TESLA Report 2005-22

Internal Interface

I/0 communication with FPGA circuits
and hardware description standard

for applications in HEP and FEL electronics
ver. 1.0

Krzysztof T. Pozniak

Institute of Electronic Systems, Warsaw University of Technology, ELHEP Laboratory
Nowowiejska 15/19, 00-665 Warsaw, Poland
www.desy.de/~elhep, pozniak@ise.pw.edu.pl, tel.+48-22-660-79-86 fax.+48-22-825-23-00

ABSTRACT

The work describes hardware layer of the universal, parameterized communication interface
for application in the FPGA chips. The interface is called in this work as the ,,Internal Interface” or
in short the “I’. The paper shows how to automatically create the address and data space,
according to the user declarations. The methods to standardize the I/O communication with
FPGA chips are described. The communication uses library functions and standardized,
parametric components in VHDL. Theoretical background and technical description of the
Internal Interface are illustrated with a few easy examples of simple interfaces.

The name of ,,Internal Interface” is used by the author and the Warsaw ELHEP Research
Group since 2000 for the description of then newly introduced I/O communication standard
between the user and the FPGA chip. The Internal Interface communication standard has been
applied since its first introduction in:

e Muon and Energy Trigger for Backing Calorimeter (BAC) in ZEUS experiment (AHDL
version) [11],

e RPC Muon Trajectory Pattern Comparator Electronics for Compact Muon Solenoid (CMS) in
CERN [15],

e TESLA Low Level RF Control electronics for TTF II and VUV FEL, as well as for X-Ray
FEL studies [17-22],

e Warsaw ELHEP Laboratory on Electronics for High Energy Physics Experiments for
teaching purposes and FPGA electronics development [10] in WUT,

e WARSAW CMS Laboratory, for CMS electronics development [14] in the Institute of
Experimental Physics, WU,

Keywords: FPGA, FPGA I/O, VHDL, Altera, Xilinx, communication interface, behavioral
programming, FPGA systems parameterization and standardization, FPGA based systems for
HEP experiments, multi-FPGA systems.

-1/63 -

Contents

1 INTRODUCGCTION ..caauueeceeeeereeeeeeneessssccssessassssss 4
2 PARAMETRIC HARDWARE BUSccteettetteeeeerceceeseesssssesssssssssesssssessssssssssssssssssssssssssses 6
3 DECLARATION OF RECORD LIST FOR INTERFACEucieeeeereeneeneessecseeseseeenes 8
3.1 RECORD TYPE — ITEMTYPE ...uuoiiiiiiiiiiteeeee ettt e et e e e e e e ereaaaeeeeseeeeeeesaaananns 9
3.2 RECORD IDENTIFIER — ITEMID ...t 9
3.3 SCALING PARAMETERS — ITEMWIDTH, ITEMNUMBERcccoovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeene 9
3.4 RECORDS GROUPING — ITEMPARENTIDueiiiiiieeeeeeee e 10
3.5 ACCESS RIGHTS TO RECORD — ITEMWRTYPE, ITEMRDTYPEccoovvvvvviiriiiiiiieiieienen, 10
3.6 RECORD DESCRIPTION — ITEMNAME, ITEMFUN, ITEMDESCRccoovvvvvvieiiieeeeeeennneen. 11
4 THE BASICS OF INTERFACE IMPLEMENTATION....ccuttttteececeeereeessssenseesssssaees 12
4.1 PHYSICAL PARAMETERS OF INTERFACE - II_ADDR WIDTH, IT_DATA WIDTH........ 12
4.2 SPLITTING OF ADDRESS AREA FOR PHYSICAL RECORDS ...uuuueeieeeeitieiiieeeeeeeeerneineneeneees 12
4.2.1 Partitioning of VII_WORD.........ccccccccocimiiimiiiniiiiiiiiiieieeeeeee e 12
4.2.2 Partition of VII_BITS for vector VII_VECT........ccccccoveniioiianiaaieannnn. 13
4.2.3 Partition of VII_AREA.........ccccccoooiiiiiiiiiiiiiiieiet et 14
4.3 PAGING OF THE ADDRESS AREA - VIT_PAGE.......coooeieiiieeeeee e 15
4.4 INTERFACE IMPLEMENTATION TABLE ..ouutettttee et e e e e et e e eeeeaeeeeaeeeeeenenns 15
4.4.1 Address parameters — ltemAddrPos, ItemAddrLen....................ccccccueeu.... 16
4.4.2 Interface vector parameters — ItemWrPos, ltemRdPos..................cc.cc........ 17
4.4.3 Record of parameters initializing the interface.................cc.ccccoeevevveecueennnn.. 17
5 INTERFACE IMPLEMENTATION 18
5.1 LIBRARY FUNCTIONS ...uutttttttttttieeeeeeeetttaueeeeeseeeeesasanaeesssssssssnnneessssssssmmmsnessssessrenns 18
5.2 STANDARD INITIALIZATION OF INTERFACE ... cettueeeeeiee et e e e eeeeeeeeeeeeeeeees 19
5.3 STANDARD SERVICE OF INTERFACEccovuuuuueeeeeeeeetmueieeeeeeeeeeeemaneeeesesesessmmnsaeesssesesenns 19
5.4 TUSER FUNCTIONS ... ettt ettt e et e e e e e e e e e e e e e e e e e e e aaaeeeeaa e seeaenaeeeeaaaeeeeenaeseennaaaaees 22
6 EXAMPLE OF INTERFACE IMPLEMENTATION...cuuuuuecieeeeeeeeeneeeenescsssssesssssssssnnes 26
6.1 PROJECT OF RECORDS FOR INTERFACE DECLARATION LIST «.eivuueeeieieeeeeieeeeeeeeeeeeennns 26
6.2 CALCULATION OF INTERFACE IMPLEMENTATION TABLE......uuueeeeiieitiiiiieeeeeeeeeneennennnns 27
6.3 EXEMPLARY SOURCE CODE FOR INTERFACE IMPLEMENTATIONcovvueeiiieeeeeiiieeeennnn. 28
6.4 FUNCTIONAL SIMULATION OF SIGNAL TIME RELATIONS IN INTERFACE
IMPLEMENTATIONt etttee ettt e et e e et e e e et e e e et e e e e e e e e e ee e e e e e e e e eannaeeeeenaeeeeanaeeeeanans 30

7 IMPLEMENTATION OF PARAMETRIC, EXTERNAL, FUNCTIONAL

COMPONENTS o eeeeeecereeeeereeressssssssscssesassssssssssssssssasssssssssssssssassssssssssons 33
7.1 IMPLEMENTATION OF EXTERNAL REGISTER FOR READ BUFFERINGcceevvuueeeeeeneeeennnn. 33
7.2 IMPLEMENTATION OF EXTERNAL PARAMETRIC COUNTERcettuueeeeieeee e eeeeeeeeeenns 35
7.3 IMPLEMENTATION OF PARAMETRIC EXTERNAL MEMORY ...uuteeteneeeeeeeeeeeeieeeeeeeaeeeennnns 38

- 2/63 -

8 CONCLUSIONS AND CLOSING REMARKSoineentiicccsssscsssnsssscccsssssssssssssscssons 41
9 REFERENCESiiiiitiicnnnnniicsssnsicssses 45
10 ACKNOWLEDGMENTS ..o cererererrrerssessses 47
APPENDICESoutiiiiinnneiicnnnnnicssssnsicsssssssesssssssssssssnssasssssssss 48
A VHDL LIBRARY FILES ...eeeeeeeeeeeeeeeeeeeneeesesessssssssssssssssssssss «...48
A FILE,,STD LOGIC 1164 .VHD” ..ccoitiiiiiiiiiiteite ettt ettt ettt 48
AL FILE ,,VCOMPONENT.VHDuuuuuuuuuuuuueuuuuueeeeseseseeesssesssssnsnsmsnessseseemssssssesnsnnnnssennssnnnes 49
B APPLICATIONS OF INTERNAL INTERFACE FOR HEP EXPERIMENTS
AND ACCELERATOR LLRF CONTROL ...ccuttiieccccrssssnssseecccssssssnssssssscssssssssanses 52
C PROGRAMMING LAYER OF INTERNAL INTERFACE.....orewsrrerseessenns 53
C.1 INTERNAL INTERFACE CONTROL SYSTEM IN CHF ..o 53
C. 11 INTERNAL INTERFEACE CONTROL VIA C++AND MATLABc.ccooevveverene 55
C.III INTEGRATION OF INTERNAL INTERFACE WITH DOOCS AND MATLAB 56
C.IV INTEGRATION OF INTERNAL INTERFACE WITH XDAQ SYSTEM FOR CMS 57
D DEVELOPMENT OF INTERNAL INTERFACE ...ovvervverrrnerresrrssssnssssnssssnsssanes 58
E EXAMPLES OF COMMERCIAL COMMUNICATION STANDARDS.........cccceeee. 59
E.I INTEGRATION OF LAB VIEW WITH FPGA MODULES........cccccitiiiiiiiiiieeeeiieee e 59
E.II NALLATECH FUSE SOFTWARE SYSTEM.......cuttttiiiiieieiiiiieeeeeeeeeesceinnrereeeeeeeseenssssesesens 60
E.III FUSE TOOLBOX FOR MATLAB ...ttt 62
F OWNERSHIP STATEMENT AND INTERNAL INTERFACE CODE

IMPLEMENTATION AND APPLICATION SUPPORTccuueevuerreensuensuensnessaennne 63

- 3/63 -

1 INTRODUCTION

Up-to-the-date FPGA circuit technology [1-5] enables effective implementation of
millions of reconfigurable logical blocks (LCELLSs), hundreds of fast numerical calculations
blocks (DSP) [6], a number of embedded microprocessors, multi-gigabit optical transmission
lines [7,8] etc. This implementation may done in distributed, multi-channel electronic systems
[9,10]. Usage of tens or even thousands of FPGA chips in large measurement-control systems
is turning now to an industrial standard. It is possible to realize functional modifications in
such modern systems in a faster and much easier way. There is no need to do any changes in
the existing hardware structure. There is neither the need to realize a new version of the
network or particular devices [12]. The systems of this kind are equipped in extended
communication interfaces. These interfaces support full, detailed, remote monitoring,
management and diagnostics of particular networked devices [13]. This capability stems from
mutual and strong inter-relations between hardware and software layers of the systems.
Changes in the hardware layer have to be imaged in the communication layer at the level of
hardware (mainly in the FPGA chips) and management software.

This paper presents an idea and examples of applications of a communication interface
for FPGA chips called the “Internal Interface”. This interface simplifies considerably the
design process of multi-FPGA chip systems. The interface is automatically implemented in
the FPGA chips and in the programming layer of computer based control system. This
document is a full theoretical and technical documentation of the 77 communication standard
and its implementation. Basing on this documentation the designer may use the /7 technology
to build own systems.

| Global definitions ‘

Sl Nl N

. Data L] Data .
Histcgram Acquisition E Acquisition Histagran
ﬂ
Diagnostics Fast Data g-? Fast Data Diagnostics
Readout Transmission g w § Transmission Readout
w
5 g 3
Rate Data E = = Data Rate
Readout Filtering = 3 = Filtering Readout
£ a RS,

S 5 2
Pattern LLRF = ® z LLRF Pattern
Generator Controller E Controller Generator
=
£
Synchron. LLRF Synchron.
Control Simulator 8 SaEter Control
Virtual Diagnostics Communication Diagnostics Diagnosti
Parametrized Blocks Layer Blocks Models
Implementation| IComposition Classes
Blocks Lol L

Fig. 1. General structure of the design environment for the Internal Interface.

The Internal Interface communication standard (referred in short to as the I1I) was
designed originally in 2000-2001 for the electronic system of the RPC Muon Trigger, in the
CMS experiment at the LHC accelerator in CERN [14]. Early version of the interface was
implemented in the trial PCBs for the TRIDAQ system of BAC detector at ZEUS. The idea of
IT bases on providing automating of design of the local communication interface. The process

- 4/63 -

is automatic in the hardware (VHDL) layer and in software (C++, MATLAB) layer. A
parametric algorithm was implemented to build the address and data areas. This allows for
usage optimization of the information exchange area. The method is independent from the
communication platform (hardware — PCI, VME, VXI, Ethernet, optical gigalink, etc.).

The usage of the I7technology is as follows. The project is described in the standardized
IT form using a strictly defined scripting language. The IID file is subject to parallel
transformation into the VHDL code and the header file for C++ or MATLAB. This process
was shown schematically in fig. 1. The imaging (projection) of the communication layer for
hardware functional blocks, implemented in the FPGA chip, is done automatically in the
hardware and software layers. This method minimizes the realization time of the project,
number of possible errors. It allows for structuring and parameterization of particular
functional blocks used in the project.

There are presented the basics of description method for the communication area. These
methods are used in the Internal Interface technology. The process of building the 17
description is showed from the user point of view and from the side of automatic
implementation in the FPGA chip. There are described the following components of the 77
technology:

e the structure of the main /ID header file,
e user access library functions,

e standard implementation in VHDL language.

There are presented the following examples of the application of 17 library function for:
e single bits,
e registers,
® memory areas,
e project parameterization.

The presented stable release version of the described Internal Interface technology is
numbered as 1.0 for the following date: 27.11.2005. The II interface is under continuous
development and the version 2.0 (to be released in mid 2006) will have the component

communication sub-interfaces. In the trial versions it is called the Component Internal Interface
(CII) technology.

- 5/63 -

2 PARAMETRIC HARDWARE BUS

The Internal Interface hardware communication bus is divided to three groups of signals:

e address bus lines IT_addr of the width II_addr_width. The address lines are
numbered in the range from 0 to II_addr_width —1. The youngest line is addressed
with the value of 0,

e data bus lines, II_data of the width II_data_width. The data lines are numbered in
the range from 0 to II_data_width —1. The youngest line is indexed by the value of 0.
The bused for the input and output data are separated inside the FPGA chip II_data_in
and II_data_out.

e control lines, realize the access operations and initialization:

e IT_resetN - thelow level forces asynchronous process of the interface initialization,

e IT_operN - the low level means performing an operation toward the interface,
eII_writeN - the low level means the write operation, while high level means the read
operation,

« IT_strobeN - the falling edge means important address in the (address) bus inside the
FPGA; the rising edge means important data in the (data) bus during the write operation.

The choice of a peripheral circuit is done by decoding of particular memory area, in many
practical system solutions. In such a case, activation of the control line II_operN has to be
preceded by (combined with) the decoding of the address space.

Typical solutions of hardware communication buses use bidirectional data bus. Bidirectional
buffers have to be used to connect the buses II_data_in and II_data_out into a
common bus IT_data. The direction of data flow is determined by the control line
II_written. Buffer opening is determined by the signal II_operN.

A general time sequence for a single bus operation in the Internal Interface for a
peripheral FPGA chip is presented in fig. 2.

[l_addr

]]
| I
1 L
1 L
| I

- _ i<l

Il_data in

X

l|_data_out

Il writeN

lI_operN
Il _strobeN

A---4--4-11-t oS Ps-

@---+-4 41

- I
) T
b 6 5 o0

Fig 2. General time sequence of single operation in the Internal Interface.

- 6/63 -

A basic access cycle in the I7 consists of eight intermediate steps:

1.

The II controller, before the access cycle begins, sets the value of local address to the
address bus II_addr. The control signal II_writeN determines the direction of data
distribution. For the read cycle, i.e. for low level of logical state of II_writeN, the
value of sent data is set to the data bus II_data_1in. For the write cycle, i.e. for high
logical state of II_writeN, the content of II_data_in bus may be arbitrary, because
it is ignored.

Low level of the control line IT_operN activates the access cycle for a peripheral
device. Time period T,., may be omitted. Beginning of the access cycle in time moment
T, has to be preceded by earlier setting of the transmission direction in the buses buffers,
in order to omit the state switching hazards. The activation of low level signal
IT_operN has to be done after the address bus value is stabilized inside the receiving
FPGA chip. Suggested delay time Tj., is approximately 20-25ns.

The falling edge of signal II_strobeN is a timing clock for synchronous addressing in
the SRAM memories of FPGA chips for the read (i.e. for high logical state of
II_writeN). It is requested that, during time moment T;, the state of address lines
inside FPGA is stable. The suggested delay time T3 is approximately 15-20ns.

Input of data onto the II_data_out bus is done during the read cycle, i.e. for high
logical level of II_writeN. For synchronous reading of the memory, the time range T;_4
stems form the internal speed of FPGA chip, and typically equals to 20-40ns. For
asynchronous reading of static registers, the time range T»4 is 15-20ns.

Rising edge of signal II_strobeN is a timing clock for synchronous writing of data in
SRAM memories or static registers in FPGA (i.e. for low logical state of II_writeN). It
is requested that, in time moment Ts, status of data lines from the bus II_data_1in
inside FPGA is stable. The suggested delay time Tj.s is approximately 20-30ns.

Transition of the control line II_operN to high logical state ends (or interrupts) the
access cycle. The buffers of data bus should immediately release the control in the reading
cycle (i.e. for high logical state of II_writeN). It is assumed that the controller I7
performed data reading from the bus II_data_out. A typical delay time Ts. equals to
20-25ns.

Setting of the control line II_operN to the high logical state releases control of the
output data bus II_data_out. The delay time Ts.; originates from internal speed of the
FPGA chip and is typically 15-20ns.

Ending of the access cycle by the I controller releases the address bus II_addr, the
input data bus II_data_1in and sets the control signal II_writeN in high state. The
time period Te.g may be omitted. It is suggested that, the ending of the access cycle in time
moment Tg is preceded by earlier switching off of the bus buffers, in order to avoid the
switching hazards. Suggested delay time Te.g is 10-20ns.

The signal IT_resetN should be activated with the low level only during the time moment
of FPGA chip initialization.

-7/63 -

3 DECLARATION OF RECORD LIST FOR INTERFACE

The Internal Interface is declared by the list of records. A single record of the list consists
of ordered components. Parameters of a single component are divided to the following

categories:

e identifying, enabling precise differentiation of the record (type, name),

e scaling, defining physical dimensions of the record,

¢ binding, enabling realization of grouping operations,

e access, determining the access rights to the record in write and read modes,

e description, containing information used in programming layer,

component parameter description, interpretation remarks
VII_PAGE record of common addressing area
VII_VECT record of common bit vector
ItemType VII_BI TS record of bit description (i.e. status bit) O| seechapt. 3.1
VII_WORD record of word description (i.e. data register)
VII_AREA record of area description (i.e. memory)
ItemID natural number non repeated record identifier O seechapt. 3.2
Itemwidth natural number data width in record [in bits] F
reenwuber | naual mumber | Mo R e [F] T
binding identifier ItemID for:
ItemParentID| natural number VII_BI TSis bound to VII_VECT, P | seechapt.3.4
the rest are bound to VII_PAGE
ItemWrType VII_WNOACCESS component has no write rights from 77 F
VII_WACCESS component has write right from 171
VII_RNOACCESS component has no read rights to 17 see chapt. 3.5
ItemRdType [VII_REXTERNAL | component allows for external reading to 171 | F
VII_RINTERNAL | Component allows for internal reading to 17
ItemName text formal name of component S
VII_FUN_UNDEF | no identified functional type of component
ITtemEun VII_FUN_HIST functional type of component - histogram S| seechapt. 3.6
VIT_FUN_RATE functional type of component — frequency
counting
ItemDescr text component description S

Tab. 1. List of parameters for a component in the Internal Interface

Table 1 gathers a list of parameters for particulars components of Internal Interface. The
parameters must appear obligatory, even in the case when their value will be not interpreted
for particular component. Thus, the real level of interpretation was marked in table 1 in the
following way:

e O -required parameter, always interpreted,

e F - parameter for physical components (VII_BIT, VII_WORD, VII_AREA),

e P -parameter for bound components (VII_VECT, VII_BITS, VII_WORD,
VII_AREA),

e S - information parameter of programming (ignored during the VHDL analysis),

- 8/63 -

3.1 Record type — ltemType

Structure of the interface is defined by set of records in the list of declarations. The
component TtemType determines type of a single record. It binds the record to one of two

type groups:
e physical, defining real objects of the interface:
e VIT_AREA — unified address area of memory type,
e VII_WORD — autonomous bit vector of data word register,
e VIT_BITS — set of bits requiring grouping operation VII_VECT,
¢ grouping, building common areas (address, data) of respective physical component groups:
e VII_VECT — combines to a common vector the components of type VII_BITS,

e VIT_PAGE - combines components of type VII_AREA, VII_WORD, VII_BITS
(ordered previously in VII_VECT) into a common address area (possessing a unified
prefix).

