
TESLA Report 2005-19

WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Electronics and Informational Technologies

Institute of Electronic Systems
ELHEP Laboratory

Piotr Dominik Pucyk

M.Sc. Thesis

DOOCS based control system
for FPGA based cavity simulator

and controller in VUV FEL.

Mentor:

Ph.D. Krzysztof Poźniak, WUT

Tutors:

D.Sc. Ryszard Romaniuk, WUT

Ph.D. Stefan Simrock, DESY

Warsaw, September 2005

CONTENTS

Contents

1 Introduction 1

1.1 Cavity field controller and simulator - SIMCON 9

1.1.1 SIMCON 3.0 . 11

2 System requirements 14

3 The control software concept for SIMCON 3.0 15

3.1 Communication module .16

3.2 Module for direct control tables access 18

3.3 Module for default control tables generation 19

3.4 Module for compiled Matlab code 26

3.4.1 Matlab - DOOCS interface . 28

3.5 Summary . 30

4 Implementation 32

4.1 Data formats in the designed system 32

4.2 Communication module .33

4.3 Direct control table access 36

4.4 Module for default control tables generation 41

4.5 Module for compiled Matlab code 44

4.6 Monitoring and general purpose data modules 49

5 Tests of the designed system 51

5.1 SIMCON 3.0 test in CHECHIA . 54

5.2 SIMCON 3.0 test in ACC1 . 57

5.3 SIMCON 3.0 test in RF-GUN . 60

6 Summary and conclusions 63

7 Appendixes 67

II

CONTENTS

Abstract

The X-ray free-electron laser XFEL that is being planned at the DESY research center in co-

operation with European partners will produce high-intensity ultra-short X-ray flashes with the

properties of laser light. This new light source, which can only be described in terms of su-

perlatives, will open up a whole range of new perspectives for the natural sciences. It could also

offer very promising opportunities for industrial users.

SIMCON (SIMulator andCONtroller) is the project of the fast, low latency digital controller

dedicated for LLRF1 system in VUV FEL experiment It is being developed by ELHEP2 group

in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of

the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo

module in the experiment. The device can be also used as the simulator of the cavity and test

bench for other devices.

Ths paper descrbes the concept, implementation and tests ofthe DOOCS based control system

for SIMCON. The designed system is based the concept of autonomic and extendable modules

connected by well defined, unified interfaces. The communication module controls the access

to the hardware. It is crucial, that all modules (this presented in thesis and developed in the fu-

ture) use this interface. Direct access to the control tables let the engineers to perform algorithm

development or diagnostic measurements of the LLRF system. Default control tables generator

makes the whole SIMCON an autonomic device, which can start immediately the operation

without any additional tools.

1Low Level Radio Frequency
2Electronics for High Energy Physics

III

1 INTRODUCTION

1 Introduction

The X-ray free-electron laser XFEL that is being planned at the DESY research center in co-

operation with European partners will produce high-intensity ultra-short X-ray flashes with the

properties of laser light. This new light source, which can only be described in terms of su-

perlatives, will open up a whole range of new perspectives for the natural sciences. It could also

offer very promising opportunities for industrial users. The overall layout of the X FEL linear

accelerator and laser facility is shown in Fig. 1.

Figure 1:The layout of the XFEL facility.

The main X FEL parameters are:

• Total length of the facility: approx. 3.4 km

• Accelerator tunnel: approx. 2.1 km

• Depth underground: 6 - 38 m

1

1 INTRODUCTION

• Experimental hall : 10 experimental stations at 5 beamlines, floor area approx. 4500 mÂ˛

• Scope for expansion: Second experimental hall with an additional 10 experimental sta-

tions

• Wavelength of X-ray radiation: 6 to 0.085 nanometers (nm) corresponding to electron

energies of 10 to 20 billion electron volts (GeV)

• Length of radiation pulses: below 100 femtoseconds (fs)

The planned facility will include a superconducting linearaccelerator that brings tightly bundled

"bunches" of electrons to energies of several billion electron volts. At that point, the electrons

race at almost the speed of light along a slalom course through a special arrangement of magnets

called the undulator. As they go, they emit X-ray radiation that amplifies itself during the flight.

The results are brilliant: Extremely short and intense X-ray flashes with laser properties. For

such an X-ray laser to work, an electron beam of extremely high quality is required. And the

TESLA superconducting accelerator technology is already making it possible to generate this

kind of electron beam today.

Before the electrons can emit X-ray flashes, they must first be accelerated to energies of

several billion electronvolts. That’s exactly what happens inside the resonators, where electro-

magnetic fields accelerate the particles. The resonators are made of niobium and are supercon-

ducting: When they are cooled to a temperature of -271oC, they lose their electrical resistance.

Electrical current then flows through the resonators with nolosses whatsoever - and that’s an ex-

tremely efficient and energy-saving method of acceleration. Nearly the entire electrical output is

transferred to the particles. Moreover, the superconducting resonators deliver an extraordinarily

fine and even electron beam of extremely high quality. In the X-ray laser, each of several billion

free-electrons needs to have the same energy and direction.They also need to be combined into

bunches with a diameter of no more than one tenth of a millimeter. Unless the electron beam

meets these very special requirements, the X-ray laser cannot be operated.

At present the present VUV-FEL3 , a free electron laser to generate light in the vacuum

ultraviolet part of the spectrum, is built at DESY in TTF facility. The project bases on the TTF

3Vacuum Ultra Violet - Free Electron Laser

2

1 INTRODUCTION

infrastructure and is the pilot project for the X-FEL4 . Both VUV-FEL and X-FEL accelerators

bases on the same superconducting technology. In the VUV-FEL (Fig. 2.) cavities are grouped

in cryomodules. Each cryomodule consists of 32 cavities. Ingeneral, four cryomodules are

driven by one klystron (some klystrons drives one or two modules). In order to accelerate the

beam, the electromagnetic field inside the cavity must be stabilized (in order to minimize the

energy spread during beam transmission) and have appropriate phase(in order to accelerate and

not deaccelerate the beam). The regulation of the field is performed by LLRF5 system (Fig. 3.

The system controls I and Q components of the cavity field (which corresponds to real and

imaginary part of the field vector). Because one klystron drives many modules module, the

LLRF system is used to stabilize a vector sum of 8 to 32 cavity fields. The LLRF consists

of many devices from which one can mark out: downconverters,digital feedback controllers,

vector modulators, piezo controllers, timing modules, andmany ADC boards for monitoring

the signals in the system.

Figure 2:The layout of the VUV FEL tunnel.

4X-ray Free Electron Laser
5Low Level Radio Frequency

3

1
IN

T
R

O
D

U
C

T
IO

N

Figure 3: The LLRF system in VUV-FEL [12].

4

1 INTRODUCTION

The main control loop in the LLRF system starts from the cavityprobe. The signal from

each cavity (1.3GHz) is downconverted to an intermediate frequency of 250KHz. Eight down-

converted signals are inputs of the digital controller, which samples the probe signal with a

frequency of 1MHz. Inside the controller (currently it is a DSP based system) the signal is

decomposed into I and Q components. The controller is able todrive the system using Feed-

Forward or/and Feedback algorithms. At the output I and Q signal is produced for driving the

klystron. These two signals drive through vector modulatorto reconstruct the complex signal

form I and Q components. The output of the vector modulator drives klystron. With a sampling

rate of 1MHz, every new probe sample is measured every 1 1µs. In order to stabilize the field

using feedback algorithm, one must use high gain. High gain in the loop can make the system

unstable if the feedback latency is to high. The maximum estiamted latency for the feedback

algorithm has been estimated to about 1µs(for the whole control loop including latency of sys-

tem (mainly cables) and controller board). The actual estimated system delay is about 500ns

which forces the controller delay not bigger than 500ns. Therequirements for the stability of

the amplitude and phase of the field are tight: for the amplitude 3∗ 10−4 and for the phase

0.1 degree. The control loop has many nonlinear elements like klystron, vector modulator or

preamplifiers. Every conversion from analog to digital signal adds noise to the system. The

temperature changes cause phase delay drifts in cables. Allthese distortion are added to the

control signal and force the controller to perform sophisticated algorithms, which can compen-

sate noises, drifts and nonlinearities. This require a calculation power of the controller and big

data throughput.

The current solution bases on system with DSP processor (TMS320C67 from Texs Instru-

ments). The controller is split into three boards - ADC boardwith 14bit analog to digital

converters sampling with a frequency of 1MHz, the DSP board with TMS320C67 processors

and DAC board (14 bit, 1MHz). All boards are connected through gigalink interfce. Because of

the DSP the programmers can only optimize the software for the DSP processors but cannont

optimize its architecture. Actual computation capabilities of the system are close to the limit.

Also the computation power is closed to limit - the algorithmis performed with a time of more

than 1µs. The system operation requires the delay of the algorithm start according to the trigger.

In order to control the whole experiment, in which the LLRF is one of the systems, there

5

1 INTRODUCTION

GUI panel on the client host

DOOCS
servers

�
�
�

�
�
�

� �
� �
� �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

ethernet

hardware devices

SUN CPU in the VME crate

V
A

 LIN
U

X

V
A

 LIN
U

X

V
A

 LIN
U

X

V
A

 LIN
U

X

Figure 4:DOOCS as a remote, distributed system.

must be a dedicated software provided. In DESY for the TTF operation a complex control

software system has been developed. It is named DOOCS (Distributed, Object Oriented Control

System). The goal of this project is to provide an environment through which operators in the

control room are able to remotely change the settings of the hardware and perform experiments.

The idea of the system is to represent every device as a separate instance of the server (Fig.

4). Server, similar to the real device has some properties, which correspond to the real device

parameters. On the client side, there are GUI based applications which provide user interface.

The communication is performed through Ethernet, using RPC protocol.

The hardware background of DOOCS are SUN embedded computer placed in VME crates.

