
TESLA Report 2005-05

Software Layer for SIMCON ver. 1.1.
FPGA-based TESLA Cavity Control System,

USER’S MANUAL

Waldemar Koprek, Paweł Kaleta, Jarosław Szewiński,
Krzysztof T. Pozniak, Ryszard S. Romaniuk

Institute of Electronic Systems, Warsaw University of Technology, Poland

ELHEP Group

ABSTRACT

The paper describes design and practical realization of low and high level software
for laboratory purposes to control FPGA-based LLRF electronic equipment for
TESLA. There is presented a universal solution for particular functional devices of the
control system with FPGA chips. The paper describes architecture of software layers
and programming solutions of hardware communication based on the proprietary
Internal Interface (II) technology. Such a solution was used for the Superconducting
Cavity Controller and Simulator (SIMCON) for TESLA experiment (Test Facility) in
DESY. The examples of the build and tested software blocks were given in this
paper.

This documentation is a unity with TESLA Reports published in 2004 by the Elhep
and describing the SIMCON hardware, ver.1.0. The paper was written in a form of a
User’s Manual.

List of changes

The first version of this technical documentation was published as TESLA Report
2004 -10. The initial document was accompanying TESLA-FEL Report 2004-04.

The present document, as compared with 2004-10, was essentially expanded,
revised and supplemented with data and functionalities not present in SIMCON
ver.1.0. (March 2004).

The next version of software is prepared for the hardware platform SIMCON ver. 2.1.
and then ver.3.0. While the versions of SIMCON 1 and 2 use nearly the same
hardware platform (single channel), the SIMCON ver. 3 uses a new eight-channel
multilayer PCB of VME format.

 2

CONTENTS

1 System overview ..3
2 Software layers definition ...4
3 Channel layer ...6

3.1 LPT channel ..7
3.2 VME Channel (PC)..7
3.3 VME Channel (Solaris)..7

4 Internal Interface Engine (IIE) ..8
4.1 Dynamic loading IID files...8
4.2 Using IID in communication...9
4.3 IIE Configuration ...11
4.4 IIE API...11

5 Application layer ...20
5.1 Matlab ...20
5.2 Detailed description of using Matlab functions ..22

6 IIE as network client (IIE Adapter) ..25
6.1 IIE Adapter Configuration..26
6.2 IIE Adapter Communication Protocol ..26
6.3 IIE Compatibity..30

7 Booting FPGA ..31
8 Example of using MEX-functions..32
9 Acknowledgement ..33
10 References…………………………………………………………………………….33

 3

1 SYSTEM OVERVIEW

Each of the devices of the cavity controller system, which bases on the FPGA
chip has a separate, internal functional structure. The device operation and the form
of the dedicated software depends on the FPGA structure. To minimize the influence
of the hardware structure on software there raised a necessity to create special
system solution which could be used to describe FPGA-based systems. Such a
standard of FPGA description was implemented as a proprietary solution called the
Internal Interface (II). Due to the II description of the FPGA - based electronic
systems it is possible to build universal software which can be used in laboratory and
in experiment conditions. The software is nondependent directly on the hardware
structure.

On the base of such solutions the specific capability was achieved to develop the
software which can be used to dedicated purposes for particular devices. Various
graphical user interfaces can be built, basing on the assumed solution, such as
control panels, measurements panels or panels for debugging hardware.
Implementation description of such solutions can be found in the further parts of this
paper.

The main used technology of the described software environment is the Internal
Interface. The II is a proprietary and very efficient method of description of address
space. The Internal Interface file with the description (Internal Interface Definition file
- IID file) is used to generate the VHDL files that implement this address space in the

 4

FPGA chip. Later, this file is used as the configuration file for the LLRF TESLA cavity
control environment.

From the logical point of view, the environment is divided into several layers. The
interfaces are defined between the software layers. The various versions of the
interfaces are under tests and evaluations. Because of that experimental stage, we
can replace one component in the software layer with another one without affecting
other parts of the system. This gives us flexibility and possibility to introduce new
ideas and new technologies to the project in the future without re-creating the whole
project from the very beginning.