Component ItemType precisely determines the rest of parameters of a chosen record.
Detailed usage of parameters was described in par. 3.2-3.6.

3.2 Record identifier — ItemID

The formal identifier of a record is ItemID component. The value of component is
arbitrary natural number.

The values of identifiers must not be repeated inside the area of list declaration.

To obtain more readable description, it is suggested that, the identifiers are separate
SYMBOLI C CONSTANTS, defined by the user.
Its usage should univocally indicate the subscribed component.

3.3 Scaling parameters — ItemWidth, ItemNumber

The scaling parameters describe physical record VII_BITS, VII_WORD,
VITI_AREA (see chapter 3.1) in two dimensions:

e ITtemwidth — determines width of the record, expressed in Bl TS. This parameter is
equivalent to a physical number of bits in the data vector st d_I| ogi ¢c_vect or . The most
significant bit of the vector (MSB) is the bit of the oldest index,

e ItemNumber — determines the number of identical, ordered components of the record. The
component is chosen by the index from 0 to ItemNumber — 1.

The records VITI_BITS and VII_WORD are interpreted as indexed tables.
If the component is used one time only (ItemNumber =1), the index of value 0 is used.

- 9/63 -

For record VIT_AREA, the range of addressing is determined (i.e. the number of memory
cells). The addressing range should not be mistaken with the number of addressing lines.

It is suggested to use 0 in the case when these parameters in the record are ignored.

3.4 Records grouping — ItemParentID

The grouping relies on adding to a component ItemParentID a physical record,
which is subject to grouping (see chapter 3.1), the component value TtemType respective
grouping recode (VII_PAGE or VIT_VECT).

The grouping record has to be declared earlier.

The grouping of physical records is subject to the following rules:

e VIT_VECT groups only VII_BITS components in a common data vector. The
constructed vector is treated in a similar way as a single element one VII_WORD.

e VII_PAGE groups components VII_BITS, VII_WORD, VII_AREA in a common
address area — a common prefix will be assigned.

It is suggested for the grouping records (containing components VITI_VECT and
VII_PAGE), to use as the grouping parameter their own identifiers.

3.5 Access rights to record — ItemWrType, ltemRdType

The access parameters to the physical record determine write right (component
ItemwrType) or read right (component ItemRdType) of its data via the physical bus II.

The direction of data flow is determined by the signal state II_writeN (comp. chapter 2).
Low signal state II_writeN means write cycle, i.e. data transfer from the I7 controller to
the peripheral FPGA chip. High signal state II_writeN means read cycle, i.e. transfer of

data from the peripheral FPGA chip to the 77 controller.

The access laws are determined for all physical records (i.e. containing components
VITI_VECT and VII_PAGE) in a unified way. The access parameters are determined
individually by these components:

e TtemWrType for the write cycle:
e VIT_WNOACCESS - no write right,
e VII_WACCESS — write right,
e TtemRdType for the read cycle:
e VIT_RNOACCESS —no right to read,

e VIT_REXTERNAL - right to read data from external objects. It was assumed, that in
this case, the write right (i.e. ItemwrType= VII_WACCESS) concerns also data from
the external objects.

- 10/63 -

e VIT_RINTERNAL - right to read data registered internally, on condition that there is
assigned the write right (i.e. ItemwrType= VII_WACCESS). This kind of registering
makes accessible only current data for external objects.

Periphery module 77 is only a data retransmitter for external object.
It makes the data accessible, on condition the object is addressed on the bus II_addr.
The data registration process and data accessibility is done by external object.

It is suggested that the parameters VIT_WNOACCESS and VII_RNOACCESS
are assigned to the grouping records VII_PAGE and VII_VECT, for which these
parameters are ignored.

3.6 Record description — ItemName, ItemFun, ItemDescr

The components of record description (ItemName, ItemFun, ItemDescr) are for
information purposes. They are designed for the layer of monitoring software (like C++ or
MATLAB) in order to facilitate accessibility and service of particular 77 records.

Description components are ignored at the level of VHDL processing.

The record description components fulfill the following functions:
e TtemName - contains a TEXT displayed as a name of the component,
e ITtemFun - represents a list of functional types of external object:

e VII_FUN_UNDEF - no functional type defined,

e VIT_FUN_HIST -concerns only VII_AREA record. It is assumed that the record
represents value distribution included in successive words, from 0
to ItemNumber-1, and the counter has the width of the word, or
in the range from 0 to 2Tte™9th _1

e VIT_FUN_RATE - concerns only the record VIT_AREA. It is assumed that the record
contains the result of frequency counting of ITtemNumber signals,

and the counter has the width of a word, or the range from 0 to
2Itemwidth_1

b

e TtemDescr - contains TEXT displayed as description of the component.

- 11/63 -

4 THE BASICS OF INTERFACE IMPLEMENTATION

Building of physical implementation of the Internal Interface in FPGA chip is done
automatically in the VHDL language, basing on the declaration of interface record list (see
chapter 3). This chapter presents basics of I7 building concerning: grouping, fitting to the
physical parameters of the communication bus, filling the address area, splitting of data
vectors, etc. The final effect of the building process is physical implementation of the
interface, i.e. mapping of the addresses, including the grouping requirements, splitting data to
parts, when the width is to big for the interface communication bus, etc. An interface
implementation table is created as a result of the process. The table contains all necessary data
on the implementation.

4.1 Physical parameters of interface - II_addr_width,
IT_data_width

The physical area of I7is defined by two basic parameters (see chapter 2):

e IT_addr_width - the address area is expressed in the number of address lines. It was
assumed that the address lines are indexed from 0 to
II_addr_width-1, or the whole address area covers 2T-2ddr-width
address positions calculated from 0 to 2T1-2ddr-width _j

b

e IT_data_width - the width of data vector is expressed in bits. It was assumed that the
data lines are indexed from 0 to 0 to II_data_width-1, or the
value of sent data are included in the range from 0 to 21*-data-width_j

4.2 Splitting of address area for physical records

The address area for physical records is determined by component type (VII_AREA,
VII_WORD, VII_BITS - see. chapter. 3.1) and by scaling parameters (see chapter 3.3). This
chapter presents the rules of assigning of address area for particular physical components.

4.2.1 Partitioning of VII_WORD

The parameters defining VII_WORD determine word length (Itemwidth) and
number of components (ItemNumber). Determination of their physical positioning in the 17
space is realized in two steps:

1. The number of address positions is determined which are necessary to split the word to
partitions, which are not bigger than the width of data bus (II_data_width).
Successive word partitions are positioned from the most significant for increasing
addresses. The last partition of the word may be not full. There is no requirement that the
parameter Itemwidth is a multiplication of II_data_width.

2. The above structural partitioning of a single word is repeated ItemNumber times. The
words are positioned in the address area one after the other, according to the increasing
indexes.

Example: Distribution of three 18-bit words, designed as W0, W1, W2 (Itemwidth=18,
ItemNumber=3) in II area of 8-bit data width (II_data_width=8). For
simplification, it was assumed that the addressing is initialized from the position 0.

- 12/63 -

address| D7 Dsg Ds Dy Ds D, Dy Dy remarks
0 [wo7 [wo-6 [wob |wo4 [wo-3 [wo2 |wo1 [woo | o
1 |WO0-15 |WO0-14 |WO0-13 |WO0-12 |WO-11 |WO-10 |W0-9 |W0-8 \
index 0
2 WO0-17 | W0-16
3 W17 |W16 |W1-5 |W14 |W1-3 |Wi2 |Wi1 |W1-0
word for
4 |W1-15 |W1-14 |W1-13 |W1-12 |W1-11 |W1-10 |W1-9 |W1-8 \
index 1
5 W1-17 |W1-16
6 W27 |W2:6 |W2-5 |W2-4 |W2-3 |W22 |W2-1 |W2-0 P
7 lw2-15 [w2-14 [w2-13 [w2-12 [w2-11 [w2-10 [w2-9 |w2-8 ?ﬁ%xgr
8 W2-17 | W2-16

designations: gray fields mean non used data bits.

comment:

of three successive address positions in the /7 area.

4.2.2 Partition of VII_BITS for vector VII_VECT

The parameters defining VII_BITS determine number of bits (Itemwidth) and
components (ItemNumber). The record of type VII_BITS is treated as a unity, of the
total dimension Itemwidth*ItemNumber in bits. It is assumed that the indexed positions
are stored successively in the direction of more significant bits. Determination of physical
positioning of records VII_BITS, combined with a single group VII_VECT (comp.
chapter. 3.4), is realized in two steps:

partitioning of a 18-bit indexed word to 8-bit partitions requires reservation

1. Calculation of a common bit vector basing on the group VII_VECT. The records
VII_BITS are positioned in a common vector, in the same succession as their grouping
(i.e. according to the succession in the record declaration list), successively from the least
significant bits,

2. Partitioning of the common vector stems from the real width of the data bus
(II_data_width). The successive records VII_BITS are placed one after another
and partitioned to the next address word, when the data bus dimension is crossed over
(II_data_width).

Crossing the data bus width II_data_width by a single record VII_BIT is a critical

error and the I7 implementation is not realized.

Example: Positioning in the I7 area of the 8-bit data bus (II_data_width=8), for

addressing initiated from position 0:

e a table of three bit positions of 2-bit width designated as A0, Al and A2
(Itemwidth=2, ItemNumber=3),

e a single bit designated as B (Itemwidth=1, ItemNumber=1),

e a table of two positions of 4-bit width designated as CO and C1 (Itemwidth=4,
ItemNumber=2).

address| Dy Dsg Ds Dy Ds D, Dy Dy remarks
0 B A2-1 A2-0 A1-1 A1-0 AO0-1 AO0-0 bits A and B
1 C1-3 C1-2 C1-1 C1-0 CO0-3 CO0-2 CO0-1 CO0-0 bit C

designation: gray fields mean unused bits of data.

comment:

- 13/63 -

bit records A and B were placed in a single word. Partitioning to the next
word had to be done in the record C.

4.2.3 Partition of VII_AREA

Parameters defining VII_AREA determine number of cell bits (Itemwidth) and
number of cells (ItemNumber). Record of type VII_AREA is dedicated for implementation
of internal SRAM memory blocks in the FPGA. Determination of the physical positioning in
the 17 area is done in two steps:

1. The number of partitions is determined for the data word width of a cell (Itemwidth) to
partitions not bigger than the data bus width (II_data_width). Each of calculated
partitions of the word is treated nondependently as a memory sub-area, of the number of
cells expressed by ItemNumber.

2. Memory sub-areas are positioned in the I7 area starting with the least significant toward

the most significant partition of data word. Calculation of the base addresses of memory
sub-areas fulfills the following criteria:

e Internal addressing of each memory sub-area is done through the least significant lines
of the 17 address bus. The address area is from 0 to ItemNumber-1,

e Address lines above the area TtemNumber-1 are indexing the successive memory sub-
areas,

e Prefix of the record VII_AREA indicates of data cell of 0 index for the least significant
memory sub-area,

e Total addressing area of a single record VITI_AREA reserves the address lines required
for internal addressing and indexing of memory sub-areas.

Example: Positioning of three memory cells of the word width 20-bits (Itemwidth=20,
ItemNumber=3) in the area of II of 8-bit data bus (II_data_width=38). It

was assumed, that the addressing was initiated from the position 7.

Address| Dy De¢ Ds D, D; D, D, Do remarks
7-15 reservation
16 AO-7 AO0-6 AO0-5 AO0-4 AO0-3 AO0-2 AO0-1 AO0-0 ad
17 |A1-7 |A1-6 |A15 |A14 |A1-3 |A1-2 |A11 |A1-0 ;enzzss
18 A2-7 A2-6 A2-5 A2-4 A2-3 A2-2 A2-1 A2-0 Ty
sub-area A
19
20 BO-7 B0-6 BO-5 BO-4 B0O-3 BO-2 BO-1 BO-0
address
21 B1-7 B1-6 B1-5 B1-4 B1-3 B1-2 B1-1 B1-0 memo
22 B2-7 B2-6 B2-5 B2-4 B2-3 B2-2 B2-1 B2-0 Ty
sub-area B
23
24 CO0-3 C0-2 C0-1 C0-0 ddr
25 Cc13 |Cc12 |c11 |ci1-0 ;emzss
26 C2-3 |C2-2 |C21 |C20 ry
sub-area C
27
28-31 not used

designations: gray fields mean non-used data bits.

Comment 1: Partitioning of 20-bit memory word into 8-bit parts requires reservation
of two address blocks in the IT area. Separated memory sub-areas were
designated as A, B and C.

- 14/63 -

comment 2: three memory cells (ItemNumber=3) require reservation of two the
youngest (least significant) address lines Ao and A, thus, the last
addressing position of each memory sub-area is remains not used.

Comment 3: Choice of a single from three memory sub-areas is done through address
lines A; and As, thus, the last addressing position of memory sub-area is
reserved, but is not unused.

Comment 4: memory prefix was set to 16, because there were reserved addresses up to
7 and it has to indicate to the youngest cell for the youngest memory sub-
area (i.e. addresses A3(=0). The address position 7 remains unused.

4.3 Paging of the address area - VII_PAGE

Paging of the address area is done through the record binding VIT_AREA, VITI_WORD
and VII_VECT via parameter ItemParentID with respective records of type VII_PAGE
(comp. chapter 3.4). Determination of a physical situation of the pages in the II area is
realized in two steps:

1. Finding of the biggest address area used by a single page, in order to reserve the required
number of the youngest bits in the 77 bus. Determination of the addressing range for each
page is referenced to the 0 address.

2. Assigning the pages, in the succession of their declarations in the record list, numbered
indexes from value 0. Assigning of an index for a page is realized by address lines above
the area of page addressing.

Example: Distribution in the /7 area for 8-bit address bus (II_addr_width=38):
e Page P1 possessing 5 address positions,
e Page P2 occupying 12 address positions,
e Page P3 possessing 9 address positions.

Page Page indexing Addressing inside page

index | Ar | As | As | As | A | A | A | Ag | omarks
0 0 0 0 0 |addresses range 0 - 4 Page P1
1 0 0 0 1 |addresses range 0 - 11 Page P2
2 0 0 1 0 addresses range 0 - 8 page P3

Comment 1: The biggest address area occupies 12 positions, what requires reservation
of 4 the youngest address bits Ag.3.
Comment 2: The rest of the addressing lines were used to index the pages A4.7.

4.4 Interface implementation table

The required structure of Internal Interface is declared via the list of records (comp.
chapter 3). The real image of I7 implementation in FPGA 1is calculated from the interface
implementation table on the basis of the physical parameters of the 77 bus (comp. chapter 4.1).

Change of the I7 physical bus (i.e. parameters II_addr_width and II_data_width)
does not require redefinition of the user list record.
The physical image of interface is built automatically for new parameters of the bus.

- 15/63 -

Single record of the interface implementation table are ordered components, gathered in

table 2:
component parameter description, interpretation description
VII_PAGE Parameter record for interface initialization in this chapter
TtemType VII_BITS Bit description record
VII_WORD Bit description record see chapter 3.1
VII_AREA Area description record
ItemID natural number Non-repeatable record identifier see chapter 3.2
ItemParentID |natural number Parameter value is not valid omitted
Itemwidth |natural number Record data width [in bits] see chapter 3.3
ItemNumber |natural number Number of record repetitions (indexing),
TtemWrType VII_WNOACCESS component has no w.rite .right from 11 see chapter 3.5
VII_WACCESS Component has write right from 77
ItemwrPos natural number Basic position in interface vector for writing in this chapter
VII_RNOACCESS Component has no read right to 77
ItemRdType | VII_REXTERNAL Component allows for external read to 17 see chapter 3.5
VII_RINTERNAL Component allows for internal read to 77
ItemRdPos natural number Basic position in interface vector for reading
ItemAddrpPos |natural number Basic position of record address
natural number | Number of address positions of a component in record in this chapter
ItemAddrLen types II_AREA and VII_WORD, position of the
youngest bit for record type VII_BITS

Tab. 2. List of parameters of component of Internal Interface

The components, with the meaning not changed are only rewritten from the interface record
list to the interface implementation table. Table 2 presents references to respective chapters.
The implementation process of Internal Interface requires:

e (Calculation of addresses values and positioning data for particular physical records,

¢ Building of interface communication vector for particular physical records,

e Calculation of record parameters for initialization of physical interface implementation.

4.4.1 Address parameters — ItemAddrPos, ItemAddrLen
Addressing parameters (ItemAddrPos, ItemAddrLen) for particular physical

records (VII_AREA, VITI_WORD and VII_BITS) are determined in agreement with the
rules of record partitioning (see chapter 4.2) and paging (see chapter 4.3). Partitioning of the
address area is performed basing on real parameters of the communication bus
(II_addr_width and II_data_width). Particular addressing components contain:

e ItemAddrPos -indicates base address of physical record, i.e. the zero indexed

component of this record (see chapter 3.3).

e TtemLenPos - for record type VII_WORD, indicates the number of addresses of a
single indexed component (comp. chapter 4.2.1),

- for record type VII_AREA, indicates the number of memory sub-areas
(comp. chapter 4.2.3),

- for record type VII_BITS, indicates the position of the youngest bit of
record (comp. chapter 4.2.2).

- 16/63 -

4.4.2 Interface vector parameters — ItemWrPos, ItemRdPos

The interface vector parameters (ItemwrPos, ItemRdPoS) made accessible for
particular physical records (VII_AREA, VII_WORD and VII_BITS) separated
communication buses tailored to their dimensions and type. Application of the
communication vector plays a role of logical converter between physical parameters of the
communication bus (II_addr_width and II_data_width), and particular physical
records defined by parameters Itemwidth and ITtemNumber.

The process of building of the physical interface requires calculation of the structure of
a common communication vector. For the successive physical records (VII_AREA,
VII_WORD and VII_BITS) positioned on the list, there are reserved vector partitions
according to their types (see chapter 3.1) and the access rights (see chapter 3.5) respectively
for the components type ItemwrPos and ItemRdPos:

e TtemwrPos - for record type VII_WORD or VII_BITS there is reserved a bit range
Itemwidth*ItemNumber,

- for record type VII_AREA there is reserved a bit range Ttemwidth,

e TtemRdPos - for record type VII_WORD or VII_BITS during the read mode from the
external block (ItemRdPoS=VII_RINTERNAL) there is reserved a bit
range Itemwidth*ItemNumber. For the mode of internal reading
(ItemRdP0os=VII_RINTERNAL) the vector is the same as the write
vector,

- for record type VII_AREA there is reserved a bit range Ttemwidth,

ItemwrPos and ItemRdPos indicate the youngest bits of the reserved vectors.
When there is no reservation of a given vector, the value —1 is inserted to the component.

4.4.3 Record of parameters initializing the interface

The record of initializing parameters for the interface is located on the last position in
the interface initialization table and is of type VII_PAGE. The next components of record
are gathered in table 2 and contain important parameters:

e Itemwidth - data bus width (parameter II_data_width),

e ItemNumber - address bus width (parameter II_addr_width),

e ItemAddrPos- total length of interface vector (comp. chapter 4.4.2),

e TtemAddrLen- the highest physical address used in interface (comp. chapter 4.4.1).

- 17/63 -

5 INTERFACE IMPLEMENTATION

Implementation of the Internal Interface bases on placing in the code standardized service
blocks (like building, initialization, control of communication bus, etc.) and usage of library
functions and procedures enabling the user a cooperation with the interface.

Further part of the chapter assumes, that the dimension of address bus is determined by the
parameter II_addr_width, and the data bus is determined by II_data_width.

The abbreviations and types of the variables used in declarations and functions are gathered
and explained in appendix A.L

5.1 Library functions

e Library functions of interface: (all declarations are gathered in appendix A.I1.6):

' VIINameConv (_NAME_ :TS) return TS

where:
e NAME_ is a description name of record (see chapt. 3.6)
Function returns type TS of the length VII_ITEM_NAME_LEN (see appendix A.IL.3).

‘ VIIDescrConv (_DESCR_ :TS) return TS

where:
e _DESCR_ is description of component (see chapt. 3.6)
Function returns type TS of the length VII_ITEM_DESCR_LEN (see appendix A.I1.3).

e requested library functions: (all declarations are gathered in app. A.1.4):

- pow2 (_VAL_ :TN) return TN

where:
e _VAL_ isa value of natural number type,
Function returns the result of: 2-" - as natural value.
Caution: This function has to be used instead of power operator *.