VME is the official bus standard in VUV FEL, therefore most of devices are also places in the

VME crate. Every SUN is connected to a fast, gigabit network.Because of the dimensions of

the linac, crates with the devices are spread along the tunnel. The system is therefore really

distributed in logical and physical way. DOOCS is object oriented environment. The DOOCS

server itself is only the skeleton of the application. User must design the virtual device, provide

the access to the hardware and create "virtual knobs" - the properties of the server which will

be available to the client. Every device can be represented as a separate C++ class. There is

one root class for all devices. One must extend it in order to create its own version, suitable for

the particular device. In the device class, user declares the list of DOOCS properties. Every

property is also a class which can represent the basic data types: integer number, float number,

6

1 INTRODUCTION

server
DOOCS

RPC calls bus signals

DOOCS
property

D_voltge:D_float

DOOCS
property

D_current:D_float

DOOCS
property

D_rate:D_int

0x2334=10

0xAA34=3.3

0x1234=5
set voltage=5

set current=3.3

set rate=10

network
device bus

ie. VME Hardware
Client
application

Figure 5:DOOCS properties are the bridge between the user which operates the virtual knobs and hardware.

or more complex structures like spectrum class, or history class (Fig. 5). DOOCS property

class provides the access to the data from the network. It takes care of the all communication

issues like RPC or XDR6 protocols. Programmer must provide the hardware access foreach

property. The system provides archiving of the properties on the local hard drives. This is es-

pecially important in case of network problems. If for some reasons the network is down, the

server continues the operation, however its properties cannot be adjusted. If for some reasons

the server will be stopped, during the next start up it will load the latest values of the properties

from local archive file and will continue the operation. DOOCSprovides also client environ-

ment for creating virtual Panels. This tool is called DDD (DOOCS Data Display). It provide

user friendly graphical interface (drag & drop) with a set ofwidgets. Using them, one can built

its own graphical representation of the operation panel forthe particular device. The impor-

tant issue is the way that DOOCS addresses devices and properties in the network. As it was

mentioned before, the implementation of the network protocol is hidden inside the application.

Therefore DOOCS provides its own naming service called ENS (Equipment Name Service).

Every property in DOOCS environment has its own unique address. It has the following form:

facility/device/location/property. The facility and device are logical addresses stored in theENS

6eXternal Data Representation - standard which allows to exchange data between computer system with differ-
ent hardware architecture

7

1 INTRODUCTION

Figure 6:Virtual device panel with the part of the VUV FEL linac.

server. They are used to group servers including the system they belong (LLRF, magnets, cryo,

etc), and subsystems (klystron 1, ACC1, ACC2, etc).Locationis the name of the server instance

andpropertyis the particular property name. They are stored on the server side. The example

address of the property can look like this:

TTF2.RF/SIMCON/CONTROLLER/VOLTAGE

From the address one can read that the property is a part ofcontroller server which controls

thesimcondevice, and this device belongs to RF system of TTF2. This semantic is very useful

when the system is big, and there are many servers controlling different devices.

DOOCS is not a closed environment. It provides API for many engineering tools like Mat-

lab, LabView, LabWindows and popular programming languages like C, C++, Java, Fortran.

It has also tools and libraries for the integration with a different control systems like EPICS.

Currently DOOCS environment is controlling over 100 servers and provides few thousands of

properties. In DOOCS system many devices interacts with eachother, exchange data, send con-

trol signals or monitor the work of the other systems. Therefore it is crucial to integrate every

new device with the existing infrastructure. One of the currently developed devices, which is

8

1 INTRODUCTION

planned to be a part of the VUV FEL is SIMCON.

1.1 Cavity field controller and simulator - SIMCON

SIMCON (SIMulator andCONtroller) is the project of the fast, low latency digital controller

dedicated for LLRF7 system in VUV FEL experiment It is being developed by ELHEP8 group

in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of

the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo

module in the experiment. The device can be also used as the simulator of the cavity and test

bench for other devices.

SIMCON design is based on FPGA9 technology which allows to create fast hardware devices

inside the chip, dedicated for the particular purposes and therefore faster than currently used

controllers based on DSP processors. FPGA technology offers also integrated peripherals for

the fast communication (optical links) and calculations (embedded PPC or DSP). All these

features create powerful platform for control system development. The flexibility of FPGA

technology used in SIMCON makes this device multipurpose system which can perform many

sophisticated algorithms and its capabilities are limitedonly by the board architecture (esp. the

number of inputs and outputs).

The SIMCON as the device can be split into three main parts:

• Hardware - which is the board with FPGA chips, ADCs and DACs, hardware interfaces

(VME slots, ethernet sockets etc.). Several versions of theSIMCON board have been

developed yet and is still being developed. They have different capabilities, different

architecture, number of inputs and outputs, etc.

• Firmware . Every logic inside the FPGA chip is described with VHDL (Very High speed

integrated circuits Definition Language) code. FPGA chip itself does not include any

"ready to use" logic10 so it must be defined. In case of SIMCON the firmware includes

7Low Level Radio Frequency
8Electronics for High Energy Physics
9Field-Programmable Gate Array

10Some new FPGA chips (like Xilinx Virtex II pro) have embeddedprocessors and other sub-components im-
plemented inside, however these components are useless until the FPGA is configured

9

1 INTRODUCTION

components for communication with other chips on the board as well as fast control

algorithms described in VHDL. Firmware can be developed in the way that it can run on

different boards. The modularity of VHDL code offers the possibility to split the project

into small pieces and work separately on particular tasks, and then join the components

into one final project.

• Software. The main algorithm development process for SIMCON is done using MAT-

LAB environment. This advanced tool offers the easy way of manipulating the matri-

ces and vectors which are widely used in control algorithms.Also the most of tests of

firmware are done using MATLAB. To provide direct communication with the hardware

from MATLAB, the dedicated laboratory software environmenthas been developed [1].

It bases on Internal Interface described in [3]. In the Internal Interface registers, bits and

memory in FPGA are accessible from software level not through physical addresses, but

through mnemonics (Fig. 7). A dedicated library loads at theapplication start up the IID

file (Internal Interface Description) with declarations ofmnemonics, its data types, size

etc. Then it calculates the physical addresses of these mnemonics in the FPGA memory.

The same file is used in the VHDL project to synthesize the structure of the FPGA us-

ing the same address calculation algorithm as used in the software library. This ensures

the proper device addressing. The software library that is responsible for providing the

communication based on mnemonics make use of another library to perform read or write

operation based on translated addresses. There are many ways to connect the SIMCON

boards to the control computer (VME bus, LPT, Ethernet, etc.), therefore, to keep the

modularity of the system, a communication channel concept has been applied to the sys-

tem (Fig. 7). In this concept, the II library uses a configuration file to read the name of

the channel library. Then it loads the library and uses the unified interface to provide the

communication with the hardware. The control software is independent from the channel

implementation. There is no need to recompile the software if the channel changes. Only

the configuration file of the II library has to be changed in order to use the new channel.

The limitations of MATLAB reduces the usage of this environment only to the labora-

tory purposes. The Matlab provides only single-threaded API for the user. Therefore the

10

1 INTRODUCTION

application

II parser

SIMCON FPGA

communication channel

*(vme+0x22fa23e8)=5

write("USER_REG",5)

write(0x22fa23e8,5)

SOFTWARE

HARDWARE

and FIRMWARE

Internal Interface
description
file

Channel
definition

Figure 7:SIMCON mnemonic to address translation process using Internal Interface.

Graphical interface runs in the same thread as the rest of theapplication. This causes

performance degradation of the system and makes it almost useless for testing fast, time

critical algorithms.

1.1.1 SIMCON 3.0

The current version of SIMCON (3.0) (Fig.8) was designed for controlling the vector sum of

fields in one cryo-module (8 cavities). The main features of the board are:

• Xilinx Virtex II chip.

• Eight 14bit ADCs (50 - 100 Msps) and four 14bit DACs (40 - 160Msps).

• 2 inputs for external clock and trigger signals (these signals can be also generated inter-

nally inside FPGA).

• 2 outputs for providing the clock and trigger signal (if theyare generated inside the

FPGA).

11

1 INTRODUCTION

• Modular design (the SIMCON board is made as the daughter-board and is placed on the

motherboard with VME interface).

Figure 8:SIMCON 3.0 board with 8 ADCs and 4 DACs. It has Xilinx Virtex IIchip on-board.

For the SIMCON 3.0 several firmware versions have been prepared. The main purpose of

the system is vector sum regulation in superconducting module, but the board can be also used

(with the appropriate firmware) as the controller for the Radio Frequency Electron GUN field

stabilization (with normal conducting cavity).

The 8 cavities controller algorithm diagram has been shown in figure 9 and the detailed

information about its implementation can be found in [1] [2]. The main features of the algorithm

are:

• Programmable FeedForward, Feedback and SetPoint tables.

• I and Q detection.

• rotation matrices for the each input and output channel.

12

1 INTRODUCTION

• Proportional feedback.

• Exception handling.

The algorithm implemented in SIMCON 3.0 provides a big numberof internal signals which

can be access through Internal Interface. The speed of the SIMCON as a complete device (in-

cluding board and FPGA chip latency) is less than 500ns. Thisoperation speed together with

the high pulse repetition rate (5 - 10Hz) causes generation of many, high rated data which should

be available to the user on-line. The existing MATLAB based environment is not sufficient for

the real-time device operation. The next chapters describerequirements, concept and imple-

mentation of the software system for controlling SIMCON device in operation environment.

Figure 9:SIMCON 3.0.2 control algorithm scheme.

13

2 SYSTEM REQUIREMENTS

2 System requirements

The complexity of SIMCON , especially the flexibility of the firmware and the number of op-

eration and configuration parameters of the device make the hardware almost unusable without

appropriate control software support. The fast progress ofthe algorithm development and im-

plementation in SIMCON board requires the unified solution which can be easily adapted to

the particular need. The SIMCON must also be compatible on every design level (hardware,

firmware and software) with the existing experiment infrastructure for the proper integration.

As it was [resented in the introduction, all VUV FEL systems and its devices have to be con-

trolled through DOOCS. This is the requirement which cannot be fulfilled by Matlab based

control system.

The aim of the thesis is the design and implementation of the software control system for

SIMCON controller. Additional requirements for the projectare:

• DOOCS based design.

• Easy integration with the experiment.

• Flexibility in integration with different firmware versions.

• Control software must provide full functionality of the SIMCON device.

• The system must be expandable.

14

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

3 The control software concept for SIMCON 3.0

The designed system is based the concept of autonomic and extendable modules connected by

well defined, unified interfaces. Some interfaces and modules described in this chapter have

been only adapted from the existing MATLAB-based environment [[1]] for DOOCS require-

ments. This solution allow to use the same core elements of the system in these two (DOOCS

and MATLAB) environments and simplify the software development process. The next chapter

presents the concept and the architecture of the control system for SIMCON with a focus on the

modules design and interaction between them.

The version 3 of SIMCON [4] provides more than just the possibility to control the cavity

field using implemented algorithm, but also offers possibility to elaborate new control algo-

rithms. In order to do this, the programmer must have many possibilities for integrating the

algorithm with SIMCON. The general concept of the system has been presented in the figure

10. The whole system consists of three main parts:

• Client applications. DOOCS provides APIs for many programming languages, engi-

neering applications and includes its own GUI tool - DDD. Every client can use the same,

well defined interface consisting of the set of DOOCS properties and control the device

using GUI panels or command line tools. For the SIMCON 3.0 needs a dedicated DDD

panels have been created (described further in paper).