The software environment can operate in two modes: local and remote
(networked). In the local mode, the client is located on the same machine which has
the FPGA hardware connected. In the remote mode, the client is connected to the
system over the TCP/IP network. The considerations in the next chapters (2-3) will
apply to the local mode, while the remote mode will be discussed in chapter 4.

Currently, the environment has been developed mainly on MSWindows platform
(as a laboratory tool-set used to develop FPGA systems), and also some parts of the
system have been adapted to the Solaris platform where it works in cooperation with
the DOOCS (DOOCS server is a client for the TESLA control environment).

2 SOFTWARE LAYERS DEFINITION

The software system is divided into three layers:

– The Input-Output Layer - This layer is a communicating layer. Its main task is
sending and receiving data between the hardware and the rest of the system. The
system is designed for the hardware with address-space, thus exchanging the
data is developed as a sequence of reading and writing operations into that
address-space. The signal part of the system, which implements the I/O layer
functionality is called the channel or channel library.

– The Internal Interface Layer - This layer is responsible for serving the information
about hardware and enabling communication with it. The Internal Interface Layer
imports hardware description which is included in the Internal Interface Description
(IID) file. After interpreting that file, the computing of all addresses is performed in
the address-space of the hardware. In this way, the Internal Interface Layer has
information about all components allocation. A unique name is combined with
every component, which in turn is used for the communication with the User
Application Layer. This layer is called the IID library.

– The User Application Layer - This layer contains dedicated, user software, which
can use previous layers to communicate with the hardware.

The system is developed and encapsulated into the shared libraries with specified

functionality. The communication between them is realized throughout the well-
described interfaces (API). Every library which implements API can be used in the
system and works properly. In this way, the system can be extended with new
channels and used in new user applications.

The system concept is independent from the operating system platform. Now it
was developed and tested on two platforms: Win32 and Solaris.

 5

 6

3. CHANNEL LAYER

The Channel is a general software method of communication with the device.
Because one single board may contain many FPGA chips, the device is a single
address space which can span over one or more FPGA chips.

All channels have the same uniform interface, which is a set of methods that does
not dependent on the channel architecture, but describes operations on the higher
level of abstraction. For example, there are primitive functions “read” and “write”
which let us to operate on the address space.

The other aspect of the channels idea is that the different channels have different
properties, for example in the Ethernet the channel data is usually sent as a buffer,
but in the LPT interface (using EPP protocol) there is no support for transferring the
whole buffers, so data is sent byte after byte. Because of this problem, the channel
interface must be general enough to handle all kinds of channels, and not loose their
performance. In this case, the channels which are simpler, will emulate the behavior
of more complex channels. For example, the LPT channel has implemented a
method for reading a single word (which contain 4 bytes). The implementation of
buffer read method will simply call method for reading single word many times in the
loop.

Each channel has a data bus width – a maximum number of bits which can be
transferred simultaneously. For example, the LPT can transfer 8 bits of data during
the single read/write
operation (not including
the control and status
lines), while the VME
bus can transfer 32 bits
of data at once.
Unfortunately, each
device may have
different widths of the
address and data
busses, the size of
these busses is not
determined a priori (it
may even not be
multiplicity of 8).
In case of sending
operation, each
channel must cut data
into parts that can fit
into the channel bus
width. When receiving, the channel is doing the reverse operations to reconstruct
data from device’s address space into the computer memory. Also, the hardware
must have a functional logic which will reconstruct the transferred data in the FPGA
address space, or will prepare data for sending from FPGA to the PC. Example of
such solution can be found in [3].