TVLcreate (_VAL_:TN) return TVL

where:

e _VAL_is a value of natural type.
Function returns a minimal number of bits necessary to write the value of _VAL_.
Caution: The result of function has to be interpreted as a length of vector TSLV

SLVMax (_VAL_:TN) return TN

where:
e _VAL_is a value of natural type
Function returns maximal natural value which can be obtained from vector of the length
VAL bits.
Caution: Formally, the function returns the result of expression: 2-"- 1,

- 18/63 -

52 Standard initialization of interface

Standard initialization of the Internal Interface requires performing of the following steps:

e Processing of record declaration list (comp. chapt. 3) to the physical implementation with
the function TVIICreate to obtain the form of interface implementation table (comp.
chapt.4.4). The table contains all necessary implementation data for the interface.

e Building, with the aid of function TVII, of three intermediate vectors IIVecInt,
IIVecAll and IIVecEna type TSLV enabling communication with the II:

example:

constant llIPar :TVII := TVIICreate(VllltemDeclList, IT_addr_width, II_data_width);
signal lIVecint, lIVecAll, IIVecEna :TSLV(VII(lIPar)'high downto VEC_INDEX_MIN);

Caution: -VIIItemDeclList isaname ofa declaration list (comp. chapt. 3),
- Constant IIPar is an interface implementation table (comp.chapt.4.4).

The intermediate vectors are designed to forward the following information:
e [IVeclnt: stores internal states of 7 registers (see chapt. 3.5),
e [IVecAll: contains all states of /7 signals,

e [IVecEna: value ‘1’ denotes that particular signal is made accessible by the I7
respectively in the write or read mode.
Caution: information of writing to the internal register of the I7 is not accessible.

e Library functions: (all declarations are gathered in append. A.I1.7):
TViiCreate (_LISTA_ :TVIlitemDeclList; ADDR_WIDTH_, DATA_WIDTH_ :TVL) return TVII

where:
e _LISTA_ is created list of 77 components declarations,
e ADDR_WIDTH_ determines number of bits for interface address bus,
e DATA WIDTH_ determines number of bits for interface data bus,

Function returns physical implementation of interface as table type TVII (comp.
chapt.4.4).

VI (_IIPAR_ :TVII) return TSLV

where:

e _|IPAR_ is a list of physical implementation of interface,
Function returns an empty intermediate vector type TSLV of dimension originating from
current implementation.

53 Standard service of interface

Standard service of Internal Interface requires the following actions:
« Service process of internal registers stored in vector IIVecInt,

e Current actualization of vector IIVecAll originating from current state of data
distribution via the I7 bus from internal blocks and data stored in vector IIVecInt,

e Current actualization of vector ITVeCEnha originating from current state of data
distribution via the I bus,

o Calculation of output data from the 77 via the bus II_data_out.

- 19/63 -

example:

process (IT_resetN, II_strobeN)
begin
if (II_resetN ='0"') then
lIVecint <= lIReset (IIVeclInt, lIPar);
elsif (IT_strobeN'event and II_strobeN ='1") then
if (II_operN ='0' and II_writeN =0’) then
lIVecint <= lISave(IIVecint, lIPar, IT_addr, II_data_in);
end if;
end if;
end process;

lIlVecEna <= lIEnable(lIPar, II_operN, II_writeN, IT_addr);

lIVecAll <= lIWrite(lIVecInt, lIPar, II_addr, II_data_in)
or lIConnPutWordData(llVecint, lIPar,)
or lIConnPutWordtab(IIVeclnt, liPar,)
or lIConnPutBitsData(lIVeclnt, lIPar,)
or lIConnPutBitsTab(lIVecint, lIPar,)
or liConnPutAreaData(lIIVecint, liPar,)
or liConnPutAreaMData(IIVecint, lIPar,)
or........ :

IT_data_out <= lIRead(IIlVecAll, lIPar, II_addr);

Vector IIVecAll is calculated in common by standard service operations of the

interface and by the user. The user, via successive OR operations connects all data from

external objects (declared as VII_REXTERNAL).

Caution: Connection to vector IIVecAll of data from external objects is done
ONLY with the aid of library functions respectively to the type of object.

e Library functions of interface service: (declarations were included in append. A.IL.8):

liReset (_VEC_: TSLV; _IIPAR_:TVII) return TSLV

where:
e _VEC_ represents interface IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt 5.2),
Function returns vector _VEC_ with zeroed internal registers.

liISave (_VEC_: TSLV; _IIPAR_:TVIl; _ADDR_, DATA_IN_:TSLV) return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e ADDR_ is interface address bus,
e DATA_IN_ is interface input data bus.
Function returns actualization of the internal registers vector _VEC_.

llEnable (_IIPAR_:TVIl; _ENABLE_, 'WRITE_:TSL; ADDR _ :TSLV) return TSLV

where:
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ENABLE_ low level enable signal (see chapt. 2),
e _WRITE_ is interface data direction signal (see chapt. 2),
e ADDR_ is interface address bus.

Function returns access vector (accessing is denoted by ‘1°).

- 20/63 -

" l\Write (VEC_: TSLV; IIlPAR_:TVIl; ADDR_, DATA_IN :TSLV) return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e ADDR_ is interface address bus,
_DATA_IN_ is interface input data bus.
Function returns vector _VEC_ supplemented with information from interface bus.

| lIRead (_VEC_: TSLV; _IIPAR_:TVII; _ADDR_ :TSLV) return TSLV

where:
e VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),

e ADDR_ is interface address bus.
Function returns interface output data or the high state.

¢ Library functions of object service: (declarations are presented in app. A.IL.9- A.IL.11):

liConnPutWordData (VEC_: TSLV; IIPAR_:TVIl; ITEM_ID_:TN; POS_:TVI;
VAL :TSLV) return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_ WORD (see chapt. 3.2),
e _POS_ index of object components (see chapt. 3.3),
e _VAL_ transferred value of object component.
Function returns vector _VEC_ filled with the value of object component _VAL _.

lIiConnPutWordTab (_VEC_: TSLV; _IIPAR_:TVII; _ITEM_ID_:TN;_VAL_ :TSLV)
return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_ WORD (see chapt. 3.2),
e _VAL_ transferred value of the whole object component in a form of vector.

Function returns vector _VEC_ filled with the value of the whole object component
VAL.

liConnPutBitsData (_VEC_ : TSLV; _IIPAR_:TVII; _ITEM_ID_:TN; _POS_:TVI;
VAL :TSLV) return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_BITS (see chapt. 3.2),
e _POS_ index of object components (see chapt. 3.3),
e _VAL_ transferred value of object component.
Function returns vector _VEC_ filled with the value of object component _VAL_.

- 21/63 -

lIiConnPutBitsTab (VEC_: TSLV; IIPAR_:TVIl; ITEM_ID_ :TN; VAL_:TSLV)
return TSLV

where:

e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),

e _IIPAR_ is interface implementation table (see chapt. 5.2),

e _ITEM_ID_ is identifier of object type VII_BITS (see chapt. 3.2),

e _VAL_ transferred value of the whole object component in a form of vector.
Function returns vector _VEC_ filled with the value of the whole object _VAL_.

lIiConnPutAreaData (VEC : TSLV; IIPAR_:TVIl; _ITEM_ID_:TN; VAL_:TSLV)
return TSLV

where:

e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),

e _|IPAR_ is interface implementation table (see chapt. 5.2),

e _ITEM_ID_ is identifier of object type VII_BITS (see chapt. 3.2),

e _VAL_ transferred value of the memory cell in a form of vector.
Function returns vector _VEC_ filled with the value of the whole object _VAL_.

" liConnPutAreaMData (_VEC_: TSLV; _IIPAR_:TVIl; _ITEM_ID_:TN; _VAL_ TSLV)
return TSLV

where:

e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),

e _IIPAR_ is interface implementation table (see chapt. 5.2),

e _ITEM_ID_ is identifier of object type VITI_AREA (see chapt. 3.2),

e _VAL_ transferred value of the memory cell in a form of vector.
Function returns vector _VEC_ filled with the content of object _VAL_ in the dimension
not smaller than the width of data bus (II_data_width).

54 User functions

User functions, for each type of physical object, enable the following operations (the character
string Xxxx means respectively Word, Bits, Area):

e lIConnGetXxxxData — accessing of current data of component.

Caution: Does not concern type VII_AREA because this object is directly connected to the
data and address bus in the range originating from the dimension of the
component (see chapt. 4.2.3).

Caution: The data of record internally registered may be accessed directly. The data of
external object are important only during the moment of its writing by the 77 bus.
They require confirmation of validity by the wuse of function
[IConnGetXxxxWriteEna.

¢ lIConnGetXxxxEnable — taking of information of accessibility (for write or read)
Caution: Data of the record registered internally made accessible the information of the
validity of data only for the read operation.

e lIConnGetXxxxWriteEna — taking of information of accessibility during write.
Caution: The data of registered record does not provide this information.

e lIConnGetXxxxReadEna — taking of information of availability during write.

e liConnGetXxxxSave — taking of information of conditional write cycle status II_strobeN

- 22/63 -

e Library functions of data taking: (declarations included in appendix A.IL.9- A.Il.11):

lIConnGetWordData (VEC_: TSLV; IIPAR_:TVII; ITEM_ID_ :TN; POS_:TVI)
return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_WORD (see chapt. 3.2),
e POS_ index of object components (see chapt. 3.3),
Function returns actual value of object component.

" liConnGetWordData (DVEC_, EVEC_: TSLV; _IIPAR_:TVII; _ITEM_ID_:TN; _POS_:TVI;
"DATA_: TSLV) return TSLV

where:

e DVEC_ represents interface vector IIVecInt (see chapt. 5.2),
EVEC represents interface vector IIVeCEnNa (see chapt. 5.2),
IIPAR is interface implementation table (see chapt. 5.2),
_ITEM_ID_ is identifier of object type VII_WORD (see chapt. 3.2),
POS index of object components (see chapt. 3.3),

DATA actual data of external object component,
Function returns modified actual value of external object component.

" liConnGetBitsData (_VEC_: TSLV; _IIPAR_:TVII; _ITEM_ID_:TN; _POS_ :TVI)
return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_BITS (see chapt. 3.2),
e _POS_ index of object components (see chapt. 3.3),
Function returns actual value of object component.

¢ Library functions of access: (declarations included in appendix A.IL.9- A.Il.11):

' liConnGetWordEnable (_VEC_: TSLV; _IIPAR_:TVII; _ITEM_ID_:TN; _POS_:TVI
WRITE :TSL) return TSLV

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_WORD (see chapt. 3.2),
e _POS_ index of object components (see chapt. 3.3),
e _WRITE_ is interface data direction signal (see chapt. 2),

Function returns actual state of data accessibility to object component for both types of

operations (write and read). When a chosen bit of object is accessible, then in the

returned vector this bit has value ‘1°.

Caution: Assumption of the above solution, stems from the partitioning possibility of
record type VII_WORD to parts (comp. chapter 4.2.1). Then, only the chosen
part of record will possess the bits set to ‘1°, and the rest of bits will remain
setto ‘0’.

- 23/63 -

lIConnGetBitsEnable (VEC_: TSLV; IIPAR_:TVIl; _ITEM_ID_:TN; WRITE_:TSL)
return TSL

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_BITS (see chapt. 3.2),
e _WRITE_ is interface data direction signal (see chapt. 2),
Function returns actual accessibility status of the component: ‘1’ — component is
accessible.
Caution: Assumed solution stems from that the component type VII_BITS must not
be divided to partitions (comp. chapter 4.2.2). Access concerns all positions
of the object.

lIConnGetAreaEnable (VEC_: TSLV; |IPAR_:TVII; ITEM_ID_ :TN; WRITE_:TSL)
return TSL

where:
e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),
e _IIPAR_ is interface implementation table (see chapt. 5.2),
e _ITEM_ID_ is identifier of object type VII_AREA (see chapt. 3.2),
e _WRITE_ is interface data direction signal (see chapt. 2),
Function returns actual accessibility status: ‘1’ — component is accessible.
Caution: Assumed solution stems from that the component type AREA is treated as a
unity not to be divided (comp. chapter 4.2.3).

lIConnGetWordWriteEna

lIConnGetWordReadEna (VEC_: TSLV; IIPAR_:TVIl; _ITEM_ID_:TN; POS_:TVI)
return TSLV

where:

e _VEC_ represents interface vector IIVecInt (see chapt. 5.2),

e _IPAR_ is interface implementation table (see chapt. 5.2),

e _ITEM_ID_ is identifier of object type VII_WORD (see chapt. 3.2),

e _WRITE_ is interface data direction signal (see chapt. 2),
Function acts identically as IlIConnGetWordEnable, respectively for write operation
(IIConnGetWordWriteEna) or read (IIConnGetWordReadEna).

lIConnGetBitsWriteEna
lIiConnGetBitsReadEna (_ VEC_: TSLV; IIPAR_:TVIl; _ITEM_ID :TN) return TSL

where:

e _VEC_ represents interface vector IIVeCEnNa (see chapt. 5.2),

e _IIPAR_ is interface implementation table (see chapt. 5.2),

e _ITEM_ID_ is identifier of object type VITI_AREA (see chapt. 3.2),
Function acts identically as IIConnGetBitsEnable respectively for write operation
(IIConnGetBitsWriteEna) or read (IIConnGetBitsReadEna).

- 24/63 -

lIConnGetAreaWriteEna
lIConnGetAreaReadEna (_ VEC_: TSLV; IIPAR_:TVII; ITEM_ID_ :TN) return TSL

where:

e _VEC_ represents interface vector IIVeCENa (see chapt. 5.2),

e _IIPAR_ is interface implementation table (see chapt. 5.2),

e _ITEM_ID_ is identifier of object type VII_AREA (see chapt. 3.2),
Function acts identically as lIConnGetAreaEnable respectively for writing operation
(IIConnGetAreaWriteEna) or reading (IIConnGetAreaReadEna).

lIConnGetWordSave (_VEC_ : TSLV; _IIPAR_:TVIl; _ITEM_ID_:TN;_POS_:TVI;

SAVE :TSL) return TSLV

where:

e _VEC_ represents interface vector IIVeCENa (see chapt. 5.2),

e _IPAR_ is interface implementation table (see chapt. 5.2),

e _ITEM_ID_ is identifier of object type VII_AREA (see chapt. 3.2),

e POS_ index of object components (see chapt. 3.3),

e _SAVE_ is signal II_strobeN (see chapter 2),
Function returns ‘1’ for active state of the signal (i.e. low state) _SAVE_ for these bits of
object data vector, which are actually accessible for writing (comp. acting of function
lIConnGetWordWriteEna). The rest of bits are set continuously for ‘0’.

lIConnGetBitsEnable (VEC_: TSLV; IIPAR_:TVIl; _ITEM_ID_:TN; SAVE_:TSL)

return TSL
where:
e _VEC_ represents interface vector IIVecInt (see chapter 5.2),
e _IIPAR_ is interface implementation table (see chapter 5.2),

e _ITEM_ID_ is object identifier of type VITI_BITS (see chapter 3.2),

e _SAVE_ original II_strobeN signal (see chapter 2),
Function returns ‘1’ for active (low) state of signal _SAVE_ under the condition that the
component was made accessible for writing (compare result of function
lIConnGetBitsWriteEna).

lIConnGetAreaEnable (VEC_: TSLV; |IPAR_:TVII; ITEM_ID_ :TN; SAVE _:TSL)

return TSL
where:
e _VEC_ represents interface vector IIVecInt (see chapter 5.2),
e _IIPAR_ is interface implementation table (see chapter 5.2),

e _ITEM_ID_ is object identifier of type VII_BITS (see chapter 3.2),

e SAVE_ original II_strobeN signal (see chapter 2),
Function returns ‘1’ for active (low) state of signal _SAVE_ under the condition that the
component was made accessible for writing (compare result of function
lIConnGetAreaWriteEna).

- 25/63 -

6 EXAMPLE OF INTERFACE IMPLEMENTATION

An example of Internal Interface implementation was presented in this chapter. This
example is considered from the point of view of several basic aspects:
¢ Definition of declaration list of records for the tested interface (see chapter 3)

e Area structure analysis of the 77 . The area structure is positioned in implementation table
(see chapter 4)

e Suggested structure of VHDL file and basics of usage of library functions (see chapter 5)
e Discussion of results of functional simulation

To keep the implementation readable, the example was confined to a few components.

6.1 Project of records for interface declaration list

The test project assumes the following working parameters:
e Interface parameters: II_ADDR_WIDTH=4, IT_DATA_WIDTH=4,

e User bus parameters: TEST_WIDTH=S.

Table 3 gathers record declarations for test interface (see tab. 1). There were presented shortly
access rights. The description parameters were omitted (comp. chapter 3.6). Description
parameters are not important for VHDL processing.

Page Vector | Type_ Item Width Number| Access Comment
Control sum
WORD_CHK | II_DATA_WIDTH 1 Ext. RO
readout
WORD_STAT | TT_DATA WIDTH| 1 | Ext.RO | Constantvalue
readout
PAGE REG WORD_INT |II_DATA WIDTH 2 Int. RW | 2 internal registers
- WORD_EXT TEST_WIDTH 1 Ext. RW | External register
VECT_INT | BITS_INT1 2 1 Int. RW 2 internal bits
VECT_INT | BITS_INT2 1 1 Int. RW 1 internal bit
VECT_EXT | BITS_EXT1 1 1 Ext. WO 1 external bit
VECT_EXT | BITS_EXT2 2 1 Ext. RW 2 external bits
PAGE_AREA AREA EXT TEST_WIDTH 3 Ext. RW 3 cell memory

Tab. 3. Declaration set of records for test interface
designations: - gray fields mean invalid parameters,
- Ext. — external register, Int. — internal register,
- RO- reading only WO — writing only, RW — full access.

comment 1: Records of type VII_WORD and VII_BITS are positioned in page
PAGE_REG, record of type VII_AREA are positioned in page PAGE_AREA.

comment 2: Records of type VII_WORD were declared with parameterized width
parameters (Itemwidth), while records of type VII_BITS have only
constant dimensional parameters.

comment 3: Record of type VII_WORD of identifier WORD_EXT and record of type
VII_AREA of identifier AREA_EXT have the word width bigger than the
data bus and, thus, require partitioning.

- 26/63 -

6.2 Calculation of interface implementation table

Calculation of the implementation table determines:

e Required address area of interface together with its positioning inside particular records and
positioning of records inside the data bus,

e Value and total length of the communication vector, i.e. positioning in its area the
communication buses for particular records.

Table 4 gathers calculated parameters of implementation table for test interface. Repeated
parameters from interface record declaration were omitted (see. tab. 2).

Type_Item |Width | Number | Access | temWrPos | ItemRdPos | ltemAddrPos | ltemAddrLen
WORD_ CHK 4 1 Ext. RO -1 0 0 1
WORD_STAT 4 1 Ext. RO -1 4 1 1

WORD _INT 4 2 Int. RW 8 8 2 1
WORD_ EXT 8 1 Ext. RW 16 24 4 2

BITS INT1 2 1 Int. RW 32 32 6 0

BITS INT2 1 1 Int. RW 34 34 6 2

BITS EXT1 1 1 Ext. WO 35 -1 7 0

BITS EXT2 2 1 Ext. RW 36 38 7 1

AREA EXT 8 3 Ext. RW 40 44 8 2

Interface 4 4 - -1 -1 48 15

Tab. 4. Collection of record declarations for test interface.

designation: - gray fields denote initializing record of the interface (see. chapt. 4.4.3),
- Ext. — external register, Int. — internal register,
- RO- read only, WO — write only, RW — full access.

Table. 5 presents physical distribution of components in address area and data in the
Internal Interface communication bus.