• DOOCS server is the core of the designed system. This is the only application which

should have the direct access to the hardware. It consists ofthree main operation modules

and one communication module (described in details below).Each operation module

provides a part of DOOCS user interface. The communication module is the gateway

through which operation modules can access the hardware.

• SIMCON board . This is also the part of designed software system, because from the

software point of view the hardware is a module connected through ta defined interface

which interacts with the rest of the system. DOOCS server cannot work without the

hardware.

15

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

DOOCS server

Controller access Matlab code

Default Direct table Compiled

VME bus

ethernet

Client applications

DDD (DOOCS Data Display), Matlab, C,Java application

SIMCON FPGA

Communication channel (Internal Interface)

Figure 10:General concept of the DOOCS based control system for SIMCON3.0.

3.1 Communication module

The communication module is based on the Internal Interface[3] and originally is used in

Matlab control software [1]. The module provides the unifiedinterface to access all elements

of II declared in the IID file. It consists of two sub-modules:II engine - which translates the

mnemonic names into addresses and channel module which implements the particular hardware

bus access method using channel interface [1]. The communication module does not include

any logic related to the specific algorithm or firmware version. It is only the bridge with trans-

lation engine for accessing hardware logic elements (bits,registers, memory).

The main feature of the DOOCS system is the distributed accessto the server. Therefore

the server must accept request from many client at the same time. In the DOOCS server, unlike

in the Matlab control environment, every request is served as a separate, asynchronus thread.

If two clients want to perform two procedures which use the hardware, and if these procedures

16

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

uses the same registers or bits (Fig. 11) the application mayset the SIMCON in the mode that

will interrupt its operation or provide wrong data which is not permitted during the experiment.

Therefore the communication module must also provide mechanism for blocking the access

to the hardware. One module can block the access to the devicefor the time it is performing

necessary operations. After that time the module can unblock the device. When the device

is blocked by one module, another module which is requestingthe access should wait until

the access will be granted. The system provides the way for queuing requests from server to

communication channel (seeimplementationchapter for details).

2

3

readout module

1a

1t1

3

hardware

readout module

t2

time

get_area("AREA_DAQ1",&buf)

routines
other readout

set_bit("BITS_MUX_OUT_DAQ1",12)

set_bit("BITS_MUX_OUT_DAQ1",3)

1)

1a)

3)

2 2)

Figure 11: Simplified time diagram of two readout procedures performedat the same time in the system without

device access lock. The left readout module was triggered before the right one. The right one sets the number of

internal SIMCON signal it wants to read by setting the signalnumber in bit "BITS_MUX_OUT_DAQ". After a

while the left module also starts the readout procedure and set the same DAQ bit to 3 and changes the settings of

first module. Both modules perform other routines and at the end both perform the readout from DAQ block. Both

modules will read the signal number 3, because the settings were overwritten by left module. Usage of blocked

access to the hardware could prevent such situation.

17

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

3.2 Module for direct control tables access

Control algorithms implemented in VHDL have many operation and configuration parameters

(Fig. 9.). In the current version of the firmware, the algorithm does not calculate any parameters

or control tables itself. This must be done in the software and than loaded into FPGA. The most

important parameters are control tables. Thedirect table accessmodule provides the DOOCS

interface for the control tables implemented in the FPGA. Control tables in the FPGA can be

accessed in read/write mode, while normal tables can be onlyaccessed in read-only mode. This

module is firmware-dependent, because different firmware can provide different tables. In the

current firmware version of SIMCON firmware, one can have access in read/write mode the

following controller tables:

• Two setpoint tables - for I and Q component separately.

• Two feed forward tables - for I and Q component separately.

• Two gain tables - for I and Q component separately.

• Two error tables for exception handling algorithm (I and Q component separately).

The rest of tables are available in read only mode - since theyrepresent the internal algo-

rithm signals (see appendix for full table list). The moduletakes care of blocking the device

for the time, the readout or write operation is performed. The important issue of the direct

control concept is the proper procedure of new tables upload. From the FPGA point of view,

new tables are switched between pulses which ensures the proper functionality of the controller.

The SIMCON switches always tables in pairs - I and Q component at the same time. As it was

mentioned before, every request to the DOOCS server for updating the data is realized as a

separate thread. On the client site DOOCS API does not offers the possibility to update two

properties at the same time. Therefore, setting the I and Q components is done at the client site

as two RPC calls. In the designed module, tables are also grouped in pairs (Fig. 12). One of

the tables is called trigger table. It triggers the procedure of switching the tables in the hard-

ware. Programmer should always execute the update of the DOOCS property corresponding to

the trigger table as a second RPC call. There is a general rule in the designed system which sais:

18

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

If two associated tables (tables which are switched together inthe FPGA) correspond to I and

Q components of the signal, the trigger table is always the "Q table". In other cases the trigger

table is always the table with the larger position number on thesignal list (see appendix for the

signal list).

This rule will ensure, that the controller will be updated properly. The buffered tables up-

dated by client (Fig. 12) are loaded into the hardware not in parallel mode but also in serial

mode. In the FPGA there is a mechanism for switching tables which is triggered by setting the

appropriate bit. Server loads new data into the backup tables in FPGA. when data are ready,

server sets the switch bit, and the FPGA switches itself to use the backup as a operation tables

while the previously used tables become new backup tables for the next exchange. From the

server point of view there is only one set of tables. FPGA takes care of writing new data to

actual backup tables and not to currently used.

The direct control table access can be used especially through Matlab, where one can gener-

ate its own setpiont or feed forward tables and than load theminto FPGA. Using this interface

one can perform slow feedback regulation, or just collect data for later analysis.

3.3 Module for default control tables generation

Using only the direct control tables access one must providethird party software for tables cal-

culation and setting algorithm parameters. After running DOOCS server, the system would not

be ready for SIMCON operation. Therefore an addition module has been designed in order

to enable device operation from the start-up of the server.Default control tables generation

moduleincludes simple algorithms for control tables calculationand allows to operate the SIM-

CON with its all features.The general diagram of theDefault control tables generatorhas been

presented in figure 13. There are three main layers in the scheme:

1. First order parameters layer - which correspond to parameters adjusted by user ie.:

amplitude and phase of the setpoint, gain of the input signalof the ADC, etc. Some of

these parameters have the exact equivalents in FPGA (green blocks), some of them are

19

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

I table
Q table

I table

Q table

update Q tableupdate I table

TIME

SERVER

CLIENT

SIMCON HARDWARE

OLD VALUE

OLD VALUE

NEW VALUE

OLD VALUE
OLD VALUE

NEW VALUE
NEW VALUE

NEW VALUE

I and Q

Figure 12: Triggering of the tables switching process in thedirect control tables access module. When the first

table is updated by the client, the server buffers the new data until the second,trigger table is updated. The update

of the second property causes the loading of two tables into the FPGA and setting the switch bit which which tells

the FPGA, that new tables are ready to use.

only initial parameters for further calculations and are not directly loaded into FPGA.

2. Second order parameters- are parameters, which are of size and type which can be

loaded into SIMCON (green blocks).

3. Hardware layer with the FPGA representation of the algorithm register, bits and tables.

Black arrows in the picture show whichfirst order parameteris used to calculate partic-

ular second order parameter. The diagram shows, that some of thefirst order parametersare

directly loaded to FPGA (green blocks), while the rest (white blocks) is used for further calcula-

tion. This solution is caused by the limitations of FPGA firmware. In FPGA the implementation

of particular operations like floating point operations, dividing (fixed and floating point) or cal-

20

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

culating sine and cosine is difficult for implementation. The calculation of new control tables in

most cases is not time critical. Therefore this calculationare done in the software. The goal of

theDefault control tables generatoris to provide the basic, not the optimal field stabilization.

Therefore the algorithm uses the same equations as used in existing DSP [5] based LLRF sys-

tem. The complete list of user parameters used in the module has been presented in the table

1.

21

3
T

H
E

C
O

N
T

R
O

L
S

O
F

T
W

A
R

E
C

O
N

C
E

P
T

F
O

R
S

IM
C

O
N

3
.0

1

2

3

Direct
parameters parameters

Indirect

SetPoint table FeedForward Gain Exception handling
input rotation

matrices

amplitude
phase

flattop length

filling length.

system gain

loop gain

input calibration

off/amp/ph

vsum gain

loop phase

output offset

I and Q

direct conf

parameters
ratio

output rotation

matrix

output calibration

amp & phase

� �

� �

� �

� �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

SIMCON HARDWARE

Figure 13: The general scheme of the default controller module. One cansee three main layers with first and second order parameters.First order parameters

are set directly by user. Second order parameters are calculated from the first order parameters and then loaded to FPGA. Black arrows show which first order

paraemter is used to generate second order parameter.

2
2

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

Using the variables listed in table 1, The following equations have been applied to generate

control tables:

1. setpoint tables are generated using the equation:

SPI [n] =

ASP∗
1−e

n
τ

1−e
t f ill

τ
∗cos(phSP) for 0 < n < t f ill

ASP∗cos(phSP) for t f ill < n < t f ill + t f latt

0 for n > t f ill + t f latt

(1)

SPQ[n] =

ASP∗
1−e

n
τ

1−e
t f ill

τ
∗sin(phSP) for 0 < n < t f ill

ASP∗sin(phSP) for t f ill < n < t f ill + t f latt

0 for n > t f ill + t f latt

(2)

whereSPI is the setpoint table forI component,SPQ is the setpoint table forQ component

and n=0..2047 is sample number (1 sample = 1µs).

2. feed forward tables are generated using the equation:

FFI [n] =

ASP
RFF

∗cos(phSP) for 0 < n < t f ill

ASP∗cos(phSP) for t f ill < n < t f ill + t f latt

0 for n > t f ill + t f latt

(3)

FFQ[n] =

ASP
RFF

∗sin(phSP) for 0 < n < t f ill

ASP∗sin(phSP) for t f ill < n < t f ill + t f latt

0 for n > t f ill + t f latt

(4)

whereFFI is the feed forward table forI component,FFQ is the feed forward table forQ

component andn = 0..2047 is sample number (1 sample = 1µs).

3. gain tables are generated using the equation:

GI ,Q[n] =

GSYS∗GLOOP for 0 < n < t f ill + t f latt

0 for n > t f ill + t f latt

(5)

whereGI .Q are Gain tables forI andQ components andn = 0..2047 is sample number (1

sample = 1µs).

23

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

Parameter name Unit Description

ASP MV The setpoint amplitude.

phSP degree The setpoint phase.

RFF – Ratio of "two steps" in the Feed Forward table.

GSYS – System gain.