The simplest solutions use a single medium (like LPT), which connects the PC
with one device. In more complex cases, one machine can control many devices

4

On board logic doing
deserialization

Channel library doing
serialization

LPT connection which
can transfer 1 byte per

single I/O operation

4-byte word of data in
computer’s memory

Reconstructed data in
FPGA structure

Hardware

Physical
connection

Sotfware

D
at

a
flo

w
 d

ire
ct

io
n

Figure 3. Example of sending data over the
LPT channel

3 2 1

4 3 2 1

 7

(multiple address spaces), for example using one Ethernet connection for accessing
multiple hardware. Because of that, it was necessary to enable the access to the
hardware for multiple client applications, where each client operates on a different
device, but on the other hand, each client must have exclusive access to single
device. To enable exclusivity, there are used platform depended methods of inter-
process synchronization (semaphores, mutexes, critical sections, etc.).

To achieve a flexible uniform interface for all channels, we have implemented
them as plugins. Every channel module is a dynamic link library (DLL on MS
Windows platform and Solaris environment). This solution gives the possibility to
change the way of communication , by simply changing the channel file, without
recompiling other parts of the system. The higher levels of system will not even notify
this change, because the channels are transparent for them.

3.1. LPT channel
This channel uses the PC’s parallel port to communicate with the hardware using

EPP protocol. The EPP protocol defines two modes of transmission - address and
data – so it is easy to use EPP protocol to cover address space of the FPGA system.
In this case, the accesses to the Internal Interface are encapsulated in the EPP
protocol (II -> EPP).

On the other hand, the hardware must contain the on-board logic, which
translates EPP interface to the board internal bus interface (Internal Interface).

The main usage of this channel is to operate with the hardware, which can not be
connected to the VME bus, or in standalone mode when the VME-board is not placed
in the bus. The LPT channel is implemented only on Win32 platform as a dynamic
link library named eppii.dll.

3.2. VME Channel (PC)
This channel was made to enable the user to operate on the boards placed in the

VME bus, without the SUN-VME Controller, using a PC class computer and
proprietary designed EPP-VME Controller. The PC communicates with the controller
over the parallel port (LPT) using the EPP protocol. In this case, the accesses to the
internal bus are encapsulated in the EPP-VME control codes, and those codes are
encapsulated in the EPP protocol (II -> EPPVME -> EPP)

This channel is implemented only on Win32 platform as a dynamic link library
named vmeii.dll

3.3. VME Channel (Solaris)
The VME channel on the Solaris platform is implemented as a shared object

(dynamic library) which operates in the user-space, and uses the kernel mode driver
which controls the VME bus. The reason for creating this library was to serve the
channel (“lower”) interface to the VME bus for the libxiid.so (middle layer engine),
which was ported from MS Windows.

 8

4. INTERNAL INTERFACE ENGINE (IIE)

The Internal Interface (II) was developed to automate the local communication
interface. It works at the hardware side (VHDL) and the software side (C/C++). The
basis of that project is to describe the FPGA I/O area (bits, registers, etc.) using well-
known syntax in the Internal Interface Description (IID) file. The IIE was developed to
serve II functionality in the software layer of the system.

The working idea of the IIE is different when compared with primary solution of
the II ([1]). The IID is always loaded in runtime regime into the system. The IID must
be interpreted and used to create the memory-map of the hardware. After that the IIE
can serve information from the IID in communication with the hardware. All
operations which have been mentioned are described below.

4.1. Dynamic loading IID files
First task of the IIE is runtime loading of the IID files. It makes the process

absolutely independent from the software and the changes in the IID files. This is
very important in the hardware developing process. This task is released by the IID
interpreter.
The IID file is a text file with C-like syntax (syntax of IID is fully described in [1]).
There are used predefined types, variables and functions, so it requires the full
syntax analyze. The complete interpreting IID process is shown in figure 5.

Figure 4. Method of working of the Internal Interface Engine

VHDL including

Runtime loading

IID

C++VHDL
C++ compiling and linking

VHDL compiling
and synthesis

Communication

HARDWARE II Engine

APPLICATIONS

 9

The IID is taken from the input data stream. In most cases this is a text file.
The first step of text analyzing is splitting the text to the elementary phrases. In C
notation there are numbers, characters and string of characters. After that, the
phrases are compared with the interpreter dictionary to their meaning is found and
then translated into operations. The next step of the analysis is sorting and evaluation
of all operations. The sorting process secures operations priorities and it is working in
agreement with the Reverse Polish Notation (RPN). After evaluating the operations
all the values are taken. From these values, the final structures are created. The
prepared data is used to create the memory-map of the hardware.