II_Addr Il_Data component
(A3-A0) D3 D2 D1 DO identifier index
0 bit 3 bit 2 bit 1 bit 0 WORD CHK 0
1 bit 3 bit 2 bit 1 bit 0 WORD STAT 0
2 bit 3 bit 2 bit 1 bit O 0
3 bit 3 bit 2 bit 1 bit O WORD_INT 1

4 bit 3 bit 2 bit 1 bit O
5 bit 7 bit 6 bit 5 bit 4 WORD_EXT 0
bit 1 bit 0 BITS INT1
6 bit 0 BITS INT2 | O
bit 0 BITS EXT1
/ bit 1 bit 0 BITS ExT2 | O
8-11 bit 3 bit 2 bit 1 ito | AREAEXT
Sub-area 0
AREA EXT | o€
12-15 bit 7 bit 6 bit 5 bit 4 —
Sub-area 1
Tab. 5. Collection of record declaration for test interface
designations: - gray fields denote non used data bits,
comment 1: The biggest address used in the implementation is 13. Calculation of

addresses starts always from the position 0.
comment 2: The width of interface vector is 48 bits.

- 27/63 -

Calculated structure of the bus vector is presented in table 6.

range [bits] component
cycle MSL LSB identifier index
Reading 3 0 WORD CHK 0
Reading 7 4 WORD_STAT 0
- , 11 8 0
Writing and reading 15 12 WORD_INT 1
Writing 23 16
Reading 31 24 WORD_EXT 0
Writing and reading 33 32 BITS_INT1 none
Writing and reading 34 34 BITS INT2
Writing 35 35 BITS EXT1
Writing 37 36 none
Reading 39 38 BITS_EXT2
Writing 43 40
Reading 47 a4 AREA_EXT none

6.3

library ieee;

use ieee.std_|logic_1164.all;
use work.std_logic_1164_.all;
use wor k. VConponent . al | ;

entity II_test is
generic (
constant II_ADDR W DTH
constant II_DATA W DTH
constant TEST_W DTH
)
port (
wor d_i nt 0_dat a_out
wor d_i nt 0_enabl e_out
word_i nt1_dat a_out
wor d_i nt 1_enabl e_out
word_extO_data_in
wor d_ext 0_dat a_out
wor d_ext 0_enabl e_out
wor d_ext O_r ead_ena_out
word_extO_write_ena_out
wor d_ext 0_save_out
word_ext1l_data_in
bits_intl data_out
bits_int1_enabl e_out
bits_int2_data_out
bi ts_i nt 2_enabl e_out
bits_ext1l data_out
bits_ext2 data_in
bi ts_ext 2_dat a_out
bi t s_ext 2_enabl e_out
bi ts_ext 2_read_ena_out
bits_ext2_wite_ena_out
bits_ext2_save_out
area_data_in
ar ea_enabl e_out
area_read_ena_out
area_write_ena_out
area_strobe_out
-- internal bus interface
II_resetN
II_operN
II_witeN
II_strobeN
II_addr
II_data_in
II_data_out
)
end II_test;

Tab. 6. Structure of bus vector

CTVL =4,
CTVL =4
:TVL :=8 --"test bus

--"interface address bus size"
--"interface data bus size"

size"

:out TSLV(II_DATA WDTH 1 downto 0);
:out TSLV(II_DATA WDTH 1 downto 0);
:out TSLV(II_DATA WDTH 1 downto 0);
:out TSLV(II_DATA WDTH 1 downto 0);

:in TSLV(TEST_W DTH 1
:out TSLV(TEST_W DTH 1
:out TSLV(TEST_W DTH 1
rout TSLV(TEST_W DTH-1
:out TSLV(TEST_W DTH 1
sout TSLV(TEST_W DTH 1
in TSLV(TEST_W DTH 1
:out TSLV(1 downto 0);
:out TSL;
:out TSLV(O downto 0);
rout TSL;
:out TSLV(O downto 0);
tin TSLV(1 downto 0);
:out TSLV(1 downto 0);
:out TSL;
rout TSL;
out TSL;
cout TSL;

downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);
downto 0);

:in TSLV(II_DATA WDTH 1 downto 0);

out TSL;
:out TSL;
out TSL;
cout TSL;

TSL;
TSL;
TSL;
TSL;

3533335355

TSLV(II_ADDR W DTH 1 downto 0);
TSLV(II_DATA WDTH 1 downto 0):

out TSLV(II_DATA W DTH 1 downto 0)

- 28/63 -

Exemplary source code for interface implementation

architecture behaviour of II_test is

const ant PAGE_REG

const ant PAGE_AREA
constant WORD_CHK
constant WORD_STAT
constant WORD_| NT
constant WORD_EXT
constant VECT_I NT
constant BITS_I NT1
constant BITS_ | NT2
constant VECT_EXT
constant BI TS_EXT1
constant BI TS_EXT2

const ant AREA_EXT
constant VIIItenDecl Li st
-- itemtype, itemlID,

TN = 1; -- "register page identifier"

TN = 2; -- "area page identifier"

TN = 3; -- "internal register identifier”
TN = 4; -- "internal register identifier"
TN = 5 -- "internal register identifier"
TN = 6, -- "external register identifier"”
TN = 7, -- "internal vector identifier"
TN = 8; -- "internal bitsl identifier"
TN = 9; -- "internal bits2 identifier"
TN = 10; -- "external vector identifier"
TN =11; -- "external bitsl identifier"

TN = 12; -- "external bits2 identifier"

TN = 13; -- "area identifier"

:TVI | temDecl Li st =(
width, num parent ID, wite type, read type,

(VII_PAGE, PAGE_REG 0, 0, PAGE_REG VII_WNOACCESS, VII_RNOACCESS,
(VII_WORD, WORD CHK, II_DATA W DTH, 1, PACE_REG ~ VII_WNOACCESS, VII_REXTERNAL,
(VII_WORD, WORD STAT, II_DATA W DTH, 1, PACE_REG VII_WNOACCESS, VII_REXTERNAL,
(VII_WORD, WORD_INT, II_DATA W DTH, 2, PAGE_REG, VII_WACCESS, VII_RI NTERNAL,
(VII_WORD, WORD EXT, TEST_W DTH, 1, PAGE_REG VII_WACCESS, VII_REXTERNAL,
(VII_VECT, VECT_INT, 0, 0, PAGE_REG VII_WNOACCESS, VII_RNOACCESS,
(VII_BITS, BITS_INT1, , 1, VECT_INT, VII_WACCESS, VII_RI NTERNAL,
(VII_BITS, BITS_INT2, 1, 1, VECT_INT, VII_WACCESS, VII_RI NTERNAL,
(VII_VECT, VECT_EXT, 0, 0, PAGE_REG VII_WNOACCESS, VII_RNOACCESS,
(VII_BITS, BITS_EXT1, 1, 1, VECT_EXT, VII_WACCESS, VII_RNOACCESS,
(VII_BITS, BITS_EXT2, 2, 1, VECT_EXT, VII_WACCESS, VII_REXTERNAL,
(VII_PAGE, PAGE_AREA, 0, 0, PAGE_AREA, VII_WNOACCESS, VII_RNOACCESS,
(VII_AREA, AREA EXT, TEST_W DTH, 3, PAGE_AREA, VII_WACCESS, VII_REXTERNAL,

)

constant IlPar :TVIl := TVIICreate(VIIItenDecl List, II_ADDR W DTH, II_DATA W DTH);

si gnal I'l'Veclnt, Il1VecAll, |lVecEna :TSLV(TSLVhigh(VII(llPar)) downto VEC |INDEX MN);

begi n

- - Internal Interface i npl ement ati on

process(II_resetN, II_strobeN)

begi n
if(II_resetN="0") then

Il1'Veclnt <= Il Reset(IlVeclint,!Il|Par);

el sif(II_strobeN event and II_strobeN="1"') then
if(II_operN="0" and II_witeN="0") then
I1'Veclnt <= IlSave(llVeclnt,|lPar, II_addr,II_data_in);

end if;
end if;
end process;

Il VecEna <= |1 Enabl e(lI Par,

II_operN II_witeN II_addr);

Il'VecAll <= (IIWite(llVeclnt,!||Par,II_addr,II_data_in)

or |1 ConnPutWordbData(llVeclnt, I1Par, WORD CHK, 0, VIICheckCodeCet(IIPar))
or |1 ConnPut WordDat a(llVeclnt, Il1Par, WORD STAT, 0, "0110")
or |1 ConnPutWrdbData(llVeclnt, I1Par, WORD EXT, 0, word_ext0_data_in)
or |1 ConnPutBitsData(llVeclnt, IlPar, BITS EXT2, 0, bits_ext2_data_in)
or |1 ConnPut AreaData(l|Veclnt, I1Par, AREA EXT, area_data_in)
)
II_data_out <= Il Read(llVecAll,IlPar,II_addr);
-- user connections
wor d_i nt 0_dat a_out <= || ConnGet WordDat a(l 1 VecAl |, 11 Par, WORD_I NT, 0) ;
wor d_i nt 0_enabl e_out <= || ConnGet Wr dEnabl e(I | VecEna, | | Par, WORD | NT, 0, II_writeN);
wor d_i nt 1_dat a_out <= || ConnGet WordDat a(l | VecAl |, I | Par, WORD_I NT, 1) ;
wor d_i nt 1_enabl e_out <= || ConnGet Wr dEnabl e(I | VecEna, I | Par, WORD I NT, 1, II_witeN);
wor d_ext 0_dat a_out <= || ConnGet Wr dDat a(l | VecAl | , I | Par, WORD_EXT, 0) ;
wor d_ext 0_enabl e_out <= || ConnGet Wr dEnabl e(I | VecEna, | | Par, WORD_EXT, 0, II_witeN);

wor d_ext O_read_ena_out <=
word_extO_wite_ena_out <=

wor d_ext 0_save_out <=
bits_intl _data_out <=
bits_i nt 1_enabl e_out <=
bi ts_int2_data_out <=
bi ts_i nt2_enabl e_out <=
bi ts_ext1_data_out <=

|

|

I'1 ConnGet Wr dReadEna(| | VecEna, | | Par, WORD_EXT, 0) ;

11 ConnGet Wor dW i t eEna(l | VecEna, | | Par, WORD_EXT, 0) ;

Il ConnGet Wor dSave(| | VecEna, I | Par, WORD_EXT, 0, II_strobeN);
11 ConnGet BitsData(llVecAll,IlPar,BITS_INT1,0);

I'1 ConnGet Bi t sEnabl e(|| VecEna, | | Par, BI TS_I NT1, II_witeN);
11 ConnGet BitsData(llVecAll,IlPar,BITS_INT2,0);

Il ConnGet Bi t sEnabl e(1| VecEna, | | Par, BI TS_I NT2, II_witeN);
11 ConnGet Bi tsData(llVecAll,IlPar, BI TS _EXT1, 0);

- 29/63 -

bi ts_ext2_data_out <=
bi t s_ext 2_enabl e_out <=

bits_ext2_wite_ena_out <=

| ConnCGet Bi tsDat a(l | VecAl |, Il Par, Bl TS_EXT2, 0);
| ConnCet Bi t sEnabl e(| | VecEna, | | Par, BI TS_EXT2, II_witeN);

| ConnGet Bi t sWiteEna(llVecEna, || Par, BI TS _EXT2);

|
|
bits_ext2_read_ena_out <= |l ConnGetBitsReadEna(llVecEna, || Par, Bl TS_EXT2);
|
|

bi ts_ext 2_save_out <= |1 ConnGet Bi t sSave(|| VecEna, | | Par, Bl TS_EXT2, II_strobeN);
ar ea_enabl e_out <= || ConnGet Ar eaEnabl e(| | VecEna, | | Par, AREA_EXT, II_witeN);
area_r ead_ena_out <= || ConnGet Ar eaReadEna(| | VecEna, | | Par, AREA_EXT) ;
area_wite_ena_out <= || ConnGet AreaW it eEna(l | VecEna, | | Par, AREA_EXT) ;

ar ea_strobe_out <= || ConnGet Ar eaStrobe(l | VecEna, | | Par, AREA_EXT, II_strobeN);

end behavi our;

6.4

Functional simulation of signal time relations in interface
implementation

Fig. 3 presents exemplary functional simulation of interface implementation.

— B B I e I I It ™ S N HNE T e
I_resetN. 4

(== T LT LT L PP U P Pl P P P U P L P P P P P P UL L P T L P L P T L L LTI TLT
_vten —1]

o piml el el e e s e e Ve e Ve U U
5 5

oste_n T e % % % k0 % F % b W o % % % F W % % E W N % N % B 0 % % %
X R T R 0/ R 0 S S (R R S R S G S (R W S G R S

[word_into_sata_out

5

[word_into_enable_out

R

word_into_enable_out(3)

‘wor_into_enable_out(2)

word_into_enable_out(1)

‘word_into_enable_out(0)

[word_int1 _sata_out

[word_int1 _enable_out

word_int_enable_out(3)

word_int1_enable_out(2)

word_int1_enable_out(1)

‘word_int_enable_out(0)

1337

[word_ext0_data_in

[word_exto_data_out

& E e e

[word_exto_enable_out

w0 DO o CF

word_ex_enable_out)

word_ext_enable_oul(e)

‘word_ext)_enable_oul(s)

word_ext_enable_oul(s)

i
J77

word_ext_enable_oul(3)

‘word_ext)_enable_ouz)

word_ext_enable_oul(1)

737
1]

‘word_ext_enable_ou()

[word_extn_read_ena_out

word_ext0_read_ena_out(7)

‘word_ext_tead_ena_oul(e)

‘word_ext)_read_ena_oul(s)

‘word_ex0_read_ena_oul(s)

e

‘word_ex_tead_ena_oul(3)

‘word_ext_read_ena_oulz)

‘word_ext0_read_ena_out(1)

‘word_ext_tead_ena_ou())

13737

[Word_exto_write_ena_out

m [F a0 oo

‘word_ext0_write_ena_out(?)

‘word_ex0_viitz_ena_out(s)

‘word_ext0_wiite_ena_out(s)

3737

word_ex0_viite_ena_out(4)

‘word_ex0_viite_ena_out(3)

‘word_ext_wiite_ena_out(z)

word_ex0_vite_ena_out(1)

‘word_ext_vitz_ena_out(0)

[word_exto_save_out

ETTTT

word_ext_save_out(7)

‘word_ext)_save_0ut(s)

word_ex_save_out(s)

word_ext_save_out(4)

| | | |

word_ext)_save_out(3)

| |

word_ex0_save_out(2)

word_ex_save_out(1)

word_ext_save_out(0)

bits_int1_data_out

bits_int1_enable_out

oits_int2_data_out

bits_int2_enable_out

oits_ext1_gata_out

bits_ext2_oata_in

bits_ext2_gata_out

bits_extz_enable_out

bits_ext2_reas_ena_out

oits_ext2_write_ena_out

oits_ext2_save_out

area_oata_in

rea_enbie_out I 1 AT A i irirt
araod_sna_out T

rea_te_ora_out AT

ea_srone_out T L TL JL J1 LI JL o JL J1LJL T

_ador

Fig. 3. Results of functional simulation for the test implementation of interface.

- 30/63 -

comment 1: Bus II_data_out outputs data from interface without taking into
account the state and type of operation (i.e. ignored line status
ii_operNand ii_writeN).

comment 2: Records without write rights ignore write cycle (for example record
WORD_CHK).

The simulation was conducted for full range of addressing (from 0 to 15), successively
for write and read operations:

e Write cycle of data from bus II_data_in was performed successively for the addresses:

0 — writing of value D to record WORD_CHK is ignored,
1 — writing of value 0 to record WORD_STAT is ignored,
2 — writing to component of index 0 of record WORD_INT (internal register) value 3

with the rising edge of signal II_strobeN,

3 — writing to component of index 1 of record WORD_INT (internal register) value 6
with the rising edge of signal II_strobeN,

4 — writing to younger part (bits 0-3) of external register (record WORD_EXT) value 9.
For the bits 0-3 of bus word_extO_data_out this value remains output for the
period of low signal status II_operN. Bits 0-3 of bus word_ext0O_ena_out are
set to ‘1’ for the same period (write cycle),

5 — writing to older part (bits 4-7) of external register (record WORD_EXT) value C. For
the bits 0-3 of bus word_extO_data_out this value remains output for the
period of low signal status II_operN. Bits 4-7 of bus word_ext0O_ena_out are
set to ‘1’ for the same period (write cycle),

6 — writing to bits of records BITS_INT1 and BITS_INT2 of value F with the rising
edge of signal II_strobeN. For the bus bits_intl_data_out there is
output value 3 registered in record BITS_INT1l, and for the bus
bits_int2_data_out the value 7 registered in record BITS_INTZ,

7 — writing to bits of the records BITS_EXT1 and BITS_EXTZ2 value 2. For the bus
bits_extl_data_out there is output value 0, and for the bus
bits_ext2_data_out value /. During the duration time of the period, bit states
of the buses bits_ext2_enable_out and bits_ext2_write_ena_out
are set to ‘1’. For the low signal status II_strobeN, bits of the bus
bits_ext2_enable_out aresetto ‘1’,

8-15 — writing to spare area for the memory record AREA_EXT. During the duration time of
the access cycle there are activated to ‘1’ the signals area_enable_out and
area_write_ena_out. For the period of low level signal state II_strobeN
there is activated to ‘1° the signal area_strobe_out.

Caution: Data from the bus II_data_in are directly connected to memory
block, similarly to the required, the youngest address lines from the bus
IT_addr.

¢ Reading cycle on the bus II_data_out was performed successively for the following
addresses:

0 —reading from record WORD_CHK returns a unique control value D calculated by the
function VIICheckCodeGet,

- 31/63 -

—_

— reading from record WORD_CHK returns, previously stored value 6,

[\9)

—reading from component of index O of internal register (record WORD_INT) of
registered value. For the period of low level signal state II_operN there are
activated for ‘1 bus signals word_intO_enable_out,

3 —reading from component of index 1 of internal register (record WORD_INT) of
registered value 6. For the period of low level signal state II_operN there are
activated to ‘1’ the bus signalsword_intl_enable_out,

4 —reading from the younger part (bits 0-3) of the bus word_extO_data_in of
value 4 via the external register (record WORD_EXT). Respectively, the bits 0-3 of
the bus word_ext0O_enable_out are set to ‘1’ for the cycle duration time (low
level state of signal II_operN),

Caution: For the bits 0-3 of the bus word_extO_data_out there is output
value 9 from the bus II_data_1in. The reading and writing channels
are nondependent!

5 —reading from the younger part (bits 4-7) of bus word_extO_data_1in of value 3
via external register (record WORD_EXT). Respectively, the bits 4-7 of bus
word_extO_enable_out are set to ‘1’ for the cycle duration time (low state of
signal IT_operN),

Caution: For the bits 4-7 of the bus word_extO_data_out there is output
value C from the bus II_data_in. The reading and writing
channels are nondependent!

6 — simultaneous reading from record BITS_INT1 of value 3 and from record
BITS_INTZ2 of value / in the form of a common value 7. For the period of low
signal status II_operN there are activated to ‘1’ the buses signals
wodr_intl_enable_out andwodr_int2_enable_out.

7 — simultaneous reading from the record BITS_EXT1 of value 0 (record only for
writing!) and from record BITS_EXTZ2 of value [/ from the bus
bits_ext2_data_in in the form of a common value 2. The bit states of buses
bits_ext2_enable_out and bits_ext2_read_ena_out are set to ‘I’
during the duration time of the cycle (i.e. for the low level of signal II_operN).

8-15 —reading form memory record AREA_EXT of data via the bus area_data_in.
During the duration time of access cycle the following signals are activated to ‘1’
area_enable_out and area_read_ena_out. For the duration of low level
signal state II_strobeN there is activated to ‘1’ the signal area_strobe_out,

Caution: Required, the youngest address lines from the bus II_addr are directly
connected to the memory block.

- 32/63 -

7 IMPLEMENTATION OF PARAMETRIC, EXTERNAL,
FUNCTIONAL COMPONENTS

The Internal Interface possesses open structure and enables connection to the interface
various external components. The functional layer of the interface is adjusted, in this way, by
the system designer, to real implementation requirements in the FPGA chip. Applied common
methods of parameterization in Internal Interface and for external components allow for
considerable simplifications of mutual implementation.

This chapter presents examples of implementations of registers, counters and memories.
They are the basic external functional components. They may be used directly in
implementation or be composing blocks of more complex functional components.