GLOOP – Loop gain.

t f ill µs The filling time.

t f latt µs The flaattop time.

o f f setADC samples Offset of the ADC channel (8 channels)

gainADC – Gain of the input rotation matrix (8 channels)

phADC degree Phase of the input rotation matrix (8 channels)

gainvsum – Gain multiplied with eachgainADC for scaling the whole

vector sum.

l phasevsum degree Phase added to eachphADC for rotating the whole vector

sum.

out_o f f setI samples The offset for the I output channel.

out_o f f setQ samples The offset for the Q output channel.

gain_out – The gain for output rotation matrix.

ph_out degree The phase for output rotation matrix.

τ µs Cavity time constant.

Table 1: List of variables used in default controller.

24

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

Each input channel in SIMCON has its own matrix rotation. It isimplemented in the hard-

ware as two registers (c1,c2) to which one must load values calculated with the following

equation:

c1m = gainADCm ∗gainvsum∗cos(phaseADCm + l phasevsum) (6)

c2m = gainADCm ∗gainvsum∗sin(phaseADCm + l phasevsum) (7)

wherem is the channel number (1 to 8).

The reason of this solution is the complexity of implementation of cosandsin functions in

FPGA. In the future, this problem will be solved by using the floating point operation VHDL

core. Similar equation has been used for calculating the output rotation matrix:

c1 = gainout∗cos(phout) (8)

c2 = gainout∗sin(phout) (9)

The offsets of the input and output channels have its direct equivalents in the IID11 ele-

ments list so they are directly loaded into FPGA without any sophisticated equations12 .

In addition to described user parameters, there are some configuration parameters for SIM-

CON, which are not directly related to the main algorithm, butare essential for the proper

SIMCON operation. These parameters are:

• FPGA mode. One can set SIMCON in three main states: As a controller, as a simulator,

and in the internal loop. Controller mode uses external intermediate frequency signals

(8 channels) for controlling the vector sum. The simulator mode switches SIMCON into

simulator of 8 cavities. In the internal loop, SIMCON is working as a controller and

simulator - the controller drives simulated cavity.

• Timing mode. SIMCON can work with external timing and trigger, or can use internal

clock and trigger.

11Internal Interface Description
12The only conversion is the default conversion to binary coding and extending the range to 18 bits - see imple-

mentation chapter for details.

25

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

• Sample index. Currently on SIMCON 3.0 board ADCs are sampling the input signal

with frequency of 40MHz. In the algorithm samples have 1µs resolution, it means that

from sampled signal only the every 40th sample is taken for further calculation. This

parameter determines which sample out of these 40 should be taken to the algorithm.

• samples averaging. Because ADCs samples the signal much faster than it is needed,the

is possibility to average few samples and in order to eliminate noises. This parameter

tells, which number of samples should be taken to the averaging. filter.

• Trigger delay. SIMCON can delay the start of the whole algorithm by number ofmi-

croseconds from the beginning of the trigger.

The presented default control tables generator module is only the example of possible so-

lution. Due to modularity of the system, one can easily replace this algorithm with its own

implementation. The disadvantage of this solution is that algorithm, which is in most cases

developed in Matlab, must be rewritten to C/C++ code. Sometimes it is very complex process.

For this case, software system for SIMCON has been equipped with the next module, which

allows to include compiled Matlab code into the DOOCS server.

3.4 Module for compiled Matlab code

Matlab offers to the user sophisticated tools and language for engineering calculations and al-

gorithm development. In order to use developed algorithm later in DOOCS, it must be pro-

grammed in C/C++. Simple routines can be rewritten by hand. Complex calculations may be

impossible to rewrite in a short time, without ready C libraries or additional tools. Matlab of-

fers a compiler which can compile m-functions into C/C++ source code, dynamic library or

executable application. In all these cases in order to use the compiled code, user must provide

access to specific Matlab libraries.

In most cases, during the algorithms development, one can access the SIMCON hardware

through Matlab using the laboratory control system [1]. After initial tests using Matlab, there is

a need to either implement ready algorithm in the FPGA or in DOOCS. In this second case one

can compile Matlab code and use it as a module inside DOOCS server.

26

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

Moving algorithms from Matlab environment into DOOCS is not only the matter of com-

piling the Matlab code. Those two environments have different data types, data flow and the

architecture. DOOCS server unlike the Matlab (from the programmer point of view) is a multi-

threaded application. It uses the communication module foraccessing the SIMCON hardware.

In Matlab one can access directly the particular register inFPGA from the body of the m-

function or script. This is not permitted in the presented DOOCS system. Figure 14 presents

the model of the SIMCON hardware access used in Matlab and DOOCS. In the first solution

every Matlab routine can use inside its body functions to access the hardware. Since Matlab

scripts cannot be run in the multithreaded environment there is a guarantee that one Matlab

script will not be interrupted by another script during running the procedure requiring multiple

accesses to the device. In DOOCS solution there is an arbitrary unit through which all calls to

the hardware should be done. Compiled Matlab function which is put into the DOOCS server

and contain direct calls to the device is not thread safe. It can be called by many clients at the

same time so many instances of this function will run at the same time and cause controller

algorithm crash. The second problem is the lack of Matlab workspace inside DOOCS environ-

Compiled
Matlab
routine

Compiled
Matlab
routineroutine

Matlab

routine
Matlab

SIMCON hardware

workspace
Matlab

SIMCON hardware

server
DOOCS

Communication module

Figure 14:Matlab hardware access model versus DOOCS hardware access model.

ment. If function uses in Matlab global variables, they willnot work in DOOCS . All function

parameters must be passed in the function invocation. In order to use Matlab code in DOOCS

one must fulfill the following requirements:

1. Every routine must be programmed as a m-function, not m-script. Matlab cannot compile

m-scripts.

27

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

2. Access to the hardware must be done between functions calls. That means, there should

be one root function of algorithm in which particular parts of calculations are performed

and the data exchange with SIMCON is done on the root function level.

3. Any global variables are not permitted.

4. All functions must be constructed according to the interface described below.

3.4.1 Matlab - DOOCS interface

The Matlab module for DOOCS provides to the system an interface, through which compiled

Matlab function can communicate with the rest of the DOOCS system. The purpose of this

unification is to make the changes of the server as simple as itis possible. Interface bases on

the firmware structure. It means, it must be changed if the firmware changes (which happens

relatively seldom compering with the changes made in the software). The interface should be

applied in Matlab m-function so after compilation the library will be easily integrable with

server.

The idea of the interface is to limit the number of possible m-functions structures in Matlab

and create inside the designed module a persistence environment which will simulate Matlab

environment. There are free kinds of functions in the proposed interface (Fig 15) and four

matrices.

1. Init functions . Generally for each algorithm there should be only one init function.

This function is called only once by the DOOCS server at the very start up stage. Its

goal is to return the special structure (see implementationchapter for details) with all

algorithm parameters that can be adjusted by the user. Matlab module for DOOCS scans

the structure returned by this function and automatically creates the DOOCS properties

for the entire algorithm. If the properties in the structurehave some initial values assigned,

they are also loaded into DOOCS.

2. Input functions . Input function is triggered every time the user changes anyof DOOCS

property related to the compiled Matlab algorithm. As the output it returns three matri-

ces: First is theU which represents the scalar parameters calculated for controller and

28

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

simulator. The second isY which represents the table of vectors. Each vector is a single

control table (FF, SP, etc). The third one isW - the virtual workspace, a structure which

contain other data using in algorithm.

3. Internal functions . This function does not use directly user input data but performs cal-

culations on data red from the hardware or workspace. As an input arguments it requires

Y, andW and returns also these variables.

Matlab module in DOOCS server

compiled m−functions workspace
buffer

INIT function

INPUT function

INTERNAL

function

A

Y

W

U

Property generation

SIMCON hardware

DOOCS

User input

Figure 15:Matlab hardware access model versus DOOCS hardware access model.

The most important element of the module is the set of matrices and structures used as a

buffer between Matlab and the rest of the system. The specification of these data structures are

presented below.

• A - Matlab structure. Created dynamically during the start up of the server. It includes

the list of parameters describing the algorithm. It is algorithm dependent strucutre, not

firmware dependent. The system does know the content of this structure and can modify

values of fields.

29

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

• U , Y - Matlab matrices with size and structure. These matrices are firmware dependent

because represents the set of control parameters used in VHDL routines. When internal

function is called, theY matrix is updated - it is filled with actual data red from hardware.

When the input function or internal function returns the actual Y andU matrices, they

are immediately loaded into SIMCON. These two elements are therefore the real buffer

between Matlab and SIMCON hardware.

• W - simulate the workspace, through which matlab functions can exchange data. It is

the matlab structure. The DOOCS system does not know the content of the structure

and cannot access it. It only keeps the persistent object in the memory. The algorithm

can store there temporary data which are used by many algorithm functions, but does not

corresponds to hardware properties.

Presented solution unify the way the algorithms should be developed in th Matlab and helps

to automate the process of integration the Matlab code with DOOCS server. Additionally it

separates these two environments, and simplify the design of the presented system. In cases,

where C implementation of the algorithm is for some reasons impossible it can be the only

solution. There can be multiple Matlab modules in one DOOCS server. The usage of one

communication module ensures the thread safety.

3.5 Summary

The presented conception of the system covers all requirements presented in the system require-

ments chapter. The communication module controls the access to the hardware. It is crucial,

that all modules (this presented in thesis and developed in the future) use this interface. Direct

access to the control tables let the engineers to perform algorithm development or diagnostic

measurements of the LLRF system. Default control tables generator makes the whole SIMCON

an autonomic device, which can start immediately the operation without any third part tools. In

the future version of the SIMCON, DOOCS will run on the embeddedPower PC processor.

The default control tables generator in that case can make the SIMCON a standalone device,

which can run without VME crate, on the desk of the engineer. Finally the module for Matlab

30

3 THE CONTROL SOFTWARE CONCEPT FOR SIMCON 3.0

code integration is a solution for the cases, where sophisticated algorithm must be integrated

with DOOCS, and there is no possibility to implement it in C language.

31

4 IMPLEMENTATION

4 Implementation

Presented concept has been implemented according to the requirements of the system and lim-

itations of DOOCS, Matlab and Internal Interface environments. A set of C++ classes has been

developed for each operation module. Different data types and structures have been wrapped

with DOOCS classes in order to provide them to the user. The focus has been put on the thread

safe access to modules and effective DOOCS basic classes usage.

4.1 Data formats in the designed system

In the realized system, one can define three different software environment which interacts with

each other. These are DOOCS system, Matlab code, and InternalInterface together with FPGA.