Due to the IID, the system has information about the hardware components
and theirs functional collocation. To compute the hardware collocation (address-
space) the IID has to contain three constants with predefined names. There are:

- IICFG_ADDR_BASE - constant of TVL type which describes logical hardware
base address, which is meant as the base address of the device in the FPGA
without the channel,

- IICFG_ADDR_WIDTH - constant of TVL type which describes length of the
hardware address bus (in bits),

- IICFG_DATA_WIDTH - constant of TVL type which describes length of the
hardware data bus (in bits).

4.2. Using IID in communication
The second task of the IIE is to enable the communication between the hardware

and the external application. Using the information, which is extracted from the IID,
the IIE enables other applications to communicate with the hardware on the
functional level, instead of the hardware level. From the external application point of
view, getting data from the hardware reduces to the process of fetching of these data

Stream

Tokens

Operations

Values

Items

file, memory

character, string,
integer, double

operator, constant,
variable, function, ...

values of II types
(TI, TP, TN, TL, ...)

II components

tokenization

finding operations
in dictionary

sorting and counting
values

counting addreses
of items

Figure 5. Process of interpreting IID

 10

by the unique name (mnemonic) instead by the physical address. The IIE serves full
mnemonics’ list, which can be used by the application.

The IIE manages all operations on the hardware components. Every I/O operation
contains sub-operations:
– Translation of unique name of the hardware component into the hardware

(physical) address – This sub-operation uses the memory-map which is created
during the loading of the IID process. Because of structure of the memory-map,
the searching process is released in a logarithmic time scale.

– Prevention operations on component without permission – the II enables reducing
access to every hardware component. There is a possibility to deny the read or
write operation.

– Prevention operations on component with different hardware address – This
situation is possible in programming errors in user algorithms. For example, the IIE
will return the error while write operation is performed, when there isn't enough
space for the value in the component.

– Recalling input-output operation in case of hardware errors – In some cases, the
hardware can return error while the communication process is performed. The IIE
recalls last communication operation 16 times, until it will return error to the user
application.

The system works on three types of data which are derived from the II. There are:

word, bit-set and area. In the simplest case (where one word component is related
with one hardware address) to set or get a single word component, only one I/O
operation is needed. With the area type, the number of I/O operation is rising to the
number of its registers. Bits is the most complex type to work with, because it is
implemented as part of some register. To get the value of one bit-set component
system has to read the register, mask useless bits and shift it to get proper value. In
setting operation there is needed one read and one write operation, because the rest
of the register must be unchanged before it will be written. The summary of sequence
of the I/O operation is showed in table below:

operation \ type word bits area
Setting write read, write write x number
Getting read read read x number

Table 1. Number of I/O operation while communication processes

Every input-output operation can be called multiple in two reasons:
1. There is a hardware error and the system tries to resolve the problem itself. If the

hardware returns error after 16 tries, the system will return the error to the user
application.

2. IICFG_DATA_WIDTH is set by smaller value that the hardware word has bits. The
II can split the components and put them into more than one address, so there are
more operations needed.

The number of the I/O operations can be different in one more case and it results

 11

from setting bits operation. Because many bits can be placed in one register, there is
possibility to write more than one bits component as single I/O operation. The IIE
serves in this case and it is called the merging bits operation. When the merging
mode is enabled, the IIE stores the results of the bits setting operations in a buffer,
which can be used to write and read on demand. While the merging process
(enabling, setting bits and writing on demand) there are called only one reading and
one writing operation and it is independent from the number of setting bits operations.

4.3. The IIE Configuration
The IIE is encapsulated in shared dynamic library which is called xiid.dll. It is
configurable by two text files:
– source.txt - To configure system to work with hardware the IID is needed. The IIE

uses this text file to find the IID file or files. The IID can be written into a single file
or more files. In the first case, the configuration file contains one line with a path to
the IID file. The path can be full or relative (current directory is configuration file
directory). In the second case, the 'source.txt' file contains more than one line. The
IID is interpreted in order of entries (from the first line) of the configuration file. The
interpreting session is common for all the IID files. This means that the IID, which
is included in many files, is treated as IID which would be included in one merged
file. Thus, every declaration in one file can be used by the other.