7.1 Implementation of external register for read buffering

A lot of data is calculated by external components working with fast, synchronous
clock. Data reading requires implementation of a buffering register. Registered data in the
buffer are to be read by the Internal Interface. Below, there is an example of component
application KTP_LPM_REG as external data reading register. The dimensions of external
data is set by nondependent parameter: REGISTER_WIDTH.

library ieee;

use ieee.std_logic_1164.all;

use work.std_l ogic_1164_ktp.all;
use work. kt pconponent . al | ;

use wor k. VConponent . al | ;

entity ITI_test_ext_reg_read is

generic (
constant II_ADDR W DTH :TVL :=4; --"interface address bus size"
constant II_DATA W DTH :TVL :=4; --"interface data bus size"
constant REG STER W DTH :TVL :=8 --"external register bus size"
)
port (
ext _reg_cl k tin TSL;
ext_reg_ena ;in TSL;

ext_reg_data_in i
-- internal bus interface

=]

TSLV(REG STER W DTH 1 downto 0);

II_resetN in TSL;

II_operN in TSL;

II_witeN in TSL;

II_strobeN in TSL;

II_addr cin TSLV(II_ADDR WDTH 1 downto 0);
II_data_in :in TSLV(II_DATA WDTH 1 downto 0);
II_data_out sout TSLV(II_DATA WDTH 1 downto 0)

)s

end II_test_ext_reg_read;

architecture behaviour of II_test_ext_reg_read is

constant PAGE_REG TN = 1, -- "regi ster page identifier”
constant WORD_EXT TN =2, -- "external register identifier"
constant VIIItenDecl Li st :TVI I I tenmDecl List :=(
-- itemtype, itemlID, width, num parent ID, wite type, read type,

(VII_PAGE, PAGE_REG, 0, 0, PAGE_REG VII_WNOACCESS, VII_RNOACCESS,

(VII_WORD, WORD EXT, REGI STER WDTH, 1, PAGE REG VII_WACCESS, VII_REXTERNAL,
)

constant |1 Par TV 1= TVII Create(VIIItenDecl Li st, II_ADDR W DTH, II_DATA W DTH) ;

si gnal I1Veclnt, I1VecAll, IlVecEna : TSLV(TSLVhi gh(MII (11 Par)) downto VEC | NDEX M N);
si gnal H 1 TSL;

si gnal Ext RegDat aCut : TSLV(REG STER W DTH 1 downto 0);

- 33/63 -

begi n
H<="'1;

- user connections
ext_reg : KTP_LPM REG

generic map (
LPM W DTH => REG STER W DTH

port nmap(
reset N => II_resetN,
set N => H,
cl k => ext_reg_clk,
ena => ext_reg_ena,
d => ext_reg_data_in,
q => Ext RegDat aQut

)i
- Internal Interface i npl ement ati on

process(II_resetN, II_strobeN)
begi n
if(II_resetN="0") then
Il1'Veclnt <= Il Reset(IlVeclint,!|I|Par);
el sif(II_strobeN event and II_strobeN="1"') then
if(II_operN="0" and II_witeN="0") then
I1'Veclnt <= IlSave(llVeclnt,|lPar, II_addr,II_data_in);
end if;
end if;
end process;

I1VecEna <= || Enable(llPar, II_operN, II_witeN II_addr);
I1VecAll <= (II1Wite(llVeclnt,||Par,II_addr,II_data_in)
or |1 ConnPutWrdbData(llVeclnt, IlPar, WORD EXT, 0, ExtRegDataCut)

)i
II_data_out <= Il Read(llVecAll,IIPar,II_addr);
end behavi our;

Table 7 presents physical distribution of components in the address area and data of
communication bus Internal Interface for given project parameters:

e interface parameters: II_ADDR_WIDTH=4, II_DATA_WIDTH=4,
e interface parameters for external register: REGISTER_WIDTH=S.
Splitting of address and data area stems from automatic mechanism described in chapter 4.2):

II_Addr IT_Data component

(A3-A0) D3 D2 D1 DO identifier access index
0 bit 3 bit 2 bit 1 bit 0
1 bit7 | bit6 | bits | bitd | ORP-EXT |ExtROJ 0

Tab. 7. Collection of declarations of records for test interface of register
designations: - Ext. RO — external register only for reading.

Exemplary result of functional simulation was presented in fig. 4. External data
ext_reg_data_in are input synchronously with clock ext_reg_c1k. Data readiness to
write into the buffer is defined by high signal status ext_reg_ena, while data registration
in the buffer KTP_LPM_REG is for rising edge of the clock signal ext_reg_clk. The AE
value was registered for the analyzed example.

1 o @ L] k1 i i 4 160 0 0 1} W 160 0 ki) k7 1} kX1l 30 80 0

I teselhl

_oper! 4I

I witehl

I stotell

I addr F 0 0

I dita_in 0

_data_out 0 E A

ei_er_ck
ei_eg_ena

ed_eg_dats_in A A B (AC W0 (AE AF a0 81 E2 Bl B4 B Be B B BY A B8 BC

EdRregData0ut 00 AE

Fig. 4. Functional simulation results of implementation for external reading register.

- 34/63 -

The component of external register is connected to the Internal Interface via the signal
bus ExtRegDataout and function IIConnPutwordData. Buffered data reading (8-bits)
is done in this implementation (4 bits of data bus) via two successive addresses (comp. chapt.
4.2.1). For address 0, the youngest four values of buffered data are read (value E), and for
address / the oldest half of data is read (value A).

The way of implementation of buffering register KTP_LPM REG
does not depend on the real dimensions of buffered data (parameter REGISTER_WIDTH),
neither it depends on the bus dimensions (parameters: II_addr_width, and
II_data_width).

7.2 Implementation of external parametric counter

A component of synchronous counter is a commonly applied functional block in
numerable FPGA implementations. The presented example uses component
KTP_LPM_COUNT, which is fully controlled by the Internal Interface. The presented
component implementation allows for:

e Synchronous counting forward conditioned by the activation signal,

e Asynchronous counter initialization to value 0,

e Asynchronous setting of given initial value,

e Asynchronous reading of currently read data.

Counter data dimension is set by a nondependent parameter: COUNTER_WIDTH.

The example is confined to counter usage KTP_LPM_COUNT only in the counting work mode
from up to down and blocking of counting after reaching the maximum value.

It is to be noticed, that data reading during counting via the Internal Interface
requires application of a circuit which buffers the reading (see chapter 7.1).

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_nisc.all;

use work.std_logic_1164_ktp.all;
use wor k. kt pconponent . al | ;

use wor k. VConponent . al | ;

entity II_test_ext_counter is

generic (
constant II_ADDR W DTH :TVL :=4; --"interface address bus size"
constant II_DATA W DTH :TVL :=4; --"interface data bus size"
constant COUNTER_W DTH :TVL :=8 --"external register bus size"
)
port (
ext_cnt_clk tin TSL;
ext_cnt _ena in TSL;
- internal bus interface
ITI_resetN in TSL;
II_operN :in TSL;
II_witeN in TSL;
II_strobeN cin TSL;
II_addr cin TSLV(II_ADDR WDTH 1 downto 0);
II_data_in cin TSLV(II_DATA WDTH 1 downto 0);
II_data_out sout TSLV(II_DATA WDTH 1 downto 0)

)

end II_test_ext_counter;

- 35/63 -

architecture behaviour of II_test_ext_counter is

const ant PAGE_REG TN = 1; -- "register page identifier"

constant VECT_CNT TN = 2; -- "vector identifier"

constant BITS_ CNT_INIT TN = 3; -- "external bit identifier"

constant BI TS_CNT_FI NI SH TN = 4; -- "external bit identifier"

const ant WORD_CNT_DATA TN = 5; -- "internal register identifier"

constant VIIItenDecl Li st CTVI I tenDecl Li st @ =(

-- itemtype, itemlID, wi dth, num parent ID, wite type, read type,
(VII_PAGE, PAGE_REG, 0, 0, PAGE_REG VII_WNOACCESS, VII_RNOACCESS,
(VII_VECT, VECT_CNT, 0, 0, PACGE_REG VII_WNQOACCESS, VII_RNOACCESS,
(VII_BITS, BITS CNT_INT, 1, 1, VECT_CNT, VII_WACCESS, VII_RNOACCESS,
(VII_BITS, BITS_CNT_FI N SH 1, 1, VECT_CNT, VII_WNOACCESS, VII_REXTERNAL,
(VII_WORD, WORD CNT_DATA, COUNTER_W DTH, 1, PAGE_REG VII_WACCESS, VII_REXTERNAL,

)

constant |1 Par TV = TVIICreate(VIIItenDecl Li st, II_ADDR W DTH, II_DATA W DTH) ;

si gnal Il1Veclnt, I1VecAll, IlVecEna : TSLV(TSLVhi gh(M I (11 Par)) downto VEC | NDEX M N);

si gnal H 1 TSL;

si gnal ExtCntlnitN T TSL;

si gnal Ext Cnt Dat a : TSLV(COUNTER_W DTH-1 downto 0);

si gnal Ext Cnt LoadN T TSL;

si gnal Ext Ont Resul t : TSLV(COUNTER W DTH-1 downto 0);

si gnal Ext Cnt Fi ni shN 1 TSL;

begi n
H<="'1";

user connections

ExtCntInitN <=
Ext CntData <=
Ext Cnt LoadN <=
ext_count : KTP_
generic map(

not (I I ConnGet Bi t sSave(|| VecEna, |l Par,BI TS CNT_INIT,ii_strobeN));
Il ConnGet WordDat a(| | VecAl |, I | VecEna, | | Par, WORD_CNT_DATA, 0, Ext Cnt Resul t) ;
not (OR_REDUCE(| | ConnGet Wor dSave(|| VecEna, | | Par, WORD_CNT_DATA, 0, i i _strobeN)));

LPM_COUNT

LPM DATA W DTH => COUNTER_W DTH,
COUNT_STOP => TRUE,
COUNT_RELQAD => FALSE
port nmap(
reset N => ii_resetN,
cl k => ext_cnt_cl k,
cl k_ena => ext_cnt_ena,
initN => ExtOntlInitN,
| oadN => Ext Cnt LoadN,
downN => H,
setN => H,
rel oadN = H,
data => Ext Cnt Dat a,
count => Ext Cnt Resul t,
finishN => Ext Cnt Fi ni shN,
over N => open
)
- - Internal Interface 1 NPl ement ati on
process(II_resetN, II_strobeN)
begi n
if(II_resetN="0") then
Il'Veclnt <= IlReset(llVeclnt,IIPar);
el sif(II_strobeN event and II_strobeN="1"') then
if(II_operN="0" and II_witeN="0") then
I'1'Veclnt <= I1Save(llVeclnt,||Par, II_addr,II_data_in);
end if;

end if;
end process;

Il VecEna <= || Enabl e(llPar, II_operN, II_witeN IT_addr);

Il1VecAll <= (II1Wite(llVeclnt,||Par,II_addr,II_data_in)
or |1 ConnPutWordData(llVeclnt, |1Par, WORD CNT_DATA, 0, ExtCntResult)
or |1 ConnPutBitsData(llVeclnt, IlPar, BITS CNT_FIN SH, 0, TSLVconv(ExtCntFi ni shN))
)

II_data_out <= |l Read(l!lVecAll,IlPar,II_addr);

end behavi our;

- 36/63 -

Table 8 presents physical distribution of components in the address area and Internal
Interface communication bus area, for the set parameters of the considered project:

e interface parameters: II_ADDR_WIDTH=4, II_DATA_WIDTH=4,
e external counter bus parameters: COUNTER_WIDTH=S.
Splitting of address and data area stems from automatic mechanism described in chapter 4.2):

IT_Addr IT_Data component
(A3-A0) D3 D2 D1 DO identifier access | index
0 bit 0 BITS CNT INIT Ext. WO
bit 1 BITS CNT FINISH Ext. RO
1 bit 3 bit 2 bit 1 bit 0
5 bit 7 bit 6 bit5 bitd WORD_CNT_DATA | Ext. RW 0

Tab. 8. Collection of record declarations for test interface of a counter.
designations: - Ext. — external register,

- RO- only for reading, WO — only for writing, RW — full access.

Exemplary result of functional simulation of external counter was presented in fig.5.
The counter KTP_LPM_COUNT counts forward, synchronously with the rising edge of the
clock signal ext_cnt_clk under the condition of counting activating with high signal
status ext_cnt_ena.

Name
Il_reselN]

oven ! J ! J | I | |
Iwiteh 1 | 1

Il_stabent N

I1_addr F { 2 F 0

II_data_in F g F

II_data_out

ed_int_ena | 1

EdCrtiiti

EdCniLozan

EdCniData o0 @ @ WFA B FC JFD fE (r 0

EdCriResut 0 0 Fo WFA B o Fn fE fF i
!

EdCnifinishN

Fig. 5. Functional simulation results of external counter implementation.
The component of external register is connected to the Internal Interface:

e writing cycle to the address 0 causes asynchronous initialization of the counter to value 0.
Only high status of bit DO of the bus II_data_in is valid. It activates signal
EXtCntInitN to low status during the signal duration II_strobeN,

e Writing cycles to addresses / and 2 cause setting, successively, four younger and four older
bits of counter KTP_LPM_COUNT. The process of counter status setting is asynchronous
against the clock signal ext_cnt_clk. Data are transmitted via the bus ExtCntData,
and writing activates the low signal status ExtCntLoadN,

e Reading cycle from the address 0 returns signal status EXtCntFinishN during the bit D/
of the bus IT_data_1in,

e Reading cycles from the addresses / and 2 return successively, four younger and four older
bits of the counter KTP_LPM_COUNT. Counter status is transferred by the bus
ExtCntResult.

The way of implementation of synchronous external counter KTP_LPM_COUNT
does not depend on real dimensions of the counter (parameter COUNT_WIDTH),
neither it depends on the bus dimensions (parameters: II_addr_width, and
II_data_width).

- 37/63 -

7.3 Implementation of parametric external memory

Component of synchronous double-port memory utilizes physical memory blocks
present in the FPGA chip (in chip series: APEX, ACEX, CYCLONE, STRATIX, SPARTAN,
VIRTEX and others). The presented example uses component DPM_PROG, which is fully
controlled by the Internal Interface. The presented component implementation enables writing
an reading of memory address area. Nondependent parameter MEM_ADDR_WIDTH
determines the dimension of memory address bus and respectively the parameter
MEM_DATA_WIDTH, defines the dimension of data bus.

The example is confined to the usage of component DPM_PROG exclusively in the access
mode to the Internal Interface.

The project synthesis process requires only the file LPM_comp_7 which complies with the

used type of FPGA.
library ieee;
use ieee.std_|logic_1164.all;
use ieee.std_logic_misc.all;
use work.std_logic_1164_ktp.all;
use wor k. kt pconponent . al | ;
use wor k. VConponent. al | ;
use wor k.| pnconponent . al | ;
entity II_test_ext_nenory is
generic (
constant II_ADDR W DTH :TVL :=4; --"interface address bus size"
constant II_DATA W DTH :TVL :=4; --"interface data bus size"
constant MEM _ADDR_W DTH :TVL :=2; --"external register bus size"
constant MEM DATA W DTH :TVL :=8 --"external register bus size"
)
port (
ext_cnt_clk tin TSL;
ext_cnt _ena in TSL;
-- internal bus interface
II_resetN in TSL;
II_operN in TSL;
IT_witeN cin TSL;
II_strobeN :in TSL;
II_addr in TSLV(II_ADDR W DTH 1 downto 0);
II_data_in :in TSLV(II_DATA WDTH 1 downto 0);
II_data_out :out TSLV(II_DATA WDTH 1 downto 0)

)

end II_test_ext_nenory;

architecture behaviour of II_test_ext_menory is

const ant PAGE_REG

const ant AREA_NMEM
constant VIIItenDecl Li st
--itemtype, itemID,
(VII_PACE, PAGE_REG,

(VII_AREA, AREA MEM MEM DATA W DTH,

) .

const ant

'l Par
si gnal Il Veclnt, |1VecAll,
si gnal H L
si gnal AL
si gnal DL

constant MEM II_ADDR W DTH

si gnal Ext MenW
si gnal Ext Menst r
si gnal Ext MenDat aCut

TN
TN

1, -- "regi ster page identifier"”
2; -- "external menory identifier”

:TVI I tenmDecl Li st : =(
num parent ID, wite type, read type,
0, PACGE_REG VII_WNOACCESS, VII_RNQACCESS ...
2** VEM ADDR_W DTH, PAGE_REG VII_WACCESS, VII_REXTERNAL ...

1= TVIICreate(VIIItenDecl Li st, II_ADDR W DTH, II_DATA W DTH) ;
11 VecEna : TSLV(TSLVhi gh(M I (11 Par)) downto VEC | NDEX M N);

: TSL;
: TSLV(MEM_ADDR_W DTH 1 downto 0);
: TSLV(MEM_DATA W DTH 1 downto 0);
:TN : = MEM ADDR W DTH - - >
+SLVPar t Addr Expand(MEM_DATA W DTH, II_DATA W DTH) ;
: TSL;
: TSL;
: TSLV(II_DATA WDTH 1 downto 0);

- 38/63 -

begi n
H<="1"; L <="'0";
AL <= (others => '0"); DL <= (others =>'0");

-- user connections

Ext MemW <= || ConnGet AreaW i t eEna(| | VecEna, | | Par, AREA_MEM) ;
M i

Ext MenStr <= || ConnCet AreaSt robe(l | VecEna, | | Par, AREA_ MEM i i _strobeN);
ext _nenory : DPM PROG

generic map (
LPM DATA WDTH => MEM DATA W DTH,
LPM ADDR W DTH => MEM ADDR_W DTH,
LPM MDATA W DTH => II_DATA W DTH,
ADDRESS_SEPARATE => FALSE

)

port map (
resetN => II_resetN,
clk => L,
ena_in = L,
addr_in => AL,
data_in => DL,
ena_out = L,
addr _out => AL,
dat a_out => open,
simul ate = L,
proc_req = L,
proc_ack => open,
menory_addr => II_addr (MEM II_ADDR W DTH 1 downto O0),
nenory_data_in => II_data_in,
menory_data_out => Ext MenDat aCut,
menory_w => Ext MenmiV,
menory_str => Ext Menftr

)
- - Internal Interface i npl ement ati on
process(II_resetN, II_strobeN)
begi n
if(II_resetN="0") then
I1'Veclnt <= Il Reset(IlVeclint,!IIPar);
el sif(II_strobeN event and II_strobeN="1"') then
if(II_operN="0" and II_witeN="0") then
I1'Veclnt <= I1Save(llVeclnt,|lPar, II_addr,II_data_in);
end if;
end if;
end process;
Il VecEna <= || Enabl e(llPar, II_operN, II_witeN, II_addr);
Il'VecAll <= (IIWite(llVeclnt,!||Par,II_addr,II_data_in)
or |1 ConnPut AreaMDat a(llVeclnt, 11Par, AREA MEM Ext MenDat aCut)

II_data_out <= |l Read(l!lVecAll,IlPar,II_addr);
end behavi our;

Table 9 presents physical distribution of components in the address and data areas of
communication bus Internal Interface for the set project parameters:

e Interface parameters: II_ADDR_WIDTH=4, IT_DATA_WIDTH=4,

e Memory bus parameters: MEM_ADDR_WIDTH =2, MEM_ADDR_WIDTH =8.
Splitting of address and data area stems from automatic mechanism described in chapter 4.2):

Il_Addr Il_Data component
(AS-A0) D3 D2 D1 DO identifier access | index
0-3 bit 3 bit 2 bit 1 bit 0 AREA_MEM
(sub-area 0) Ext. RW
4-7 bit7 | bit6 bit5 | bit4 AREA_ MEM
(sub-area 1)

Tab. 9. Collection of record declarations for the test interfaces for memory
designations: - gray fields denote non valid parameters,
- Ext. — external register, RW — full access.

- 39/63 -

The exemplary result of functional simulation of synchronous dual-port memory was
presented in fig. 6. Memory DPM_PROG has input proc_req set permanently to low status.
It realizes constantly access to its data area via the Internal Interface. Writing was performed of
values 59, 64, 7B and 8C successively to memory cells addressed from 0 to 3. Successively,
there was written the first and then the second memory sub-area. The stored data (in memory
sub-areas) reading was done in the same succession.

