square root of the maximum of
the electric field at the outer radius.
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