– channel.txt – IIE can serve II functionality independently from the channel, but it
must use some channel for low level communication with the hardware. The
software, which releases this function must be dynamic library and implemented
API of IIE. To connect it to the IIE the 'channel.txt' file must contain a path to the
channel library.

4.4. IIE API
init
The init function initiates and configures IIE.

int init();

Remarks
The init function is used to initiate and configure IIE according to information from
configuration files 'source.txt' and 'channel.txt'.
From 'source.txt' there is taken IID files' paths in order of entries. Every file is being
interpreted by IIE parser. When errors don't exist and all data is taken, IIE parser is
removed from memory. After that memory-map of hardware is computing.
From 'channel.txt' there is taken path to channel library. It used to find, load library in
the system and initiate channel to work.

Return values
If no error occurs, init returns zero. Otherwise, a non-zero value is returned and
internal error register is set. Error register can be read by get_last_error function.

 12

destroy
The destroy function ends work with IIE library.

int destroy();

Remarks
The destroy function is used to release previously allocated memory and close
channel library.

Returns values
Function always returns zero.

get_status
The get_status function returns status of last channel operation.

const unsigned int get_status();

Remarks
The get_status function is used to read status of last channel operation. Status is set
by channel only and not masked.

Return values
Function always returns status register. When the 7th bit of status register is set that
means communication error and error register is set by
IIERR_DEVICE_UKNOWN_PROTOCOL value. When the 6th bit of status register is
set that means checksum error and error register is set by
IIERR_DEVICE_BAD_CHECKSUM value. Error register can be read by
get_last_error function.

get_last_error
The get_last_error function returns identificator of last occurred error.

const unsigned int get_last_error();

Remarks
The get_last_error function is used to read identificator of last occurred error.

Return values
Function always returns error register. No return value is reserved to indicate an
error.

Error codes
IIERR_OPERATION_SUCCESS
 Last operation has finished without any error.
IIERR_DEVICE_NOT_LOADED
 Channel library can not be load or initiate.
IIERR_DEVICE_BAD_CHECKSUM
 There has been error of bad checksum while I/O operation.

 13

IIERR_DEVICE_UKNOWN_PROTOCOL
 There has been error of communication protocol while I/O operation.
IIERR_DEVICE_ITEM_NOT_FOUND
 II component doesn't exist in IIE storage.
IIERR_DEVICE_ACCESS_DENIED
 I/O operation on II component is deny.
IIERR_DEVICE_TYPE_MISMATCH
 Operation for type of selected II component is forbidden.
IIERR_DEVICE_OUT_OF_BOUNDS
 Value is bigger than available space in II component.
IIERR_DEVICE_CONFIG_FAILED
 IID doesn't contain all IICFG constants.
IIERR_CONFIG_SOURCE_NOT_FOUND
 Configuration file 'source.txt' hasn't been found.
IIERR_CONFIG_CHANNEL_NOT_FOUND
 Configuration file 'channel.txt' hasn't been found.
IIERR_PARSING_ERROR
 Interpreting IID has been corrupted because of parse errors.

get_addr_width
The get_addr_width function returns length of address bus of hardware.

const unsigned long get_addr_width();

Remarks
The get_addr_width function is used to read value which describes length of address
bus of hardware in bits units.

Return values
Function returns length of address bus of hardware. No return value is reserved to
indicate an error.

get_data_width
The get_data_width function returns length of data bus of hardware.

const unsigned long get_data_width();

Remarks
The get_data_width function is used to read value which describes length of data bus
of hardware in bits units.

Return values
Function returns length of data bus of hardware. No return value is reserved to
indicate an error.

get_item_id
The get_item_id function converts unique name of II component to its identificator.