All of them use different data types and formats. Detail specification of these types has been

presented below:

1. Matlab . Matlab provides its own C API for compiled code. In Matlab one can distinguish

between scalars, vector, matrices (multidimensional), structures , etc. Additionally it

operates on complex numbers. In C language there is no such data structures. Therefore

Matlab provides set of functions and structures, through which one can communicate

with compiled Matlab code. There are defined functions for calling compiled functions,

operating in return values, modifying them, etc. Natively Matlab operates ondouble

format (64 bit). In C code also the basic Matlab data format isdouble.

2. DOOCS has been written in C and C++ language. it operates mainly oninteger and

f loat format. DOOCS has various data types for representing different data structures.

The main feature of these types is the availability through the network. All data types

are C++ classes with virtual methods. Programmer has to overload these methods in

order to provide its own data representation. Due to object representation of the scalar or

vector values the access to the value is done through appropriate method, not by direct

addressing.

3. Internal Interface . As it was described in the concept chapter, DOOCS server for SIM-

CON access the hardware using mnemonic names of the Internal Interface elements.

32

4 IMPLEMENTATION

These can be: bits, words, and areas. Due to the unique capabilities of the FPGA, word

can have different width then it is assumed in computer architecture. SIMCON operates

on integer, 18 bits words. It is causes by built-in, 18 bit DSPblocks inside FPGA dedi-

cated for fast calculations. Every single word in the serverside, no matter if it is a scalar

or element of a vector, is before loading to FPGA converted from U2 format to unsigned

format. The reverse conversion is done on every word red fromFPGA.

Presented data types differ on both levels; data structure and binary format. The important

issue of the implementation is data conversion between these three environment. Next chapters

presents implementaion realted details of the designed modules and DOOCS server.

4.2 Communication module

In the communication module libraries, which are originally used in Matlab, have been adapted

for the DOOCS needs. Additionally in DOOCS, a dedicated C++ classes have been developed.

The layout of the entire module has been presented in figure 16.

use

SIMCON server

libxiid.so

use

libvme.so

source.txt

channel.txt

vme.conf

Xiid_bridge

IIDeviceVme

IID files

Figure 16:Layout of the communication channel implementation for DOOCS based SIMCON server.

In the DOOCS server, the communication module is implementedas aXiid_bridge class.

33

4 IMPLEMENTATION

It provides the interface for writing and reading to the every II element available in thelibxiid.so

library. This library is loaded by theXiid_bridge class constructor. One can also obtain from

the library the full list of mnemonics and its types.Xiid_bridge class provides also two meth-

ods for locking and unlocking the access to the hardware. Detailed description of the available

methods has been presented in the table 2.

Xiid_bridge class useslibxiid.so library for translating the mnemonic names into phys-

ical addresses in FPGA. The library uses two configuration files. First is thechannel.txt file

which contains only one line with the name (with path) of the library with channel implemen-

tation. Thelibxiid.so opens directly pointed library and maps appropriate functions. The

second configuration file issource.txt with names of all IID file that should be parsed by the

library. Thelibxiid.so library communicates with the channel library using simpleinterface.

There are two function defined for accessing the hardware:

write_data(const unsigned int addr, const unsigned long data)

read_data(const unsigned int addr, unsigned long * const data)

These functions allow to write or read from the hardware the single word. The IID parsing

engine translates the mnemonic names to the physical addresses, but according to the II spec-

ification [3] data in the FPGA memory can be placed not continuously. Therefore one access

to the hardware using mnemonic can cause many accesses on thechannel level. The channel

library libvme.so is responsible for direct accessing the VME bus using the system driver. It

uses a configuration filevme.conf placed in the same directory as the library itself. The file

contains three lines with configuration parameters which are:

[base address] - the base address of the device in the VME memory space.

[memory size] - the size of memory the device uses in order to map it into computer memory.

[driver name] - the VME bus is visible in SUN as a device placed in/dev/ directory. In the

name of the device the address width and data width is included. For example 24d32 means

that the address has width of 24 bits and data are 32 bits.

The example configuration for SIMCON can look like this:

0xC00000

34

4 IMPLEMENTATION

Method declaration Description

Xiid_bridge() Class constructor. Opens the

libxiid.so library, maps appropri-

ate functions.

setWord(int id,u_long value) Writes word value to mnemonic with

given id.

getWord(int id,u_long *value) Reads data from mnemonic with

given id and word type and store it in

value.

seBit(int id,u_long value) Writes value to bit element with given

id.

getBit(int id,u_long *value) Reads the value of bit element with

given id.

setArea(int id, u_long *buf,int num, int offs) Writes to the area with givenid the

num of words from bufferbuf, starting

from off.

getArea(int id, u_long *buf,int num, int offs) Reads from the area with givenid the

num of words starting fromoff and

stores it in bufferbuf.

int getID(char* name) Returns the numerical id of the ele-

ment with givenmnemonic.

int getItemsNumber() Returns the number of all items in the

parsed IID file

getItem(int id, iid_item _t * item) Returns the structure describing the II

element with given id

lock() Locks the access to the hardware. If

the hardware is already locked it the

method waits until it is unblocked

unlock() Release the access to the hardware.

Table 2: List of methods available in Xiid_bridge class.

35

4 IMPLEMENTATION

0x1C000

/dev/24d32

The implementation of the communication module allows to use it in different servers just

by including theXiid_bridge class in the source code and copying appropriate libraries and

configuration files.

4.3 Direct control table access

As the base type for control tables implementation in DOOCS, theD_spectrum class has been

chosen. For every of the four tables sets (feed forward, setpoint, gain and exception) The appro-

priate class has been designed. Since the implementation ofthese tables is similar, the detailed

description has been presented forfeed forward class. For every main class (like FForward

class) there are some helper classes assigned to (Fig 17). They base on D_spectrum class. The

feed forward class has two instances of D_FForward_spectrum class (one for I table and one

for Q table) and two instances of D_fforward_spectrum_ap class (one for representation of the

amplitude spectrum and one for representation of phase spectrum).

FForward

D_fforward_spectrum D_fforward_spectrum_ap

D_spectrum

2 2

Figure 17:General UML scheme classes used in direct control table access module in SIMCON server.

As it was presented in the concept chapter, control tables have to be exchange in the hard-

ware in at the same time and the software update process is performed in serial mode not in

36

4 IMPLEMENTATION

parallel. Therefore, only the main FForward class access the hardware (Fig 18). It includes four

buffer tables for I, Q , amplitude and phase signals, and the helper classes access only these

buffers.

37

4
IM

P
L

E
M

E
N

T
A

T
IO

Ncalculation

FForward

ff_I.get()

ff_Q.set()

ff_I.set()

ff_Q.get()

ff_amp.set()
ff_amp.get()

ff_ph.set()
ff_ph.get()

FForward.read()

FForward.write()

FForward.update()

communication

channel

SIMCON

CLIENT

ff_I buffer

ff_Q buffer

ff_amp buffer

ff_ph buffer

ff_I:D_fforward_spectrum

ff_Q:D_fforward_spectrum

ff_amp:D_fforward_spectrum_ap

ff_ph:D_fforward_spectrum_ap

Figure 18: The general scheme of the direct control tables access module implementation.

3
8

4 IMPLEMENTATION

During the initialization of the FForward class, the instances of helper classes (automati-

cally adds the new DOOCS properties to the server) are also created and the FForward class

constructor sets the trigger bit in one of them (according tothe rule mentioned in the concept

chapter). The whole process of updating new tables has been presented in figure 19. The client

send a RPC call with new table values to the server. Server creates an executive thread. The

thread triggers a method ofD_fforward_spectrum class to set new data. The instance of

D_fforward_spectrum class writes a new data to the buffer ofFForward class. Next, the in-

stance checks internal bit that decide if the instance is thetrigger class or not. If it is the trigger

table, according to the rule presented in the concept chapter, it triggers thewrite method of

FForward class, and then FForward class updates two tables inside the FPGA.

client server FForwardD_fforward_spectrum

executive thread

update table I
create

update table
write data to the buffer

if is trigger - write to hardware

HARDWARE

write I and Q
buffer to
hardware

Figure 19:Sequence of methods calls during the procedure of updating the control tables.

The FForward class can be in several states. If the request from user appears, it can return

data which are red from the hardware, or from buffer. When the Itable has been updated,

according to the rule presented in the concept chapter, it isloaded to the software buffer. If

between update of table I and update of table Q a readout of table I will occur, the data must

be send back to the user not from the hardware, but from the buffer. Reading the table from

hardware would overwrite the updated data in the buffer, andafter updating Q table the the

system would send the old I table and new Q table to the hardware. This situation is presented

in figure 20. Different situation should appear, when there is no table update. In that case the

39

4 IMPLEMENTATION

object is reading data from the hardware. It is realized by another flag in FFroward class -

iswrite. This flag is initially set to 0 - this means there is no update procedure activated, every

readout should read data from the hardware. When when table isupdated (no matter if it is I or

Q table) this flag is being set to 1. If any readout request appears it checks if the flag is set to 0

- if yes, it reads directly from hardware, if not, it reads data from the buffer. Additionally, the

trigger table always callswrite method of FForward class to update new tables in the hardware

and resets theiswrite flag. This mechanism ensure the proper and safe control tableexchange

process.

clients
D_fforward_spectrum

ff_I

D_fforward_spectrum

ff_Q FForward Hardware

set I table
set buffer I

get I table
get I buffer

get I table

return I table
return I buffer

return I table

set Q table
set buffer Q

write to hardware
writing I and Q

Q buffer I buffer

Figure 20:The effect of overwriting the buffered I table during the direct tables access. After updating the I

component, the new table is stored in the buffer. If the readout request will appear in the system before updating

the Q component - which flushes any changes to the hardware, the readout from SIMCON will overwrite the new

I value. This will cause incorrect table exchange and algorithm failure.

40

4 IMPLEMENTATION

There are two additionally instances ofD_fforward_spectrum_ap class in FForward class.

They provide amplitude and phase plots of the particular signal, such a feed forward or setpoint.

These classes are read-only objects, which means one can only read the plot of the property but

has no possibility to change it. Update of amplitude and phase plots is done also through FFor-

ward class. D_fforward_spectrum_ap class call during readout procedure the FForward’s

update method. This method reads from hardware actual I and Q signaland calculate ampli-

tude and phase which are next stored in buffers.D_fforward_spectrum_ap object reads then

values from buffer and return it to the client.

Presented solution is flexible - the particular class likeFForward uses only the main server

class and communication module. It does not depend on any other part of the system (especially

the default control tables generation module). The module provides secure hardware access via

communication module.

4.4 Module for default control tables generation

This module implements basic algorithm presented in the concept chapter using several DOOCS

classes. The module itself is realized as a separate classDefaultController. Similar to the

previous module, there are also helper classes implemented, and the access to the hardware is

done only through the root class which isDefaultController. The basic DOOCS classes

which have been extended for this module needs whereD_int andD_float. The list of all

helper classes with description have been presented in table 3.