The example uses memory model from the ACEX chip by ALTERA.
The sub-areas contents are represented by mem_data.

o WM W 40 A W0 W @ o0 W0 W W0 w0 MC 0 B0 M0 B0 60 W M0 @0 B0 M0 om0 M0 2D B0 M0 d0 30
Narre e '

Il_teseth J

o T L DU UL U
it |

EX TUUUU UL U DU U0 JU U U U0 JUT U0 T
o 2 O O S 2 2 O 0 A 2 T S 2

Il_tats_in [A 0 3 T

Lo R RIBY R IR B0 T T

o JTL U U UL LT

s 11111 J1] 1NN AN

covmss DD D0 0E b T & £ JF © F b & % % F % € F % T &k kB e

imem_data i0,0,00)

men_datad

men_detall

) 0
) 0
mem_tatall) (]
) {

mem_data(l)

&
nem_tta ()oniE)cen 789 o755
0 8

mem_data(3)

men_daal) { i

{] b

[}

mem_tatall

Fig. 6. Results of functional simulations for external counter.

During the writing cycle, the memory component is controlled from the Internal Interface
by the following signals:

e The address bus of memory is directly connected to the youngest two bits of the address bus
II_add r (A() and A]),

e Input data bus of the memory is directly connected to the data bus II_data_in,

e The writing cycle is activated by high status of signal ExXtMemWwr calculated by the function
IIConnGetAreawriteEna,

e Switching of synchronous memory is realized by the signal EXtMemStr calculated by
function IIConnGetAreaStrobe

During the reading cycle, the memory component is controlled from the Internal Interface
by the following signals:

e Memory address bus is directly connected to the youngest two bits of address bus
II_addr (Ap and A)),

e Output data bus is connected to the Internal Interface via the signal bus ExXtMemDataoOut
and function IIConnPutwordData

- 40/63 -

8 CONCLUSIONS AND CLOSING REMARKS

The contemporary electronic systems for HEP and FEL experiment are functionally
and structurally very complex. They require effective and easily expandable communication
layer. Implementation of such a layer is equivalent with solution of the following problems:

e Physical application of such buses as VME, VXI, PCI or Ethernet,
e Implementation of strictly ordered communication area inside each involved FPGA chip,

e Integration of FPGA chip and the hardware communication layer with respective
programming environment.

Professional, integrated communication I/O systems, between programming
environment and FPGA chips, are offered in the proprietary packets by all bigger commercial
FPGA system vendors, like:

e National Instrument, is offering the integration technology for the LabView packet with
the National Instruments Reconfigurable 1/0 (RIO) devices,

e MathWorks, offers for the market extensive tools like MATLAB and SIMULINK which
are very well suited for cooperation with commercial devices,

e Nallatech, producer of advanced technological devices based on FPGA and DSP of the
recent generation; the relevant programming environment FUSE is offered;

e Xilinx, manufacturer of FPGA chips, offers programming tools cooperating with electronic
devices with FPGA chips from other vendors;

e Altera, similarly to Xilinx, offers a proprietary solution in the for m of an advanced
integrated packets. The packet includes a number of specialized programs for realization of
basic functions.

The examples of commercial solutions were presented in appendix E. These solutions are
suitable to obtain fast and easy application in the hardware FPGA and programming layer.
The offered commercial device and programming layer are integrated as a unity. Such a
solution may be effective for HEP and FEL experiments on the stage of initial experiments,
with the choice of proper FPGA chip, peripheral devices, laboratory tests, control algorithms,
data processing and realization of simple functional prototypes.

Final solutions are realized as distributed, multichannel electronic systems, precisely
tailored to the needs of particular experiment or accelerator. There are taken into account
numerable technical requirements like, for example:

e Kinds and number of input signals, which typically are confined in the range of tens of
thousands or millions of nondependent measurement channels. Proper fitting of the initial
processing to the character of measured signals, provides required accuracy of the whole
system. The parameters to be controlled for FEL and HEP experiments are: field stability in
the superconducting RF cavity, effective calculation of the trigger signal,;

e Synchronization signals distribution, which have to provide synchronous work of the
distributed electronic system with assumed stability. The following signals are subject to
distribution: clock, phase reference, trigger, global control signals (data acquisition,
exception handling, etc.);

e Distribution and acquisition of synchronous data streams, which provide realization of
successive data concentration in the system and data registration for the purpose of further
processing in the computer systems;

-41/63 -

e [ntegrated programming environment with the computer system, is a grave factor
determining the physical communication way with electronic apparatus and control
technology of the electronic system. The requirements set for the HEP experiments and
accelerators are very demanding and force the usage of new research solutions not yet
available in the commercial packets. The experiments develop often their own specialized
solutions like DOOCS, XDAQ, etc. In the experiments, various computer systems are used,
like PC, SUN, TRANSPUTER etc. Proper functional control and monitoring programs are
realized for the purpose of particular research projects realization by participating experts
and researchers.

e Situation of modules in particular industrial crates and in the large object (like accelerator
or detector) stems from unique and specific construction of particular machine. The factors
of concern are: considerable length of the accelerator, positioning of accelerating cavities in
superconducting modules, big dimensions of the detector, high levels of damaging radiation
fields in particular places, etc. The electronic system has to be fit to the needs of such large
distributed structures. Usually, it is split to separate functional modules. The modules
occupy separate PCBs. The PCBs are fit to the place of their situation in the object or in the
VME crates. The communication interfaces are chosen individually, as well as power
supplies, cabling, thresholds for ionizing radiation hardness, etc.

e Standardization versus individualization, There is clearly a trade-off between the level of
individualization and specialization of functional modules and their unification and
standardization. Unification may result in lower costs, with complete change of system
design and introduction of wide parameterization techniques. Specialization may result
potentially in better system performance.

e Costs versus performance; Another trade-off is between costs and system performance.
Using off-the shelf industrial products, mainly designed for the largest industrial
telecommunications market usually considerably lowers the costs.

e Hardware versus software; There is a trade-off between splitting the system functions
among the software and hardware layers. Usually the hardware redundancy allows later for
more flexibility with software updates. Such approach makes the system live longer and
prevents to soon aging. It is said however, that the load in the future systems will shift more
toward the software layer.

e Flexibility versus aging, As mentioned above, hardware and software flexibility (system
parameterization) prevents too early aging.

e Reliability; The factors influencing system reliability are: implementation of own or
commercial solutions, the methods of IP support, crew training, etc.,

® Maintainability; The system has to be designed in this way as to be manageable and
maintainable only by internal crew. Practically commercial system maintenance for long
term is excluded.

e Most of these factors mentioned above speak for the usage of own solutions now. The
example of such solution is Internal Interface technology. This may change in time,
however, with the advent of global standardization of FPGA technology usage.

The Internal Interface technology was developed strictly as a result of real needs of the

HEP and FEL communities. It introduced a lot of standardization and eased the design

methods of large and complex FPGA based systems. Construction of very large electronic

systems for HEP/FEL experiments requires prediction of the following factors:

e multilevel optimization at the functional design level,

e system topology design,

- 42/63 -

e technology choices level,

e practical system fabrication,

e iterative system debugging,

e system commissioning,

e performance tests,

e system coarse and fine tuning to the needs of particular experiment,

e need of frequent modifications during the experiment, introduced well after original
system commissioning,

e cxtremely long exploitation and, thus, required life time of the system.

The need for system reconfiguration ability is a must and stems from fast technological
developments nowadays in hardware and software, large scale of HEP/FEL experiments,
large costs, large number of involved electronic modules, suddenly appearing novel research
needs to be immediately addressed, constant requirements for measurement capability
upgrades, etc.

The Internal Interface was written in VHDL as modular and parametric solution. It is
implemented no dependently of the hardware platform and the type of FPGA chip. This
concerns the following families of PLDs: ALTERA, XILIX, ACTEL, etc. It is implemented
independently of the communication interface like: VME, VXI, LPT, RS, Ethernet etc.
Standardized library functions of the Internal Interface enable the user:

e simple implementation of the project, determined by precise definition of the needs;

e Access to particular components of the interface from the level of own functional project
written in VHDL;

e Application of various modules of physical communication like VME, LPT, RS or Ethernet.

A number of documents in this technical note on the Internal Interface were excluded
from the main body of the text, to form appendices. The appendices include illustrative
examples, application note details and auxiliary data supplementing the whole material:

e Appendix A presents exemplary and the most important VHDL library files of the Internal
Interface programming environment.

e Appendix B presents examples of practical applications of the Internal Interface technology
in a few separate projects prepared for HEP and accelerator experiments.

e Appendix C presents examples of realization for the programming layer. The particular
features of the layer stems from the needs of the GHEP and accelerator experiments. The
programming layer is integrated with the Internal Interface.

e Appendix D presents the plans for future development of the Internal Interface standard.
The standard is not frozen but is subject to intense development to include new
functionalities and to facilitate the system design capabilities.

e Appendix E introduces the competing commercial standards of communication with
FPGA chips existing on the market. The market standards are of proprietary nature and
allow only for what is offered in the GUI designed by the vendors.

e Appendix F is an ownership statement for the Internal Interface technology and short note

about its open usage as well as technical support offered by the authors from Warsaw
ELHEP Group.

- 43/63 -

The practical experiences gathered so far with the Internal Interface show clearly its
extremely big usefulness for HEP experiments and superconducting accelerator technology.
There were realized numerable test applications (together a few tens) in these fields up till
now using the debated technology. The hardware test beds using Internal Interface work now in
such research centers like CERN, DESY and FermiLab.

The experiences gathered for the last few years in construction of relevant systems show
extremely dynamic development of FPGA based technologies and their wider applications.
The consequence is further development of programming techniques, increasing functional
requirements for designed experimental systems. The Internal Interface technology will
develop with these needs and increasing hardware capabilities. These trends are addressed in
the Appendix D. The Internal Interface develops in the direction of the component oriented
version. The component oriented Internal Interface will enable realization of much more
complex functional structures to be implemented in FPGA. Such structures will be
automatically integrated with the programming layer. Thus, the programming layer will
embrace control processes, monitoring, diagnostics, exception handling, data acquisition, etc.

- 44/63 -

9 REFERENCES

http://www.xilinx.com/ [Xilinx Homepage]

http://www.altera.com/ [Altera Homepage]

http://www.latticesemi.com/ [Lattice Homepage]

http://www.actel.com/ [Actel Homepage]

http://www.quicklogic.com/ [QuickLogic]

K.T.Pozniak, T.Czarski, R.Romaniuk: “Functional Analysis of DSP Blocks in FPGA
Chlps for Application in TESLA LLRF System”, TESLA Technical Note, 2003-29

7. K.T.Pozniak, R.S.Romaniuk, W.Jalmuzna, K.Olowski, K.Perkuszewski, J.Zielinski,
K. Kierzkowski: “FPGA Based, Full-Duplex, Multi-Channel, Multi-Gigabit, Optical,
Synchronous Data Transceiver for TESLA Technology LLRF Control System”, TESLA
Technical Note, 2004-07

8. R.S.Romaniuk, K.T.Pozniak, G.Wrochna, S.Simrock: “Optoelectronics in TESLA,
LHC, and pi-of-the-sky experiments”, Proc. SPIE Vol. 5576, p. 299-309, 2005

9. K.T.Pozniak, R.S.Romaniuk, T.Czarski, W.Giergusiewicz, W.Jalmuzna, K.Olowski,
K.Perkuszewski, J.Zielinski, S.Simrock: “ FPGA and optical-network-based LLRF
distributed control system for TESLA-XFEL linear accelerator, Proc. SPIE Vol. 5775,
p. 69-77, 2005

10. K.T.Pozniak: ,,Electronics and photonics for high-energy physics experiments”, Proc.
SPIE Vol. 5125, p. 91-100, 2003

11. K.T.Pozniak; “FPGA based implementation of hardware diagnostic layer for local
trigger of BAC calorimeter for ZEUS detector”, Proc. SPIE Vol. 5484, p. 193-201, 2004

12. K.T.Pozniak, P.Plucinski, G.Grzelak, K.Kierzkowski, M.I.Kudla: ,,First level trigger
of the backing calorimeter for the ZEUS experiment”, Proc. SPIE Vol. 5484, p. 186-192,
2004

13. T.Jezynski, Z.Luszczak, K.T.Pozniak, R.S.Romaniuk, M.Pietrusinski: ,,Control and
monitoring of data acquisition and trigger system (TRIDAQ) for backing calorimeter
(BAC) of the ZEUS experiment®, Proc. SPIE Vol. 5125, p. 182-192, 2003

14. K.T.Pozniak, M.Bartoszek M.Pietrusinski: “Internal Interface for RPC Muon Trigger
electronics at CMS experiment”, Proc. SPIE Vol. 5484, p. 269-282, 2004

15. M.ILKudta: ,,RPC Trigger Overview*, RPC Trigger ESR, Warsaw, July 8th, 2003,
http://hep.fuw.edu.pl/cms/esr/talks/MK trigger overview.pdf

16. W.Giergusiewicz, W.Koprek, W.Jalmuzna, K.T.Pozniak, R.S.Romaniuk: “FPGA
Based, DSP Integrated, 8-Channel SIMCON, ver. 3.0. Initial Results for 8-Channel
Algorithm”, TESLA Technical Note, 2005-14

17. Tomasz Czarski, Krzysztof T. Pozniak, Ryszard S. Romaniuk, Stefan Simrock,
» ESLA cavity modeling and digital implementation with FPGA technology solution for
control system development”, Proc. SPIE Vol. 5484, p. 111-129, 2004

18. K.T.Pozniak, T.Czarski, R.S.Romaniuk: ,,SIMCON 1.0 Manual”, Tesla-FEL Report
2004-04, 2004

19. K.T.Pozniak, T.Czarski, W.Koprek, R.S.Romaniuk: ,,SIMCON 2.1. Manual”, Tesla
Note 2005-02, 2005

20. K.T.Pozniak, T.Czarski, W.Koprek, R.S.Romaniuk: “SIMCON 3.0. Manual”, Tesla
Note 2005-202005

AN e

- 45/63 -

21. W.Giergusiewicz, W.Koprek, W.Jalmuzna, K.T.Pozniak, R.S.Romaniuk: “FPGA
based, DSP board for LLRF 8-Channel SIMCON 3.0 Part I: Hardware”, Proc. SPIE Vol.
5948, p. 110-120, 2005

22. T.Czarski, K.T.Pozniak, R.Romaniuk, S.Simrock: “TESLA Cavity Modeling and
P.Rutkowski, R.Romaniuk, K.T.Pozniak, T.Jezynski, P.Pucyk, M.Pietrusinski,
S.Simrock: “FPGA Based TESLA Cavity SIMCON DOOCS Server Design,
Implementation and Application”, TESLA Technical Note, 2003-32

23. W.Koprek, K.T.Pozniak, T.Czarski, R.Romaniuk: ,,SIMCON ver.2.1: configuration
and control procedures”, Proc. SPIE Vol. 5948, p. 381-391, 2005

24. K.T.Pozniak, Internal Interface - a standardized communication technology with
FPGA for applications in HEP/FEL electronic, submitted to the Nuclear Instruments and
Methods: A -Accelerators, December 2005;

25. W.Giergusiewicz, W.Jalmuzna, K.T.Pozniak, N.Ignashin, M.Grecki, D.Makowski,
T.Jezynski, K.Perkuszewski, K.Czuba, S.Simrock, R.Romaniuk, Low Latency control
board for LLRF: SIMCON 3.1., SPIE Proc. Vol. 5948, September2006; pages: 2C-1:2C-
6

26. National Instruments Corporation, “LabVIEW - FPGA Module User Manual”,
Technical Document, Part Number 370690B-01, 2004

27. Nallatech, “FUSE System Software User Guide”, NT107-0068V2, Issue 3, 2002

28. Nallatech, “FUSE Toolbox for MATLAB Product Brief’, Technical Document,
http://www.nallatech.com/medialLibrary/images/english/2398.pdf

29. V. Brigljevic, at.al.: “Using XDAQ in Application Scenarios of the CMS
Experiment”, Computing in High-Energy and Nuclear Physics, La Jolla CA, March 24-
28,2003

30. www.desy.de/~elhep [Warsaw ELHEP Research Group Homepage]

31. W.Giergusiewicz, W.Koprek, W.Jalmuzna, K.T.Pozniak, R.S.Romaniuk, Warsaw
Univ. of Technology (Poland), Modular version of SIMCON, FPGA based, DSP
integrated, LLRF control system for TESLA FEL, Part II: Measurement of SIMCON 3.0
DSP daughterboard, Proc. of SPIE, Vol. 6159, February 2006;

- 46/63 -

10 ACKNOWLEDGMENTS

Author would like to thank cordially Mr. Michal Pietrusinski from Warsaw University
for writing the programming layer in C++ language, for numerous and fruitful discussions,
and for long lasting common work on the development of the Internal Interface
communication standard with FPGA.

Author thanks sincerely the members of the Warsaw CMS Group from Warsaw
University, Institute of Experimental Physics and the students from Warsaw ELHEP Group
[30], Institute of Electronic Systems, Warsaw University of Technology for many valuable
remarks. This input was essential for improving the Internal Interface. A lot of errors were
removed, a lot of new functionalities were added to the II.

Author especially cordially thanks professor Ryszard Romaniuk from WUT for in-depth
discussions and invaluable help while writing this document. Author thanks dr. Stefan
Simrock for creating exceptionally friendly work conditions between the DESY LLRF Group
and Warsaw ELHEP Group, for continuous great support and for real help in practical
implementation of the Internal Interface standard in the new generation of FPGA based
TESLA and VUV FEL LLRF system.

Author would like to thank DESY Directorate, especially dr. Alexander Gamp, for
providing superb technical, financial and social conditions, for the TESLA LLRF Group and
the ELHEP Warsaw Group, to perform the work described in this paper.

The continued work on the next generation of the Internal Interface standard (from
version 2.0) was supported by the FP6 CARE funds. We acknowledge the support of the
European Community Research Infrastructure Activity under the FP6 "Structuring the
European Research Area" program (CARE, contract number RII13-CT-2003-506395).

-47/63 -

APPENDICES
A VHDL library files

This appendix contains fragments of the following source files:
e std_logic_1164_.vhd — contains basic definitions of types and functions,
e VComponent.vhd — contains definitions and I7 library functions.

Usage of the files is necessary in VHDL projects which implement the Internal Interface. The
library functions enable automatic creation of the 77, connection to physical communication
bus, access to bus resources from the level of external blocks realized in FPGA chip.