 14

const unsigned int get_item_id(
 const char *name
);

Parameters
name
 Null-terminated string which represented unique name of II component.

Remarks
The get_item_id function is used to convert unique name of II component to its
indentificator.

Returns values
If no error occurs, get_item_id returns identificator of II component. Otherwise, a
maximum value which can be represented by unsigned int type is returned. In case
error function set error register. Error register can be read by get_last_error function.

get_items_count
The get_items_count function returns number of all II components stored by IIE.

const unsigned int get_items_count();

Remarks
The get_item_count function is used to read number of all II components stored by
IIE.

Returns values
Function returns number of all II components. No return value is reserved to indicate
an error.

get_item
The get_item function get full information about II component.

int get_item(
 const unsigned int id,
 struct iid_item_t * const item
);

Parameters
id
 Identificator of II component.
item
 Pointer to structure where information will be placed.

Remarks
The get_item function is used to read all information about II component. This data is
stored into structure type iid_item_t.
 struct iid_item_t

 15

 {
 char name[256];
 unsigned int id;
 unsigned int pid;
 unsigned char type;
 unsigned char wrtype;
 unsigned char rdtype;
 unsigned long wrpos;
 unsigned long rdpos;
 unsigned long width;
 unsigned long number;
 unsigned long addrpos;
 unsigned long addrlen;
 };

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned and error register is set. Error register can be read by get_last_error
function.

set_word
The set_word function set new value into II word component.

int set_word(
 const unsigned int id,
 const unsigned long data
);

Parameters
id
 Identificator of II word component.
data
 A value to set.

Remarks
The set_word function is used to set value into II word component. Function call write
operation from channel library. Number of these calls can be variable. For more
details see section 'Using IID in communication'. Before setting function makes tests
for correction of II component type and possibility to write.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register and status register are set. Error register can be read by
get_last_error function. Status register can be read by get_status function.

get_word
The get_word function get stored value from II word component.

 16

int get_word(
 const unsigned int id,
 unsigned long * const data
);

Parameters
id
 Identificator of II word component.
data
 A pointer to buffer for value.

Remarks
The get_word function is used to get value from II word component. Function call
read operation from channel library. Number of these calls can be variable. For more
details see section 'Using IID in communication'. Before getting function makes tests
for correction of II component type and possibility to write.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register and status register are set. Error register can be read by
get_last_error function. Status register can be read by get_status function.

set_bits
The set_bits function set new value into II bits component.

int set_bits(
 const unsigned int id,
 const unsigned long data
);

Parameters
id
 Identificator of II bits component.
data
 A value to set.

Remarks
The set_bits function is used to set value into II bits component. Function call read
and write operation from channel library. Number of these calls can be variable. For
more details see section 'Using IID in communication'. Before setting function makes
tests for: correction of II component type and possibility to write.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register and status register are set. Error register can be read by
get_last_error function. Status register can be read by get_status function.

merge_bits

 17

The merge_bits function merge new value into II bits component.

int merge_bits(
 const unsigned int id,
 const unsigned long data
);

Parameters
id
 Identificator of II bits component.
data
 A value to set.

Remarks
The merge_bits function is used to set value into II bits component when more than
one II bits component can be set by one I/O operation. Function doesn't use any I/O
operation, but stores data into merging buffer until set_merged_bits will be called.
Merging operation can be failed when to bits component aren't located in one
register. For more details see section 'Using IID in communication'. Before merging
function makes tests for: correction of II component type and possibility to write.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register is set. Error register can be read by get_last_error function.

set_merged_bits
The set_merged_bits function set new value into II bits component in merging mode.

int set_merged_bits();

Remarks
The set_merged_bits function is used to set value into II bits component after
merge_bits function calls. Function uses value from merging buffer to set new value.
Function call read and write operation from channel library. Number of these calls
can be variable. For more details see section 'Using IID in communication'.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register and status register are set. Error register can be read by
get_last_error function. Status register can be read by get_status function.

get_bits
The get_bits function get value from II bits component.

int get_bits(
 const unsigned int id,
 unsigned long * const data
);

 18

Parameters
id
 Identificator of II bits component.
data
 A pointer to buffer for value.