Helper classes haveset_value method overloaded in which they invoke the appropriate

method ofDefaultController class for generating the table (Fig. 21). The invoked method

reads then the needed properties and using equations described in concept chapter it generates

particular control tables set (I and Q) and then loads it intoFPGA using communication module.

The important issue is, that this module does not use direct control table access module but has

own uploading procedures included.

The module calculations product are almost always a floatingpoint values. Because the

SIMCON operates on integer values only, every result of calculation is cut to the integer number

after changing its range in order to limit the error. Howeverthe inverse operation does not return

41

4 IMPLEMENTATION

class name Description

defcon_ff_float The class representing float parameters used for FF table generation.

defcon_ff_int The class representing integer parameters used for FF tablegeneration.

defcon_fb_float The class representing float parameters used for FB table generation.

defcon_fb_int The class representing integer parameters used for FB tablegeneration.

defcon_sp_float The class representing float parameters used for SP table generation.

defcon_sp_int The class representing integer parameters used for SP tablegeneration.

defcon_int The class representing float parameters used for FF and SP table generation.

defcon_float The class representing int parameters used for FF and SP table generation.

defcon_in_flaot The class representing float parameters used for input rotation matrix calcu-

lation.

Table 3: List of helper classes created for Default Controller module.

the exact value which was the result of the original calculation. This effect is visible especially

in rotation matrices, where in the FPGA there is no direct representation of amplitude and phase

of rotation matrix, but recalculated values. In order to read actual amplitude and phase of input

matrix set in the hardware, it is necessary to perform inverse calculations. Since the original

result has been rounded before loading to SIMCON, the value inFPGA has error and inverse

calculation cannot return the exact value. The errors whichoccurs are at the level 10−6, so they

does not have strong influence on algorithm performance.

The default control table generation module does not include any DOOCS properties which

allow to display generated control tables. All readouts canbe done only through the direct

control table access. The reason for that solution is to avoid doubling DOOCS properties and

overloading the server with frequent readout procedures ofthe same property. In case of lack

of the direct control table access module in the server, one can provide appropriate readout plot

using universal readout properties described later in chapter. The implementation of the pre-

sented module allows changes in the algorithm control tables as well as modifying the interface

DOOCS interface. Helper classes are universal and can be the used for extending the number

of input parameters.

42

4 IMPLEMENTATION

� � � � �

amp, phase

defcon_in_float

defcon_out_float

amp, phase

defcon_int

fillng, flattop time

defcon_float

amp, phase of SP

SP tau

defcon_sp_float

defcon_ff_float

FF ratio

defcon_fb_float

system gain

loop gain

set_outputmatrix()

get_outputmatrix()

get_inputmatrix()

set_inputmatrix()

set_sp()

set_ff()

set_fb()

Helper classes DefaultController

S
I
M
C
O
N

communication
channel

Figure 21:The relation diagram between helper classes and DefaultController class. Arrow shows which helper

class triggers the appropriate root class method. The same arrows show which data are red for particular table or

rotation matrix coefficients calculation.

43

4 IMPLEMENTATION

4.5 Module for compiled Matlab code

The implementation of Matlab module bases on dynamic libraries. This solution was chosen

because of the unique usage of Matlab code in DOOCS. Matlab algorithm can be frequently

changed by developer without changing the interface to DOOCSserver. Therefore compiling

m-functions into dynamic library allow to avoid recompilation of the server without need. The

Matlab code before compilation must be correctly formattedto the specific interface which was

introduced in the concept chapter. This chapter describes details concerning Matlab compilation

and integration with DOOCS environment.

As it was mentioned before, there are three types of functions which can be used in Matlab:

1. Init function:A = INPUT_INIT().

2. Input function:[U,Y,W]=FOO(A).

3. Internal function:[Y,W]=FOO(Y,W).

Init function is the first function called during start up of the server. There should be only

one init function in the library and should be named exactlyINPUT_INIT. It returns the structure

with a list of all user parameters in the algorithm. These parameters are used for automatic

created DOOCS properties creation. The returned structure must follow the several rules:

1. The structure can have only fields of scalar type and real only value. If one of the pa-

rameter is a matrix or vector, it must be spited into singles elements and then put into the

structure. Later, inside the Matlab code (Input functions)one can join single elements

back to the matrix or vector and use it in calculations.

2. The name of the field will be the DOOCS property name. Therefore, only capital letters

are allowed, and maximum length of the name should not extend15 characters. There

cannot be two fields with the same name.

The structure returned by this function persists in the server memory until server is quited. It is

modified by user every time he changes any of input parameters.

44

4 IMPLEMENTATION

Input function should also have one instance in the library. It is the function which is in-

voked after the user changes any input parameter. It recalculates the input parameters in order

to return control tables and rotation matrix coefficients (it can be compared to default control

tables generation module). It returns three elements: vector U, matrix Y and structure W. Vector

U corresponds to all scalar values which are loaded into FPGA, matrix Y is a table of vector.

Each vector is a single control table. One can compare the Y matrix to the set of tables in

the direct table access module. The matrix Y will be later modified by the internal functions.

Both U and Y elements depends on actual firmware. They should correspond to the particular

elements in II file. DOOCS server does know the structure of these elements and will expect

the proper data format. At the server start up, the wrapper library (see further in the chapter)

creates a buffer data structures of U and Y in order to providecommunication with the rest

of the server. The W is the private workspace structure of thealgorithm. It can contain every

kind of Matlab data inside. These data can be modified by algorithm in every way. Server only

provides a pointer to this structure and take care of passingit between functions.

Internal function can be triggered by the user or by the DOOCS server internally.It oper-

ates only on Y and W element. There can be many internal functions in the algorithm.

If the Matlab code is properly formatted, it can be compiled using Matlab compiler. For

SIMCON purposes, Matlab 6.x version has been used. The command which creates the shared

library libsimcon.so from m-functionfoo1 ,foo2, foo3 is following:

mcc -t -L C -W lib:libsimcon -T link:lib foo1, foo2, foo3, ...

The compiled library is ready for the integration with DOOCS server. For this purpose,

the special wrapper librarylibmatcore has been provided. It is not only providing compiled

functions to the DOOCS environment, but also separates the Matlab API from DOOCS API.

It is important, because DOOCS server can be therefore compiled without any Matlab library

linkage. The wrapper library provides the classDummyMat. This solution is similar to the

Xiid_bridge class in the communication module.DummyMat has a mechanism that allow the

DOOCS server to create the properties from the structure returned by the Init function.

Server can read the total number of structure elements and then read step by step names of

45

4 IMPLEMENTATION

A

U

Y

W

INPUT_INIT

INTERNAL

INPUT

getFieldName

getInputFieldsNumber

DOOCS property

setField

SIMCON

communication
module

getU

getY

setY

DOOCSDummyMat

libmatcore.solibsimcon.so

Figure 22:The implementation scheme of Matlab module for SIMCON server.

all fields. Using this name it creates new DOOCS property with name equal to the field name.

As a base class for all Matlab-DOOCS properties theD_matlab_reg class has been used. It

bases on D_float class. The overloadedset_value method of theD_matlab_reg accesses the

structure inside the The wrapper library and change the value of the particular property.

There is no automatic procedure for mappinglibmsimcon functions in thelibmatcore

library. This means, the programmer has to modify the sourcecode of thelibmatcore for par-

ticular libsimcon functions by hand. However it simple task since the interface in compiled

Matlab functions is unified. Every function fromlibsimcon should be represented as a method

of theDummyMat class. Inside this method there are onlyDummyMat internal buffers manipula-

tions and the call of the function from thelibsimcon. The typical method which implements

the INPUT function can look like this:

void calcinput(){

46

4 IMPLEMENTATION

mxDestroyArray(W_out);

mxDestroyArray(U);

mxDestroyArray(Y_out);

U=initt(&Y_out,&W_out,input_struct);

mxDestroyArray(W_in);

mxDestroyArray(Y_in);

W_in=mxDuplicateArray(W_out);

Y_in=mxDuplicateArray(Y_out);

}

First free lines clear old output buffers. Third line is the call of the mapped function from

library. Next two lines clear the old input buffers. the lasttwo lines copy the output buffers

to the input buffers. This example shows the specific problemin Matlab API. In the function

invocation, the output argument cannot appear in the input arguments list. If it happens, the

output will not be filled with new data. As a solution for this limitation a two buffers have been

used, and data are afterwords copied from out-buffer (the result of the function) to in-buffer(the

input of the next function). Logicaly there is only one buffer, but physicaly the server can access

two buffers. The doubled buffers are: W and Y. the U buffer is not used as an input argument,

therefore it has one instance. The next example show the method of implementing the internal

function in theDummyMat class:

void calcrecontrol1(){

mxDestroyArray(W_out);

mxDestroyArray(Y_out);

mlfAssign(&Y_out,recontrol1(&W_out,Y_in,W_in));

mxDestroyArray(W_in);

mxDestroyArray(Y_in);

W_in=mxDuplicateArray(W_out);

Y_in=mxDuplicateArray(Y_out);

}

These two examples shows important issue of implementation. The output buffers are destroyed

47

4 IMPLEMENTATION

after the entering to the method. This means, that after leaving the method both, output and input

buffers contain the same data (since the input buffers has been filled with new data before exiting

the method). This information can be used by DOOCS server. On the DOOCS side,DummyMat

provides interface through which one can call every method,which is mapped matlab function

and obtain pointers to internal buffers of theDummyMat. This is enough to perform the proper

algorithm operation. The general sequence for calling the input and internal function from

DOOCS can look like this:

mat->lock(); - we lock th access to the matcore

xiid->lock(); - we lock the access to the hardware

mat->calcinput(); - we calculate the input function

LoadTables(mat->getU(),mat->getY_out(),0); we load the new data to FPGA

mat->calcrecontrol1(); we call the first internal function

ReloadTables(mat->getY_out()); update of new Y to hardware

ReadTables(mat->getY_in()); loading the actual table to Y

mat->calcrecontrol2(); call of the second internal function

xiid->unlock(); releasing the hardware lock

mat->unlock(); releasing the matcore lock

Themat object is the instance of DummyMat class andxiid is the instance of Xiid_bridge

class. In this example another feature of theDummyMat class has been shown. This class, similar

to Xiid_bridge provides the blocking of access to the matlab functions. DOOCS routines are

blocking the access to the internal libmatcore tables and structures to ensure the data integrity.

Different threads in the server could access the libmatcoretables in the same time. This would

cause the failure of the whole controller. The example showsthe flexibility of implemented

solution. The input function is called from DOOCS without anyparameters. DOOCS does not

know nothing about the function, there is no Matlab API grammar on the DOOCS site. After

input function invocation, new data are available for downloading to the hardware (function

LoadTables) using methods for obtaining pointer to data. Internal function is also called without

any arguments. Its result can be once again uploaded to the hardware. If the actual data are

needed for the internal function they can be readout from hardware and loaded intoY_in table.