A.l File ,std_logic_1164_.vhd”

The file defines package std_logic_1164_, which contains among others, the following
definitions necessary for appropriate implementation of the Internal Interface:

A.l.1 Definition abbreviations for types:

subtype TI is integer; integer number

subtype TN is natural; natural number

subtype TP is positive; integer positive number
subtype TL is boolean; logical value

subtype TC is character; character

subtype TS is string; string of characters

subtype TSL is std_logic; type of standard logical value
subtype TSLV is std_logic_vector; vector of std. logical values

A.l.2 Type definitions for vector description:

subtype TVL is TN; type defining vector length
constant NO_VEC_LEN ‘TVL :=0; non defined vector length

subtype TVI is Tl range -1 to TVL'high; type determining position in vector
constant NO_VEC_INDEX :TVI:=-1; non defined position in vector
constant VEC_INDEX_MIN :TVI:=0; beginning position of vector

A3 Vector types definitions:

type TIV is array(TN range<>) of TI; vector of integer numbers

type TNV is array(TN range<>) of TN; vector of natural numbers

type TPV is array(TN range<>) of TP; vector of integer positive numbers
type TLV is array(TN range<>) of TL; vector of logical values

type TVLV is array(TN range<>) of TVL; vector of vectors lengths values
type TVIV is array(TN range<>) of TVI; vector of position values of vectors

Al4 Definition of user functions:

function pow2 (v :TN) return TN;
function TVLcreate (arg:TN) return TVL;
function SLVMax (arg:TN) return TN;

- 48/63 -

Al File ,VComponent.vhd”

The file defines package VComponent, which contains definitions, creation functions,
communication and access functions for the Internal Interface:

A.ll.L1 Component kinds (see chapt. 3.1):

type TVilitemType is (
VII_PAGE,
VII_AREA,
VII_WORD,
VII_VECT,
VII_BITS

A.ll.2 Access kinds to components (see chapt. 3.5):

type TVIlitemWrType is (
VII_WNOACCESS,
VII_WACCESS

);

type TVIlitemRdType is (
VII_RNOACCESS,
VII_REXTERNAL,
VII_RINTERNAL

A.ll.3 Description parameters of components (see chapt. 3.6):

constant VII_ITEM_NAME_LEN :TP :=32;
constant VII_ITEM_DESCR_LEN :TP := 64;

type TVilitemFun is (
VII_FUN_UNDEF,
VII_FUN_HIST,
VII_FUN_RATE

A.ll.4 Record components of declaration list (see chapt. 3):

type TVilitemDecl is record
ItemType TVIlitemType;
ItemID TN;
ItemWidth :TVL;
ItemNumber ‘TN;
ItemParentID ‘TN;
ItemWrType TVIlitemWrType;
ItemRdType :TVIlitemRdType;
ItemName " TS(VII_ITEM_NAME_LEN downto 1);
ItemFun :TVIlitemFun; -- HIST, COUNT, UNDEF
ItemDescr :TS(VII_ITEM_DESCR_LEN downto 1);
end record,;
type TVilitemDeclList is array (TN range<>) of TVIllitemDecl;

- 49/63 -

A.llL5 Record components of implementation table (see chapt. 4.4):

type TVllitem is record
ItemType :TVllitemType;
ItemID ‘TN;
ItemParentID TVI;
ItemWidth ‘TVL;
ItemNumber ‘TN;
ItemWrType TVIlitemWrType;
ItemWrPos TVI;
ItemRdType :TVIlIitemRdType;
ItemRdPos TVI;
ItemAddrPos TVI,
ItemAddrLen TVL;

end record;

type TVII is array (TN range<>) of TVllitem;

A.lIl.6 Information processing functions (see chapt. 5.1):

VIINameConv (name :TS) return TS;
VIIDescrConv (name :TS) return TS;

A.Il.7 Service functions of interface initialization (see chapt. 5.2):

TVlICreate (list :TVIlltemDeclList; addr_width, data_width :TVL) return TVII;
VIl (par :TVII) return TSLV;

VIICheckSumGet (par :TVII) return TN;

VIICheckCodeGet (par :TVII) return TSLV;

lIAddrWidthGet (par :TVII) return TVI;

liDataWidthGet (par :TVII) return TVI;

lIAddrRangeGet (par :TVII) return TVI;

A.ll.L8 Service functions of interface (see chapt. 5.3):

liReset (vec :TSLV; par :TVII) return TSLV;

lISave (vec :TSLV; par :TVII; addr, data_in :TSLV) return TSLV;
lIWrite (vec :TSLV; par :TVII; addr, data_in :TSLV) return TSLV;
lIRead (vec :TSLV; par :TVII; addr :TSLV) return TSLV;

llIEnable (par :TVII; enableN, WriteN :TSL; addr :TSLV) return TSLV;

A.ll.9 Service functions of component type WORD (see chapt. 5.3, 5.4):

lIiConnPutWordData (vec :TSLV; par :TVII; item_id :TN; pos :TVI; data_in :TSLV) return TSLV;
lIiConnPutWordTab (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV;,
lIConnGetWordData (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV;
lIConnGetWordData (dvec,evec:TSLV; par:TVII; item_id :TN; pos :TVI; data :TSLV) return TSLV;
lIConnGetWordEnable (vec :TSLV; par :TVII; item_id :TN; pos :TVI; writeN :TSL) return TSLV;
lIiConnGetWordReadEna (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV;
lIConnGetWordWriteEna (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV;
lIConnGetWordSave (vec :TSLV; par :TVII; item_id :TN; pos :TVI; strobeN :TSL) return TSLV;

A.ll.10 Service functions of component type BITS (see chapt. 5.3 and 5.4):

liIiConnPutBitsData (vec :TSLV; par :TVII; item_id :TN; pos :TVI; data_in :TSLV) return TSLV;
lIiConnPutBitsTab (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV;
lIConnGetBitsData (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV;
lIiConnGetBitsEnable (vec :TSLV; par :TVII; item_id :TN; writeN :TSL) return TSL;
lIiConnGetBitsReadEna (vec :TSLV; par :TVII; item_id :TN) return TSL;
lIConnGetBitsWriteEna (vec :TSLV; par :TVII; item_id :TN) return TSL;

lIiConnGetBitsSave (vec :TSLV; par :TVII; item_id :TN; strobeN :TSL) return TSL;

- 50/63 -

A.ll.11 Service functions of component type AREA (see chapt. 5.3 and 5.4):

liConnPutAreaData (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV;
lIiConnPutAreaMData (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV;
lIiConnGetAreaEnable (vec :TSLV; par :TVII; item_id :TN; writeN :TSL) return TSL;
lIConnGetAreaWriteEna (vec :TSLV; par :TVII; item_id :TN) return TSL;
lIConnGetAreaReadEna (vec :TSLV; par :TVII; item_id :TN) return TSL;
lIiConnGetAreaStrobe (vec :TSLV; par :TVII; item_id :TN; strN :TSL) return TSL;
lIConnGetAreaWriteStr (vec :TSLV; par :TVII; item_id :TN; strN :TSL) return TSL;
lIConnGetAreaReadStr (vec :TSLV; par :TVII; item_id :TN; strN :TSL) return TSL;

- 51/63 -

B Applications of Internal Interface for HEP experiments
and accelerator LLRF control

This paper presents a new automatic system of efficient and broadly standardized and

parameterized communication with FPGA , called the Internal Interface. Described system is
currently used in a few large projects of distributed measurement and control networks:

1.

Early versions of the Internal Interface (AHDL version, 1999-2000) were tested on the
BAC Trigger boards (UNIBOARDS, XY-BOARDS, GFLTBI) for the BAC detector.
These PCBs carry totally over 100 FPGA chips (ACEX - ALTERA) [11].

The Internal Interface communication and addressing standard is used very successfully in
the electronic system of the Muon Trigger RPC (CMS experiment at the LHC accelerator,
CERN) from 2001 [14]. The applications of Internal Interface were implemented in sub-
projects of the Finnish CMS Group (Lapperanta — University of Technology), Italian CMS
Group (Bari — INFN) and Polish CMS Group (Warsaw, Warsaw University and Warsaw
University of Technology). The system embraces together approximately 3000
nondependent PCBs of the dimensions 6-HE or 9-HE (in the VME standard). These PCBs
carry totally over 10000 FPGA chips (ACEX, CYCLONE, STRATX - ALTERA,
SPATRAN,VIRTEX - XILINX)[15].

Since 2002, the Internal Interface standard is used in the TESLA Technology based
experiments and user facilities like TTF2 and TTF3, VUV-FEL in DESY, Hamburg. The
IT interface standard was implemented in the successive versions of the LLRF control

system for accelerating, microwave superconducting cavity measurement and control for
the high power EM field stabilization (VIRTEX - XILINX) [17]. These systems were:

e SIMCON 1.0 [18] — single simulator and controller (laboratory version),

e SIMCON 2.1 [19] — single simulator and controller (real-time version),

e SIMCON 3.0 [20] — 8-channels SIMCON (real-time version with exception handling),
e SIMCON 3.1 [22] — new version of 8-channels controller (under develop).

e The implementation of Internal Interface was also used for the control of the RF-GUN for
VUV-FEL with the version of SIMCON 3.0 and SIMCON3.1

- 52/63 -

C Programming layer of Internal Interface

Close integration of hardware layer of the Internal Interface with programming layer
allows for full usage of functional possibilities of the proposed solution. Due to the usage of
common configuration files of IID type (compare chapter 3), the programming layer
automatically images hardware functional blocks in the software (comp. fig. 1). One obtains a
right imaging of the communication space and right logical imaging of the I/O ports (for
example: bits, registers or memory areas). The imaging process is automatic and is controlled
by set parameters and area structure of the Internal Interface.

There were developed a few nondependent solutions for the programming layer of the
Internal Interface. The different solutions address variety of needs of wide range of apparatus
controlled by the Internal Interface. The basic experiments now, where the Internal Interface
technology is applied are: CMS, TTF2 and VUV-FEL. There were used the following
programming languages and specialized environments: C, C++, Java, MATLAB, DOOCS,
XDAQ. The implementation of programming layer was done for the following OSs:
Windows98/2000/XP, Linux and Unix on the following computers: IBM-PC, SUN and
embedded processors (GPP type) ETRAX and POWER-PC/XILINX.

Application of different solutions for the programming layer, various operational systems and
various communication interfaces does not require any modification in the hardware layer
of the Internal Interface implemented in the FPGA chips.

C.I Internal Interface control system in C++

The first system solution of the Internal Interface code was prepared during the period of
2000-2001 for the CMS experiment at LHC accelerator in CERN. During the period of 2001-
2004 the system was further developed for the needs of LHC muon tests. A few versions of
RPC Muon Trigger hardware were then prepared using extensively FPGA technology.

During the period of 2003-2004 this version of software was used for laboratory tests of
superconducting cavity simulator and controller SIMCON 1.0 [18].

The programming layer, written in C++, is a collection of classes and interfaces. It gives
to the user a convenient communication interface with the hardware layer. The applied
parametric system approach resulted in capability of the software and resulting interface to
cooperate with an arbitrary PCB equipped in FPGA chips and (for example) VME interface.
The programming platform provides a set of functions to interpret the IID file and for
servicing particular interface components. These components stem from current
implementation of the interface in the FPGA chip.

Fig. 7 presents an example of, automatically generated, Internal Interface service panel
for the “LB” board. The LB PCB is a board of RPC Muon Trigger and contains a number of
FPGA chips. There are visible, in the successive columns, the structure of communication
area of the Internal Interface for three FPGA chips, called respectively: LB_CONTROL,

LB_GOLSRC and LB_GOLDST).

Fig. 8 presents functional components of the ,,LB” board which are designed to monitor
the RPC chambers during the accelerator tests in the real-time. These tests embrace:

- 53/63 -

investigation of noise level from particular chamber channels, measurements of detection
efficiency of muon beam, etc. The operator is able to observe simultaneously the current
status of the device and modify the necessary parameters. This ability is possible due to
communication with the FPGA provided by the Internal Interface.

| Confia | View |

|J %) Refresh &l |

:lDevi:es tailf LB CONTROL ver. 0202 |LB_GOLSRC ver. 0100 |LB_GOLDST ver. 0100
(=% Link Board E
a LB CONTROL ‘Expar\d Collspse Refrash Expand Collapse Refresh | Expand collpss | Refresh
& L0_GOLSRC 2C_ACCESS_AREA 4527 E MEM_GENER ETUFEGE H MEM_RATE_DATA COVE4EE i
ah LB_GOLDST Flead Indes Valusthes] ~| Read Indes illElE
S N — L Searnn
DELAY_BCNOD = —
= 510 FEEGIEE2 2 51389885
511 23837724 j B 448DFEIAE
b BB e |
\ite SIATUS CLOCK SEL Read Index b LS
STATUS TAG SEL 1 Wiite
STATUS_PRETRGO_SEL |1 | 897 3F 440
STATUS_PRETRG1_SEL |3 S 02175
3 93B3ECF4
EIDATA_ENA TF4E07CD
fhe | ey il
Fram Ib_cantrol.id: wite L
IIDEC_COM LINE{ " item type item I+ width um parent ID -Iil-l-):A-iK-ﬁ-E-L-A?""""--"--IZI-IZI-IZI-EI-EI-EI-EI-E ----------
IIDEC_ITHEL BEG{ WII_PAGE, PAGE_REGISTERE, o, 0, PAGE REGISTERZ, ... Rpad Index \alue (hex]
IIDEC_ITEM_CON{ VII WOID, WORD_IDENTIFIER, II DATA SIZE, 1, PAGE REGISTERS, ... w0
IIDEC_ITEM _CON{ VIL WORD, TWORD_VERSTON, II_DATA SIZE, 1, PAGE RECISTERS, .. e EGONT IR
IIDEC_ITEM_CON{ VII_VECT, VECT_STATUS, o0, O, PAGE REGISTERS, ... o . jijey sl (hosd
IIDEC_ITEM_CON{ VII_BITS, BITS_STATUS CLOCK SEL, CLOCK SEL_SIZE, 1p: WECT STATUE, ... 0
IIDEC_ITEY CON{ VII BITS, BITS STATUS TRG_SEL, TRG SEL SI2E, ., vt smos
EHIST_TIME_LIMIT FSFEETCFDO
IIDEC_ITEM COM{ VII_BITS, BITS_STATUS_PRETRGO_SEL, PRETRG_SEL SIZE, 1 WECT_STATUS, _ ..
= - - - = = - Read Index Vslue hes
IIDEC_ITEY CON{ VII_EITS, BITS_STATUS PRETRGL SEL, PRETRG SEL SIZE, 1. vEcTimame,
IIDEC_ITEY CON{ VII VECT, WECT_GOL, a, e R l
IIDEC_ITEY CON(VII BITS, BITS GOL LASER, 1 . vEct o, ... CISTATUS 00000004
IIDEC_ITEI CON{ VII BITS, BITS GOL NEDGE, i i vEcT con, ... Head Bis il s
- = i o - STATUS_RATE_START
IIDEC ITEM CON{ VII BITS, BITS GOL TX EMA, 1, 1 VECT_GOL, ... wiite STATUS RATE STOP 1
IIDEC_ITEY CON(VII BITS, BITS GOL_TX_IRE, 1 1 vEcT Gon STATUS RATE ENA 0
STATUS_PROC_REQ 1 =
4| | 2

5| | 15 E BB ODD M |] 612 v 690 Mic o] el e | P | o] 1. [0 8

Fig. 7. Example of an operator panel which provides access to the components of the Internal
Interface from FPGA chips.

| Config View [
B Roreshall | 2 Conr w11 [7705 | Batmen [77 | ot Full [windon | Eficiency | Rstes | B¢ || Masks (T Dalys | Rates |
o B Lnk Boad B_

Link Bead 1
@ Link Board 2 HeD Hst1 Hit2

& Link Soad 3 | C Al @ MNers O Cuslom Al & Mene © Custor| © Al Mene " Culow] Al € Nore Custom o - &
B g t'"" 30;“ “ﬂ |eenasascibaonipontconocncobooo coocenan Breobosn toaGconn CNCohenN oo
tipges Bear
:\’ﬁL | F4 Fmone ©Culm C Al € MNere @ Cutor C Al Nene © Custor C Al & Nare © Custom =
AL ! D 0 J,
& Puni |COE06aECI000I000C CCO0 COCRIO0HI CCOREABH CHCOBER BOBEICON0 COCHDEOD NG

| @Al Nome C Custorl © Al & Nene O Custor| T Al (¥ Nene " Custow| T Al (% None [Custom
|ease sssepasssess cOO0ONCOOO00N0OCCACHOOCONO0H 0OOECAN0OOCONCON NGO

spegan 0 & o o] tehgl ¥ s ® =
Delay BND [0064 8]
Fevcluten [0 2] Debwlw [0 E
SPEAdtive [0 = Delay FroTra0 1 2 [eack =
DebyPelmi[l & [ceck =
VEN DX HETO
150,000 4000 177 .
166,000 300
20,000
D1ZMSATES 11 1416 1521 2426 2931 34 738 4244 4748 54 5T B2 D173456708 1113 1818 2123 2370 3133 3B 4143 4845 15155 PO 63
EEERS| e [Faw| HERS(vra] 0 EF A |
Rele MEM_FULL_RATE VEN_BX_HETY
160,000 3 e IR
100,000 I
50,000 2000 |
DI2MSSTES 11 1418 1521 2426 2331 34 3739 4244 4748 25 5759 62 123456783 1113 1518 2125 2525 1133 383 4143 4543 515355 B0 63
EEREES ru=l 2] 7 oo | BE RS vl 2] Fam|
m Falio Rete; MEM VN RATE (Rate MEM FULL RATE Pl VEN_DX_HET2
i | apco | i
E 2000
fpo0 !
{1 ! - . ok . -
123455780 111231617102123 2628303234 3838 41434547 405 5365 586062 123466780 113 1518 2123 226 33 3838 4143 4543 £16355 5360 €3
EEREL E | vMafic 3T Ao | EmEEEE Yrad 00 3] A |
BStant | SyGAwsenkbunko.. | Sy wssravbiabect [T test IR TTCConbel | [MiswcostEscel - . | BRSPS Page 1 -Jav. | $11_binoa w1l L. | [kS sooPH

Fig. 8. Functional panel for monitoring of working conditions of RPC chambers of the Muon
Trigger.

- 54/63 -

C.Il

The integration of MATLAB environment
with hardware layer of the Internal Interface, to be
used for the simulator and controller of resonant
cavity in the TTF2 and VUV-FEL accelerators,
was performed in 2004. The application of
MATLAB, in the laboratory conditions, provides
a unique possibility to combine the mathematical
modeling components and signal processing with
physical control layer for the device. The tasks
include, among others: choice of optimal control
parameters, data acquisition, measurements of
electrical field changes in the cavity. There were
written, in C++, library functions in the form of
MEX-files. They provide basic operations in the
communication layer with FPGA chip, via the

-} TestKontrolek i

Exit | Set lists |
BIT %ALUE: ! a

WRITEBIT |

Internal Interface control via C++ and MATLAB

worRD[o WRITE WORD

BITS_STATUS_CTRL PROC_REQ
BITS_STATUS_CTRL_PROC_ACK
BITS_STATUS_SIM_PROC_REQ
BITS_STATUS_SIM_PROC_ACK
BITS_STATUS_CTRL_IQ_EMA

BITS_STATUS_TAB_SWITCH_REQ
BITS_STATUS_TAB_SWITCH_ACK
BITS_STEP_TIMER_START
BITS_STEP_TIMER_STOP

BITS_STEF_DSF_STOF
BITS_DA&O_TIMER_START
BITS_D&O_TIMER_STOP
BITS_Da&O_TIMER_ENA
BITS_D&O_PROC_FEQ

o
I
=]

BITS_D&O_PROC_ACK
BITS_D&0_STROBE_ENA.
BITS_MU_IN_CONTRL
BITS_MUX_IN_CAVITY
BITS_MUX_DUT_DACI
BITS_MUX_DUT_DACZ
BITS_MUX_0UT_DADT
BITS_MUX_0UT_DAQZ

BITS_MUX_DUT_DAQS
BITS_MUX_DUT_DAQ4
BIT5_CaM_DELAY_IN

BIT5_Can_DELAY_OUT

BITS_STATUS _MODE_OPER_SEL ;i

“wORD_CHECKSUM -
"wORD_CREATOR 1
wWORD_IDEMTIFIER
wWORD_VERSION
wORD_USER_REG1
wORD_USER_REGZ
wWORD_STEP_TIMER_LIMIT
wWORD_STEP_TIMER_COUNT
WORD_DAQ_TIMER_LIMIT
WORD_Dad_TIMER_COUNT
wWORD_WM_DRY_START
wWORD_WM_DRY_COUNT
wWORD_WM_DRY_OFFSET
wWORD_ADCT_GAIN
wWORD_ADCZ2_GAIN
wWORD_ADCT_OFFSET
wWORD_&DCZ OFFSET
wWORD_ADCT_GAIN_BUF

----- AR

N_BUF
WORD_CALI BUFEET puF

wWORD_&DCZ_OFFSET_BUF
wWORD_ADC_AVER
WORD_ADCT_DATA
WORD_ADCZ_DATA
wWORD_Cal_STROBE_DELAY
wWORD_Cal_TRIG_DELAY
WORD_DaO_DELAY

wWORD_CTRL_ACTIVE
WORD_SSETFOINT,
wWORD_SSETPOINT_O
WORD_CALT
WORD CALZ

WORD_CALZ_BLIF

~=lolx|

Internal Interface. The MEX-files are responsible
for standard communication mechanisms with
VME, parallel port or Ethernet. =

The library tools, written in MATLAB
environment, provide user with the access to
particular components of the Internal Interface. The
components are implemented in FPGA chip and described in appropriate IID file. An example
of control panel was presented in fig. 9. Fig. 10 presents control and monitoring panel for the
resonant cavity.

\WORDSFEEDFORWARD O
\wORD_CTAL_DET_|
WORDCTRL_DET O
WORD_CTAL.VMOD
WORDTCTALIN | =l

Fig. 9. Internal Interface control panel in
the MATLAB environment.