Remarks
The get_bits function is used to get value from II bits component. Function call read
operation from channel library. Number of these calls can be variable. For more
details see section 'Using IID in communication'. Before getting function makes tests
for: correction of II component type and possibility to write.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register and status register are set. Error register can be read by
get_last_error function. Status register can be read by get_status function.

set_area
The set_area function set new values into II area component.

int set_area(
 const unsigned int id,
 const unsigned long *data,
 const unsigned long num,
 const unsigned long off
);

Parameters
id
 Identificator of II area component.
data
 A pointer to array of values to set.
num
 Number of values to set.
off
 Offset from the beginning of II area component.

Remarks
The set_area function is used to set value into II area component. There is possibility
to set all space in component or only part of it. Function call read and write operation
from channel library. Number of these calls can be variable. For more details see
section 'Using IID in communication'. Before setting function makes tests for:
correction of II component type and possibility to write.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register and status register are set. Error register can be read by

 19

get_last_error function. Status register can be read by get_status function.

get_area
The get_area function get values from II bits component.

int get_area(
 const unsigned int id,
 unsigned long * const data,
 const unsigned long num,
 const unsigned long off
);

Parameters
id
 Identificator of II area component.
data
 A pointer to array for values.
num
 Number of values to get.
off
 Offset from the beginning of II area component.

Remarks
The get_area function is used to get values from II area component. Function call
read operation from channel library. Number of these calls can be variable. For more
details see section 'Using IID in communication'. Before getting function makes tests
for: correction of II component type and possibility to write.

Returns values
If no error occurs, function returns non-zero value. Otherwise, a zero value is
returned, error register and status register are set. Error register can be read by
get_last_error function. Status register can be read by get_status function.

 20

5. APPLICATION LAYER

The application layer contains user applications, which need to access the FPGA
hardware. These applications are called clients of the system. Any application which
uses “upper” interface may become a client of the system. This “upper” interface is
realized as a set of functions exported from the shared library. In short, to enable a
custom application use the FPGA access environment, a programmer needs only to
load a shared library and locate exported functions.
Currently, in most cases the Matlab is used as a client of the system.

5.1. The Matlab
Because a lot of work is invested in the modeling of the Tesla SC Cavity in

Matlab, there was a strong need for the comparison of the results of the modeling
with the data measured on the real cavity. Because of that, there have been written
tools for the Matlab, which enable the user to operate on the external hardware.
These tools have been implemented as MEX’es (Matlab Executable’s). They appear
as the Matlab functions (like M.-files).

User enters
command in Matlab

Matlab invokes
LoadLibrary(), and
loads MEX

MEX start it’s
execution

MEX Loads II
Engine library

II Engine parses IID
file (time consuming)

MEX calls II
Engine
functions and
transfers data

II Engine is accessing
hardware over a
selected channel, and
is transferring data

MEX Frees II
Engine library

II Engine is releasing
resources (memory,
channel etc.)

MEX ends it’s
execution, and
returns
control to

Matlab frees MEX
DLL library

User receives
results of executed
command

Channel
FPGA

Hardware

M
at

la
b

pr
oc

es
s

is
 s

us
pe

nd
ed

Figure 6. Typical lifecycle of MEX in this project

 21

Because all MEX-files are implemented as the dynamic link libraries, it is a
problem to keep the internal state of MEX-functions between separate calls to the
same MEX functions. After the MEX function finishes its execution, all the internal
data (which was stored on the call stack) is lost. In practice, it means that each call to
the MEX function causes the middle layer library (libxiid.so) to perform full
initialization (including IID files parsing), which is time consuming.

The typical life cycle of the MEX is presented on figure 3.

Unfortunately, the Matlab uses the same thread to handle the user input and

the MEX execution, because of that Matlab process is suspended (window is
blocked) while MEX is being executed. The problem is when the II Engine is loaded,
it parses IID file to translate names (mnemonics) of the FPGA registers and memory
areas into physical addresses. This operation is time consuming, it may take even
few seconds (depending on the CPU speed). This is extremely uncomfortable for the
user when reading or writing hundreds of registers in the FPGA.