48

4 IMPLEMENTATION

This table will be input argument of the internal function. In the next step we can call this

function. On the DOOCS site, there is no W structure. It is hidden insideDummyMat class,

because it is not related to the hardware. Only hardware related data of algorithm are visible to

DOOCS.

Using this simple interface one can obtain fully functionality of the compiled Matlab code,

equal to the original Matlab control environment. The module provides thread safe operation.

Extending the interface ofDummyMat class is simple, and changes inlibsimcon library func-

tions does not require recompilation of the server. Using the matlab module instead of rewriting

algorithm to C language has impact on server performance. Compiled Matlab code uses many

original Matlab libraries, which are not designed for real time calculations.

4.6 Monitoring and general purpose data modules

Beside main modules in the system, there have been many helperdata structures developed.

These includes helper classes for accessing basic IID elements like registers and bits and moni-

toring spectrum classes for readout of the internal signalsfrom FPGA. The list most frequently

classes with description has been presented below.

• D_SIMCON_reg is the general purpose class for representing the II register in DOOCS

environment. It bases on D_int class. It offers the scaling and offset parameters. This

means, one can define the number by which the register value will be multiply and number

which will be added to the result of this multiplication before loading it to the hardware.

The purpose of this feature is to provide scaling factor for registers than have different

range in the hardware than in the software. The readout operation perform the reverse

calculation to obtain the original value.

• D_SIMCON_regf is the same register class as D_simcon_reg, but operates on float val-

ues and is derived form D_float class instead of D_int.

• D_simcon_areacan be used for readout of the particular signal form the signal list (see

appendix). One can define the number of signal which should bered, the number of DAQ

from which the signal should be red and as in he previous classes, the scale factor and

49

4 IMPLEMENTATION

offset.

• D_simcon_complexareais used to calculate amplitude and phase from I and Q compo-

nents. One has to pass in the constructor of the class the pointer to two D_simcon_area

objects which are I and Q signals. Additionally one has to setthe purpose flag which tells

if the object will calculate amplitude (set 0) or phase (set 1) calculated out of these two

signals.

In the server exists also small, dedicated for the particular purpose extensions of basic

DOOCS classes. These are used for setting the timing mode, device state, etc. They function

mostly as a bit switches or properties with few discreet values.

50

5 TESTS OF THE DESIGNED SYSTEM

5 Tests of the designed system

The entire presented system has been tested partially during the implementation process. The

SIMCON has been set to internal timing and trigger mode and andhas been completely dis-

connected from the VUV FEL infrastructure. As the referenceenvironment the Matlab system

has been used. Through Matlab, the test and debug readouts ofthe SIMCON registers, bits and

memory has been performed.

In order to confirm the realization of the thesis requirements, the dedicated tests have been

done in the full operational environment. Three tests has been performed. For each, the appro-

priate test stand has been assembled. The test band configuration included:

• SUN embedded computer in VME crate, connected to the Ethernet.

• Solaris 2.8 operation system with DOOCS server and libraries.

• SIMCON 3.0 board.

• firmware files and upload tools.

• external timing (1MHz) and trigger signals.

• probe signal from cavity(or cavities).

• monitor ADCs for reference - controlled from DOOCS

The test in the operation environment required a special procedure for switching the system

from DSP system into FPGA and after tests recovering the DSP operation. Following steps had

to be done in order to perform proper and secure test:

1. SIMCON booting procedure. If the power of the VME crate was down, after turning on

the system SIMCON is not booted, this means the FPGA is not configured. The booting

procedure is done through VME bus from SUN computer. The complete SIMCON device

consists of two board: the motherboard and the SIMCON daughter-board. On each board

there is FPGA, and it mus be configured. In the configuration process the motherboard

must be booted as the first one, because only through configured FPGA, SUN can "see"

51

5 TESTS OF THE DESIGNED SYSTEM

the SIMCON FPGA chip. The tool that allows to configure the FPGAthrough VME is

called jambo. It is a extended version of the tool provided by the ALTERA called jam

player. ALTERA provides the source code for this tool. Therefore it was modified to use

VME channel, the same which is used in DOOCS system and Matlab software. Jambo

uses IID files with description of JTAG bits and jam-files which are the bit-files including

the configuration of the chip. Because SIMCON uses Xilinx FPGA chip, before config-

uring the device withjambo the Xilinx bit file must be converted to jam file. Since the

JTAG standard is the same for the both chip family, Xilinx Virtex chip can be configured

using ALTERA tool. Jambois the command line tool and as a parameter requires only

the name of the jam file. After configuring the motherboard andSIMCON the device is

ready.

2. Running DOOCS server. There are many ways to run DOOCS server. For the final

integration, the server should be registered in the configuration file of watchdog server.

This is the server which is responsible for keeping alive DOOCS server running on the

same machine that it runs. For testing purposes DOOCS server has been started from

console, and then switched to operate in the background. This solution is more flexible,

because one can kill the process of the server whenever it is necessary. Killing the server

which is under control of watchdog would cause it automatic restart which, in case of bug

detection or server problem, is not permitted. After start up of the DOOCS, the system is

ready for cable exchange. One can check the proper DOOCS and SIMCON interaction,

by setting the SIMCON timing into internal mode and performing the ADC readout. The

plots should show noise with offset. If ADC plots does not show noise it can be caused

by the wrong setting of the input rotation matrix setting ie.setting the amplitude to 0. It

is very important to set the FeedForward and Feedback off. SIMCON must be ready to

drive system with offsets only!!

3. Timing . The next step is the procedure of connecting the external timing and trigger

signal to SIMCON. After connecting signal it is necessary to switch SIMCON to external

timing. The ADC readout should show the same noise (no input connected).

4. Switching off the DSP controll. As the next step one should switch off the Feedback

52

5 TESTS OF THE DESIGNED SYSTEM

and Feedforward in the DSP. It is a good habit to save the actual settings in the logbook.

The result should be confirm by monitoring ADC. They should show zero gradient (<

1MV). In this stage, the DSP is switched off but still is controlling the system by the

compensated offset. If at the output of the controller is zero level of signal, after vector

modulator there will be a constant, non zero signal. It is caused by the offset produced

inside the vector modulator. In DSP the output ofsset is set to values which compensates

the the output of the vector modulator to zero. In this step, after switching off the DSP,

one can connect probe signals to the SIMCON.

5. Setting klystron power to zero. This step is necessary before switching off the cables in

the output of the DSP system. After switching off, DPS will nolonger compensate offset

of the vector modulator. This will cause the power coming outof klystron. Therefore the

voltage of the klystron should be set to zero.

6. Connecting the SIMCON output. After switching of the voltage of klystron, one can

connect cables to the output of the SIMCON. The SIMCON is ready to start up the oper-

ation.

7. Adjusting offsets in SIMCON. The goal of this stage is to achieve the same offset com-

pensation as in DSP. The voltage of the klystron can be slowlypolling up. During this

operation one should observer monitoring ADC. They are calibrated and will show the

real gradient even if SIMCON is not calibrated. If gradient will achieve 1MV level it

means that offsets are not calibrated. The compensation is done by setting the offsets in

the SIMCON panel and observing the ADC readout. One should findseparately for I and

Q signal the value which give the minimum power at the output of the vector modulator.

After compensation one can continue polling up the voltage up to the nominal level but

in the same time observing the ADC readout. If gradient is exceeding the 1MV level the

compensation should be repeated. At the end of the procedure, the level of signal in the

ADC monitors should be similar to the one achieved with DSP.

8. Starting the operation. After all these steps, SIMCON is in "stand by" mode which

means it drives the module (or single cavity) to compensate the offsets. From this point

53

5 TESTS OF THE DESIGNED SYSTEM

one can start the real test, setting the Feedforward, and Feedback.

After finished tests, one should exacly repeat the procedurefrom the last point to the first

in order to bring the DSP back to operation. Presented procedure has been applied in every of

three tests. Next subchapters describe the particular tests. Presented screens from DDD panel

shows the DOOCS system working in real operation environment.

5.1 SIMCON 3.0 test in CHECHIA

CHECHIA is the test band for the single cavity. It is placed in the VUV FEL tunnel. CHECHIA

is used for testing the cavities before mounting it in the module. It consists of the full environ-

ment: Cavity, klystron, RF system, local timing distribution, downconverter and DPS controller.

The test has been performed using SIMCON 3.0. The probe signalhas been connected to first

ADC channel. During the test cavity was installed without piezo tuners, and therefore was very

unstable. The following pictures show the panels with signals collected in CHECHIA.

Figure 23:Main panel for SIMCON controller. One can see SIMCON parameters and Feedforward with gain

applied.

54

5 TESTS OF THE DESIGNED SYSTEM

Figure 24: Amplitude and phase of the probe signal from cavity driven bySIMCON. The Feedforward and

Feedback have been applied.

Figure 25:The panel with configuration parameters of input channels. Only the first channel is active.

55

5 TESTS OF THE DESIGNED SYSTEM

Figure 26:DOOCS allows to observe in real time amplitude and phase of all 8 channels. On the picture only the

first channel is active

Figure 27:An expert panel in SIMCON server. The device is set to controller mode and uses external timing

signals.

56

5 TESTS OF THE DESIGNED SYSTEM

Figure 28:The output I and Q signals from the controller. The gain loop try to compensate the instability of the

cavity.

Figure 29:The I and Q signal detected by the SIMCON from probe signal.

5.2 SIMCON 3.0 test in ACC1

ACC1 is the first superconducting module after RF GUN. The tests have been performed with-

out beam. The SIMCON firmware used in tests differed from the one used in CHECHIA but the

server was not changed. Some changes has been made in GUI panel for operation optimization.

57

5 TESTS OF THE DESIGNED SYSTEM

Following figures show ACC1 operation using DOOCS for SIMCON.

Figure 30:Main panel of the server. The SIMCON is running with Feedforward and feedback.

58

5 TESTS OF THE DESIGNED SYSTEM

Figure 31:Panel for input calibration. Different values for each channel are needed to calibrate the whole vector

sum.

Figure 32:Expert panel for SIMCON.

59

5 TESTS OF THE DESIGNED SYSTEM

Figure 33:Grandient and phase plots for each of 8 cavities.

Figure 34:Eight probe signals from SIMCON ADC. One can observe directly input signal for controller.