=) SimconFrontPane =10 %]
et | " w 10* IEAV_DUT_I -1 Single readout
Input P [B
Filing time| 500 Y Start heaml B0
Flattop time| 900 wus Stop beam| 13200 5
A plitude 15 MW FPhase I 0 rad
Output delay 0 us Feed forwardl 1
Steps number| 1500 Predetuning] 150 Hz T |
Gain 50 ity b del I—D s . L L L L L L L L
SRR AR 20 1000 1200 1400 1600 1800 2000
Average beaml 0 md Inpuit delay|—1 us w 10 Can_0uT_0 5
Recalculate and reload | 0]
— Woak P
Control 2+ E
[¥ 10 Detection
Operation mndellntemal Loop 'I i
DACT Cav OUT -
cev_out g =l ResetDSP -) .
DAE2|EAV_DETUN 'I Off A0 1000 1200 1400 1600 1500 2000
. w 10 Can_DETUN -
Set tables I~ Switch tables * 0On . - - .
Set Point | 4 J 3 i} 5 E
Set Point 0 4 J » 0
Gainl 4 » i) o
Gain 0 4 [3 u]
Feed Forward | 4 J 3 a S
Feed Forward O 4 J 3 1])))))) ; :)
20 1000 1200 1400 1600 1800 2000
Cavity trigger period| 20000 us Apply | x 105 Cay_WMOD -
1

— Workspace

F|Iename| workspacel

Save workspace | Load workspace |

Fig. 10. Control panel for monitoring of wofR3f the resonant cavity via Internal Interface.

C.IIl Integration of Internal Interface with DOOCS and MATLAB

The Matlab module for DOOCS provides to the system an interface, through which
compiled Matlab function can communicate with the rest of the DOOCS system. The purpose
of this unification is to make the changes of the server as simple as it is possible. The interface
bases on the firmware structure. It means, that it must be changed if the firmware changes
(which happens relatively seldom comparing with the changes made in the software). The
interface should be applied in Matlab m-function so after compilation the library will be
easily integral with the server.

The Matlab libraries in the communication module were adapted for the DOOCS needs.
Additionally dedicated C++ classes were developed in DOOCS. This provides the interface
for writing and reading to every Internal Interface element. These functions allow to write or
read from the hardware a single word or memory arrays.

The control system, integrated with DOOCS and MATLAB environments, was
implemented for:

o Chechia test set up with control modules SIMCON 2.1, SIMCON 3.0 and SIMCON 3.1

e ACCI module of VUV-FEL accelerator with usage of eight channel controllers SIMCON
3.0 and SIMCON 3.1

o Copper cavity of the RF-GUN of VUV-FEL accelerator with the usage of controllers
SIMCON 3.0 and SIMCON 3.1

Fig. 11 presents an example of the control module for CHECHIA set-up.

= SIMCON: TEST.UTIL/ELHER _CONTR/CONTROLLERS
Update: EJ Morm | Fast Slow = \@J
—SET POINT OUTPUT CALIBRATION - -
‘ ERPERT |
AAAAAAAAAAAAA CTRL (I&Q) |
Anplitude + 10.00 MY Anplitude + 0.3000
i ‘ PROBES |
o e s
Phase + 0.000 deg Phase +_0.000 deg [4) | ‘ FECI.Q) SPCL.) |
—FEED FORMWARD
““““ ‘ INPUT GALIERATION | ‘ INPUT AMP/PH (8 |
Offset I - 6100
AAAAAA ‘ ADCS | ‘ INPUT T&Q (8) H GATIN (1&Q) |
offset Q - 7100
AAAAA [Myl VEC SUM aMP [degl VEC SUM PH
Ratio + 0.72 14. z] 180. B
i 140.
—FEEDBACK 100.
10.
AAAAAA 60.
Gain + 20.00 g
vvvvvv - 20_
-
. o /,_._
— TIME S
4.
FILL LENGTH 17500 us =l
vvvvv P _140.
AAAAA o e py g I BO0. o Lo b L p e g ;
FLAT LENGTH + 800 us 0. 500. 1000. 2500. 0. 400. 800. 1200. 1600.
Res= 1.Buf= 0 [us] Res= 1.Buf= 0 [us]

Fig. 11. Main panel for SIMCON controller in DOOCS environment.

- 56/63 -

C.IV Integration of Internal Interface with XDAQ system for CMS

XDAQ is a software product line that has been designed [5] to match the diverse
requirements of data acquisition application scenarios of the CMS experiment. These include
the central DAQ, sub-detector local DAQ systems for commissioning, debugging,
configuration, monitoring and calibration purposes, test-beam and detector production
installations as well as design verification and demonstration purposes. XDAQ includes a
distributed processing environment called “the executive” that provides applications with the
necessary functions for communication, configuration control and monitoring.

Fig. 12 presents an example of XDAC environment usage for full control of the
electronic system of RPC Muon Trigger. The communication areas, implemented by the
Internal Interface in FPGA chips are made accessible via the WWW panel in the hierarchic
tree. The tree images structure of the whole system.

{_Reload Device List)
Expand All | Collapse All

e

Focus Label Type Width Read Value Write Value Action
VSystem
¥ VME Crate (100) (Read
@ ¥ TC SORT (110) tesort (Read
S P> VME (209) LRead)
¥ TC_SORT (208) (Read

CHECKSUM WORD 16 asdb (Read |

BOARD WORD 16 5443 (Read |

IDENTIFIER WORD 16 4753 {Read)

VERSION WORD 16 0001 (Read)
USER_REG1 WORD 16 0000 0000 |.'EE“‘ write)|
USER_REG2 WORD 16 0000 [0000 |\(Read) Cviriie)|
B STATUS VECT | i 0z [02 l{(Reaa)Cwiie)|
TIMER_LIMIT WORD 16 0000 9000 iR o)
TIMER_COUNT WORD 16 0000 (Read)
REC_MUX_CLK_INV. WORD &1 002000000000000000000 |0002000000000000000000 | (Rea) i)
REC_MUX_REG_ADD WORD 81 100000000000000000000 I0100000000000000000000 | Read)| Write |

¥ REC_DELAY[] WORD 3

REC_DELAY[0] WORD 3 o f00 lirean) Cwine)
REC DELAY[1] WORD 3 0 EOO |. Read)| Write)
REC_DELAY[2] WORD 3 o foo li(Reag) (wie)|
REC_DELAY[3] WORD 3 o [o0 |\ Read) virite)|
REC_DELAY[4] WORD 3 o [0 [\ Read)| Write :
REC_DELAY[5] WORD 3 o L00 li(Rean) (wiiie)|
REC_DELAY[6] WORD 3 o o0 liFeaa) o) |
REC_DELAY[7] WORD 3 o (00 | Reaa) write)
REC_DELAY[&] WORD 3 4 04 | Read)(write)
REC_CLK_INV WORD 9 000 0000 (Read)| We_";
REC_PART_ENA WORD 9 0ao | 0000 |\ Read) Wirite).
REC_CHECK_ENA WORD 9 000 [0000 i))|
REC_CHKDATA_ENA WORD 9 00 0000 liReaa)Cwrie)

Fig. 12. Integration of XDAQ environment with Internal Interface for RPC Muon Trigger

- 57/63 -

D Development of Internal Interface

The experiences on the usage of Internal Interface gathered up till now show that the
successive generations of the systems increase their functional requirements. This causes that
the internal structure of the FPGA is more complex and richer of new components (compare
explicitly two documents [19-20]). As a consequence, an increased number of required
registers is observed, and memory areas used in the successive versions of system
implementations in the FPGA. In parallel, there is observed a considerable progress of the
programming layer for the FPGA [22,23].

The Internal Interface technology is under intense development into the direction of
making it standard component oriented. The new version of Component Internal Interface will
enable division of the unified structure of the I7 (see fig. 13) to standardized, separate library
components in the hardware and in the software layers (see fig. 14). This development
direction was schematically presented in these two figures. On the level of the II interface
definition there will be realized the assumptions for FPGA project structure and for external
programming.

LLRF LLRF Readout
Controller Simulator Block
VHDL Parameterized VHDL Parameterized VHDL Parameterized
Component Component Component

y ﬁ A ¥4
Internal Interface

VHDL implementation in top Entity
+ IID description file

Fig. 13. General unified structure of Internal Interface ver.1.0.

LLRF LLRF Readout
Controller Simulator Block
VHDL Parameterized VHDL Parameterized VHDL Parameterized
Component Component Component

Internal Interface| |Internal Interface| |Internal InterfaceL

VHDL implementation VHDL implementation VHDL implementation
+ IID description file + IID description file + IID description file
V4 N F 43 a9
A ¥4 7 A ¥4

Internal Interface
VHDL implementation in top Entity
+ IID description file

Fig. 14. General structure of ,,Component Internal Interface” ver 2.0.

- 58/63 -

E Examples of commercial communication standards

Professional systems of integrated I/O communication between programming
environment and FPGA chips are offered by numerable commercial firms, together with their
products or products of other manufacturers. This appendix tries to present chosen examples
of technologically advanced solutions. These solutions usually provide easy integration of
programming layer with the firmware layer implemented in the FPGA chip. These solutions
usually offer a set of convenient tools inside the operator’s GUI. The characteristics of the
available communication standards are presented below and base on the commercial materials
offered by the vendors.

E.l Integration of Lab View with FPGA modules

With the LabVIEW FPGA Module and LabVIEW, the user can create Virtual
Instrument VIS library file that runs on National Instruments Reconfigurable I/O (RIO)
devices. Reconfigurable I/O devices, also known as FPGA devices, contain a reconfigurable
FPGA surrounded by fixed I/O resources. Depending on the specific FPGA device, fixed I/O
resources can include analog and digital resources—such as analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs)—that the user control from the FPGA.

With the FPGA Module, the user can configure the behavior of the reconfigurable
FPGA to match the requirements of a specific measurement and control system. The VI, the
user creates to run on an FPGA device is called the FPGA VI. One can use the FPGA Module
to write FPGA VIs. When the user downloads the FPGA VI to the FPGA, he is programming
the functionality of the FPGA device. Each new FPGA VI the user creates and downloads is a
custom timing, triggering, and I/O solution.

When standard hardware did not meet the requirements of the user for a specific
application prior to the FPGA module, one had to create a custom hardware design using low-
level hardware description languages. With the FPGA Module, the user does not need to
know a hardware description language to design a specific hardware solution—one just needs
LabVIEW. With the FPGA Module, one can design and rapidly develop hardware
components with the power of LabVIEW graphical programming.

The FPGA Module is ideal for programming applications that require functionality such
as the following:

e Custom [/O—Modified digital and analog lines with custom counters, encoders, and pulse
width modulators (PWMs),

e Onboard decision making—Control, digital filtering, and Boolean decisions,

e Resource synchronization—Precise timing of FPGA device resources, such as analog input
(AI), analog output (AO), digital input and output (DIO), counters, and PWMs, as well as
synchronization among multiple devices.

FPGA Module applications range from a single FPGA VI running on an FPGA device
to large LabVIEW solutions that include multiple FPGA devices, the LabVIEW Real-Time
Module, and LabVIEW for Windows. In any case, the user needs to create the FPGA VI that
runs on the FPGA device. To create an FPGA VI, first one selects the FPGA device as the
execution target in LabVIEW. An execution target is any location—including FPGA devices,
RT targets, or the development computer—on which the user can run a VI.

After one has an FPGA VI running on the FPGA device, one needs a way to
communicate with that VI. Depending on the application requirements, one can communicate

- 59/63 -

Host VI FPGA VI

Host Computer FPGA Device
Fig. 15. Programmatic FPGA Interface Communication.

with the FPGA VI interactively or programmatically. One can use Interactive Front Panel
Communication to communicate with the FPGA VI directly from the front panel of the FPGA
VI. One can use Programmatic FPGA Interface Communication to communicate with the
FPGA VI from a VI running on the host computer. The VI running on the host computer is
called the host VI. One can use Interactive Front Panel Communication to communicate with
an FPGA VI running on an FPGA device with no additional programming. With Interactive
Front Panel Communication, the host computer displays the FPGA VI front panel and the
FPGA device executes the FPGA VI block diagram, as shown in Figure 1-1.

E.Il Nallatech FUSE software system

The FUSE System Software GUI is a high-level user interface for interfacing with
Nallatech DIME and DIME-II motherboard cards and modules. FUSE System Software is a
Java-based application that allows the user to easily interface with multiple cards, configure
FPGAs, and apply2 DMA transfers.

The application also allows the user to control the cards through Nallatech’s scripting
language - DIMEScript. An introduction to DIMEScript and its main features is provided in
Nallatech’s Implementation User Guide. The FUSE System Software uses the Java FUSE API
to interface with the cards. A C/C++ version of the API is provided on the FUSE System
Software CD offered by Nallatech. This gives the user the ability to develop a more specific
application for their designs. The Java FUSE API is not provided, although it can be
purchased separately. Similarly, a FUSE API for Matlab is also available. For more
information on the FUSE API see the C/C++ API developers guide on the FUSE System
Software CD available from Nallatech.

- 60/63 -

DIMEScript has been developed by Nallatech as a simple method of accessing cards
without the need to resort to programming. DIMEScript is an interpreted language which
means that the language is read in line-by-line and appropriate actions taken. This, in turn,
means that any errors in the script are only found when the relevant line is executed. This is in
contrast to a compiled language where the required action is checked in advance and made
into a more machine friendly form. In the case of the compiled language, syntax and other
features can be fully checked before running the code. DIMEScript allows users to:

e Open a Nallatech card
e Read data from the card
e Write data to the card

e Access various specific card functions.

FYFUSE System Soltware

File Edit View Run Configuration Card Control System Hedp

alelelala]o] | s|nele]s]s]H.]

= @ Balymuey Oata Mumber | Read | Wrile |
B Oritioard Virex Device Catad Dx0000000 000000000 Ballynuey, Onboard Virtex Device

Cratal 000000000 Ox00000000
Data2 Oe10000000 00000000
Data3 000000000 000000000
Datad DO00D00G0 000000000
Datad 00000000 Q0000000
Datab :00000000 000000000 Words 1o Transfer T
Diata? Oaf100R0000 00000000
Datad 0000000 X)
Datag 000000000 0% D
Datai Cx00000000 Q=00000000 CANTI Srireny | 0000000
Datatt 000000000 0x00000000
Datai2 000000000 [0x00000000
Data13 000000000 0x00000000 VWrite Data I Fead Data I
Datai4 000000000 00000000
Cratal5 Ox0000000 00000000
Dratal B 0000000
Data17 00000000 00000000 Lingar Sequence I Ciear fa zera I
Datais 000000000 000000000
Dataig 000000000 |3x00000000
Dataz0 000000000 000000000 Table Size b2
Dataz1 0:00000000 000000000
Datazz |000000000 |a00000000
Dataz3 0a00000990 0x30000000
Datazd 00000000 0x00000000 ecibioiale) |
Dratazs 00000000 0000000
Data?f 000000 |0x00000000
Dataz7 000000000 0x00000000
Datazs 000000000 200000000
Dataza 000000000 0x00000000
Data3n 0000000 0000000
Data3t 000000000 a<00000000
Session Log } Console | UserGuideExample. dsc
Card 2 (Serisl nusher 0x0) opened on PCI bus
Losded module 0 device 0 with ci\Mydocu-1\ledsnake00s, b1t

Interface FPGA
Wifrits Fifo emply
FPOA Interface

Read Fifo emply

FIFOs ILED' Resals } Oscillator Frequancies

Fig. 16. Example of using DIMEScript Console.

Another feature of DIMEScript is the ability to write a series of commands in a text file.
There are a series of user programmable buttons on the left side of the FUSE GUI. Each
button can be allocated a name and an icon which serves as a reminder of its function.

The TCP/IP protocol on which the Internet is based is a two-layer protocol. The top
layer, IP, is concerned with the delivery of data to the correct address, while the layer beneath
this, TCP, ensures integrity of data between the transfers. Using this protocol along with
FUSE it is possible to control a Nallatech motherboard over a LAN or even the Internet as if
the motherboard was plugged into your own PC. With FUSE TCP/IP the user can control the
card with the FUSE Probe tool or through the FUSE APIL

- 61/63 -

E.llll FUSE Toolbox for MATLAB

Nallatech provides C/C++ software libraries, containing functions that allow the
Nallatech DIME hardware to be easily integrated with software. Users can develop their own
applications, using these functions in addition to their own code, to interface directly with
their Nallatech hardware. The toolbox brings the Reconfigurable Computer hardware platform
to the heart of the acclaimed MATLAB technical computing environment. This toolbox
facilitates the configuration and control of DIME hardware systems, including data
communications, directly from MATLAB, using the provided library of functions:

e Data transfer directly from MATLAB,

e Harness the powerful capabilities of MATLAB,

¢ Quick launch of FUSE Probe tool from Matlab Launch-pad,

e Multiple card support and multiple interface type support,

e Fast and simple device configuration directly from within MATLAB,
e Supported on Windows® platform,

e Allows rapid interfacing and integration of DIME products within MATLAB based
applications,

e Raises the level of abstraction of the Nallatech hardware interface to the system level
environment,

e Productivity is greatly enhanced.

The FUSE Toolbox is another level of integration, that allows the user to develop
applications for a Nallatech DIME Board straight from the MATLAB environment. Each
function of the toolbox is a wrapping of the corresponding function from the FUSE C/C++
Library where appropriate. The hardware abstract layer interfaces with the custom Nallatech
hardware and cannot be accessed by developers. Access to this layer is only possible
indirectly through the developer layer, which effectively removes all hardware interfacing
issues. The interface to the hardware abstract layer is therefore not provided and is only used
for internal development by Nallatech. The developer layer is the main layer used by
developers when interfacing with the board for custom applications. It consists of a library
called DIMESDL (DIME Software Development Library).

=101 x|

Ele Edt View Web Window Heb Create M-file

0 e i K% 7 o+ | B | ? | Curent Denctory. [N WiakatechProckuct Design Records'OR NX105-0107 tssue 0 - DvEMAT =] _ | based SCl’iPtS
lrenpes———— == LIE fcenmnwisy and functions
- o\ MATLAD = -
To aet starced. select “MATLAB Helo” from the Helo mer
F-H ¥ilime System Gemsraror e =
‘il o\ Communications Toolbox
MATLAB = of\ FUSE Toolbox 8| stack [1]
Launch el ; |
Dad FUSE Probe Tool —
.quducr_ Page (Weh) _
2 Signal Processing Toolbox g i:l] 1
. Simulink Sia :g
FUSE % communications Blockset zt’ 14| =
4~ B D3P Blockser =[] |=°* 15
Probe 4 | ffes 1
Quick 4| | tauncnpag [workspace J i ggl-| e
Si¢ 18/=| Locan
La.um:h Cusrard Directory =] i} i
21(-
[w: \Bat1atechyProduct Dess x| J E o5 | M 23 Make use
2= -
ALl files [File Type [Lasc mo u- of the
[Hracd.mae MAT-file 21-Jun- & =
26 ower of
[card definition... H-file L4-Jun- 27| P
[cacdsandc_test_1.m H-file 14-Jun- » MATLAB
E: config cacd tes... H-file 165-Jun- 8 30/ -)
9] » |- arning('Could not open a card over the selected interface'):
32~
4| » [_Cammand History_ _ curment Directory Kl 4 | j
Ready
Ready =1

Fig. 17. Example of using FUSE Toolbox for MATLAB.

- 62/63 -

F Ownership statement and Internal Interface code
implementation and application support

The Internal Interface was written to facilitate the design of complex electronics systems
originally for applications in high energy physics experiments and Superconducting RF
technology (SRF). The IT code is released with this document as an open source, however,
since the I7 standard is still under intense development and subject to application tests in a
few large experiments around the globe, the author kindly requests potential users to give
proper credit to the source.

Author, together with its coworkers from the Warsaw ELHEP Group, provides a
confined support for the problems with the Internal Interface implementation and usage. The
problems may be formulated in a form of questions posted at the DESY LLRF Logbook, or
directly via the e-mail or mail to the following experts:

e Wojciech Jalmuzna' — w.jalmuzna@elka.pw.edu.pl (VHDL, hardware, person contact)

e Jaroslaw Szewinski' — j.szewinski@elka.pw.edu.pl (I software, drivers, MATLAB)
e Waldemar Koprek®> — waldemar.koprek@desy.de (VHDL, hardware, MATLAB)
e Krzysztof Pozniak! — pozniak@ise.pw.edu.pl (VHDL, hardware)

1. Warsaw ELHEP Group, Institute of Electronic Systems, WUT, Nowowiejska 15/19,
PL-00-665 Warsaw, Poland; phone: (+48-22)-660-79-86;

2. DESY LLRF SRF Group, Notkestrase 85, 22607 Hamburg, Germany;
tel. (+49-40)-8998-1600

All documents associated with the development of the 77 technology are posted on the
following web addresses: perg.ise.pw.edu.pl/ii

The Internal Interface code released with this document is not a freeware.
It should be properly referenced.

- 63/63 -