5.3 SIMCON 3.0 test in RF-GUN

RF GUN is one cavity module at the beginning of the linac. It is used for electron generation

which are next accelerated in superconducting modules. Thecavity in RF GUN has different

60

5 TESTS OF THE DESIGNED SYSTEM

parameters. It is normal conducting cavity, cooled by water. The different behavior of the

system needs different algorithm for controlling the cavity. Due to time limitation, the original

firmware for ACC1 has been modified for RF GUN purposes and tested in fully operation

environment. For this purpose also the DOOCS server has been changed. The main changes

were done in default controller module, where the shape of generated tables has been modified

additional registers have been added and GUI panels have been modified. Results showed

that the firmware dedicated for ACC1 is not able to stabilize theRF GUN field. However

the test showed also that DOOCS server can be modified and adapted to new firmware very

easily. During 8 hours shifts, the server code was modified view times. This quick response for

particular operator needs proved that implemented solution is flexible and expandable.

Figure 35:Main panel for RF GUN server. One can see modified ACC1 panel. An integrator gain was added,

integrator start delay, and delay for all table start.

61

5 TESTS OF THE DESIGNED SYSTEM

Figure 36:RF GUN controller uses forward and reflected power for field stabilization. Therefore there are only

four input channels used.

Figure 37:Eight probe signals from SIMCON ADC. One can observe directly input signal for controller.

62

6 SUMMARY AND CONCLUSIONS

6 Summary and conclusions

Presented DOOCS based control environment or cavity simulator and controller SIMCON 3.0

now in the testing stage. Initial tests showed, that appliedconcept is correct and can be used in

future DOOCS applications. The following system modules have been realized and tested:

• Unified hardware-software communication model provides interface which can be easy

integrated with DOOCS environment. The communication module, due to its flexibility

allowed to maintain the DOOCS server during tests and simplify the source code modi-

fication. Applied thread safety procedures provided the proper communication protocol

between software and hardware. Modular design of this system component, which bases

on several shared libraries helped to debug the software.

• Default control tables generator is an example of the many possible algorithms, that can

be implemented in DOOCS. Its flexibility and modularity has been used during tests in

RF GUN, where there was a need to modify the control algorithm during the test. The

algorithm implemented in this module allowed to control a superconductive module of 8

cavities, and calibrate a vector sum.

• Direct control table access module allowed to test the SIMCONfirmware and other parts

of the DOOCS server. The possibility of changing the control tables directly has been

tested using Matlab. This application is the main tool used during algorithm development.

The simplicity of using the presented module allow to integrate the SIMCON with other,

non DOOCS applications which can contain sophisticated algorithms.

• Compiled Matlab code can be also integrated in the DOOCS server. Designed wrapper

libraries provide easy to use interface, which allows to connect the Matlab data structures

with DOOCS environment. Additionally they separate these two environment which en-

sure required modularity of the whole presented system. However this solution is not

recommended for the future. C implementation of the algorithm gives possibility for easy

interaction of the calculation routines with other modulesof the DOOCS application,

while Matlab code always need wrapper libraries and interfaces for system integration.

63

6 SUMMARY AND CONCLUSIONS

Tests of DOOCS applications with SIMCON device showed also a need for firmware optimiza-

tion, especially in the readout components. Experience gained during tests will allow to avoid

many software and firmware related problems in the future.

Both server, and GUI panels will be optimized for user operation. Additionally to the ex-

isting server for ACC1, the second server for RF GUN (for new FPGAfirmware) is being

developed. The integration of the designed systems with theexisting VUV FEL infrastructure

is planned to be finished in the fall of the year 2005. Solutions used during the development pro-

cess gives the background for the future control systems, dedicated for SIMCON based control

devices.

The next version of the SIMCON - 3.1 will have a possibility to run DOOCS server on

embedded Power PC processor inside the FPGA chip. This solution will create new possibilities

of SIMCON usage. With DOOCS embedded in the Power PC, SIMCON can bestandalone

device, which does not need VME crate for the operation. First tests showed, that DOOCS can

operate in that new environment. However, changes will haveto be made in order to provide

access to the hardware. New channel library has to be developed, because DOOCS will no

longer communicate through VME, but the communication corewill remain unchanged - it

excellent fits the embedded platform requirements. The module for compiled Matlab code will

be also abandoned because of the lack of support from Mathworks for this particular Power PC

(no run time libraries are available for this processor).

There are plans to develop unified Mathematical library for algorithm development in soft-

ware under DOOCS environment. It will be a kind of substitute for Matlab libraries and provide

unified data structures and functions helpful in the development process. Unified mathemati-

cal engine dedicated for DSP calculation can use floating point processor (placed as a separate

chip on the board) or floating point VHDL core inside FPGA chip. In both solutions, the com-

munication protocol with the float unit would be hidden inside the mathematical library, and

user would have only simple and clear interface for using floating point calculations. Proposed

solution would be easily integrated with DOOCS control environment or any other control ap-

plication.

64

REFERENCES

References

[1] Waldemar Koprek, Pawel Kaleta, Jaroslaw Szewinski, Krzysztof T.Pozniak, Ryszard S.

Romaniuk: Software Layer for SIMCON ver. 1.1., FPGA based TESLA Cavity Control

System; USER’S MANUAL.TESLA internal note 2005-05.

[2] T. Czarski, K. Pozniak, R. Romaniuk S. Simrock:TESLA Cavity Modeling and Digi-

tal Implementation with FPGA Technology Solution for ControlSystem Purpose.TESLA

internal note 2003-28.

[3] 5.K. T. Pozniak, M. Bartoszek, M. Pietrusinski,Internal interface for RPC muon trigger

electronics at CMS experiment, Proceedings of SPIE, Bellingham, WA, USA, Vol. 5484,

2004, pp. 269-282.

[4] W. Giergusiewicz, W. Koprek, W. Jalmuzna, K. T. Pozniak,R. S. RomaniukFPGA Based,

DSP Integrated, 8-Channel SIMCON, ver. 3.0. Initial Results for 8-Channel Algorithm.

Tesla internal note 2005-14.

[5] http://tesla.desy.de/doocs/server/dsp/DSPprsvr.pdf - Description of the DOOCS server for

DSP system.

[6] T. Czarski, R. S. Romaniuk, K. T. Pozniak, S. Simrock:Cavity control system: opti-

mization methods for single cavity driving and envelope detection, Proceedings of SPIE,

Bellingham, WA, USA, Vol. 5484, 2004, pp. 99-110. bi

[7] Krzysztof T. Pozniak, Ryszard S. RomaniukModular and Reconfigurable Common PCB-

Platform of FPGA Based LLRF Control System for TESLA Test Facility, TESLA Report

2005-04.

[8] Thomas Schilcher ,Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force

Detuned Superconducting Cavities

[9] http://doocs.desy.de - DOOCS homepage.

[10] http://sun.com - SUN MICROSYSTEMS homepage.

65

REFERENCES

[11] http://www.mathworks.com - Matlab homepage.

[12] Diagram of the LLRF system done by Alexander Brandt.

[13] W.M. Zabolotny, T. Czarski, T. Jezynski, K.T. Pozniak, P. Rutkowski, R.S. Romaniuk,

K. Bunkowski,FPGA Based Cavity Siumulator for TESLA Test Facility, TESLA Report

2003-22.

[14] Kernighan Brian W., Ritchie Dennis M.Język ANSII C, WNT 2001.

[15] Hall Carl L. Techniczne podstawy systemów klient - serwer, WNT 1996.

[16] Bentley JonPerełki oprogramowania, WNT 2001.

[17] Knuth Donald E.Sztuka programowania, WNT 2001.

[18] Stevens W.RichardProgramowanie ẃsrodowisku systemu UNIX, WNT 2001.

[19] W. PetersenThe VMEbus Handbook, WNT 2001.

[20] J. SzabatinPodstawy teorii sygnałów, WKŁ 2003

[21] T. P. ZielińskiOd teorii do cyfrowego przetwarzania sygnałów, Wydawnictwo AGH 2002.

[22] A. Silberschatz, P. GalvinPodstawy systemów operacyjnych, WNT 2001.

66

7 APPENDIXES

7 Appendixes

SIMCON 3.0 READOUT CHANNELS

channel 0: test signal from module TEST GENERATOR,

channel 1: simulator CAV_ OUT_I

channel 2: simulator CAV_ OUT_Q

channel 3: simulator CAV_ DETUN

channel 4: simulator CAV_VMOD

channel 5: controller MUX_OUT_SUMV_I

channel 6: controller MUX_OUT_SUMV_Q

channel 7: controller CTRL_I

channel 7: controller CTRL_Q

channel 9: controller TGAIN_I

channel 10:controller TGAIN_Q

channel 11:controller TSETPOINT_I

channel 12:controller TSETPOINT_Q

channel 13:controller TFEEDFORWARD _I

channel 14: controller TFEEDFORWARD _Q

channel 15: simulator TBEAM _I

channel 16: simulator TBEAM _Q

channel 17: simulator CAV_MODE1

channel 18:simulator CAV_MODE1D

channel 19:simulator CAV_MODE2

channel 20:simulator CAV_MODE2D

channel 21:simulator CAV_MODE3

channel 22:simulator CAV_MODE3D

channel 23: input signal ADC1

channel 24: input signal ADC2

channel 25: input signal ADC3

channel 26: input signal ADC4

67

7 APPENDIXES

channel 27: input signal ADC5

channel 28: input signal ADC6

channel 29: input signal ADC7

channel 30: input signal ADC8

channel 31: controller CTRL_DET_I_1

channel 32: controller CTRL_DET_I_2

channel 33: controller CTRL_DET_I_3

channel 34: controller CTRL_DET_I_4

channel 35:controller CTRL_DET_I_5

channel 36: controller CTRL_DET_I_6

channel 37: controller CTRL_DET_I_7

channel 38: controller CTRL_DET_I_8

channel 39: controller CTRL_DET_Q_1

channel 40: controller CTRL_DET_Q_2

channel 41: controller CTRL_DET_Q_3

channel 42: controller CTRL_DET_Q_4

channel 43: controller CTRL_DET_Q_5

channel 44: controller CTRL_DET_Q_6

channel 45: controller CTRL_DET_Q_7

channel 46: controller CTRL_DET_Q_8

68

7 APPENDIXES

Acknowledgments

I would first like to thank my tutors, Dr. R. Romaniuk and K. Pozniak for patient, all advices

and encouragement that they have given me during these years.

I owe also sincere thanks to S. Simrock for giving me opportunity to work in the team of people

with great experience and treating me (student) as a professional engineer. He always was ready

to share with me with his knowledge and experience.

I would like to thank all my colleagues from PERG and ELHEP group especially J. Szewinski,

W. Jalmuzna, W. Koprek, T. Jezynski for giving me support (mental and technical).

Finally I send my thanks to my family, which have been waitingfor this moment so long.

69