To walk around this problem the following technique was used, there are two
special MEX files, both of them do nothing, except that first (ii_lock) loads II Engine
(unbalanced call to LoadLibrary(), without calling FreeLibrary() before exit), and
second (ii_unlock) releases II Engine (unbalanced call to FreeLibrary()).
When using this method, MEX files are not loading the whole II Engine each time, but
they only attach to preloaded library witch has calculated addresses of all registers in
the computer memory.

The technique described above is possible, because the calls to LoadLibrary() and
FreeLibrary() are cumulative; FreeLibrary must be called as many times as
LoadLibrary was, the other way the system will keep the library in memory as long as
number of calls to FreeLibrary() is less than number of call to LoadLibrary().
DLL libraries are mapped into address space of the calling process, the
DLL_PROCESS_ATTACH event is notified only during the first call of the
LoadLibrary for calling process, and DLL_PROCESS_DETACH event is notified only
during the last call of the FreeLibrary for the calling process.

In the paragraph above, as the examples were used Win32 API functions, but all
techniques described above are available on Unix-like system using dynamic linking
interface (dlfcn.h). There is only one difference, calls to dlopen are not cumulative,
after many calls to dlopen, first call to dlclose will unload the library. Because of that,
dlclose should not be called in any MEX files except ii_unlock (described below).

The following Matlab MEX functions have been created to communicate with the
hardware:
● ii_get_word
● ii_set_word
● ii_get_bits
● ii_set_bits
● ii_get_area
● ii_set_area
● ii_get_items

 22

● ii_lock
● ii_unlock

5.2. Detailed description of using Matlab functions

[] = ii_lock()

 parameters: none
 return values: none

This function is usually called first, before all other ii_* functions. It preloads xiid

and channel libraries. At this point, those libraries perform initialization (which may be
time consuming), so other ii_* functions attach to loaded and initialized libraries.
Using this function is not obligatory, but in such a case, each call to “ii” function will
perform full initialization, including parsing IID files and preparing channel (if
provided). These operations are usually time consuming and make working with the
system uncomfortable, so using this function is recommended.

[] = ii_unlock()

 parameters: none
 return values: none
This is complementary function to the ii_lock, it frees libraries preloaded by

ii_lock. This function should by called when the user has finished operating on the
hardware to let operating system remove shared libraries from the memory.

If Matlab Application is going to be closed, it is not obligatory to call ii_unlock,
because all dynamic libraries will be unloaded any way.

items = ii_get_items()

 parameters: none
 return values: items – vector of structures, each structure contain

information about one element of the Internal
Interface.

 Fields:
name - string that describes name of the element – mnemonic
type - string that describes the type of the element, it can be

one of the following values: „Page”, ”Area”, ”Word”,
”Vector”, ”Bits”, ”Unknown”

width - uint32 value that describes size of the element (in bits)
number - uint32 value that describes number of sub-elements

This provides ability to determine the structure of FPGA system (description is

taken from IID file).

Exaples:
>> items = ii_get_items(); - read the structures
>> items(1).name - name of the first element

 23

>> items(3).type - type of the third element
>> items.name - names of all II elements

word = ii_get_word(name)

parameters:
name – name of the requested item (string)

return values:
word – uint32 value containing requested data

This function returns value of the word identified by the parameter “name”.

Example:
x = ii_get_word(‘USER_REG1’);

[] = ii_set_word(name,word)

parameters:
name – name of the requested item (string)
word – uint32 value with new data for requested word

return values: none

This function assigns new value to the word identified by the parameter
“name”.

Example:
ii_set_word(‘USER_REG1’,uint32(123));

bits = ii_get_bits(name)

parameters:
name – name of requested item

return values:
bits – uint32 value of the bits identified by the parameter name.

This function returns value of the bits identified by the parameter “name”.

Example:
x = ii_get_bits(‘BITS_5’);

[] = ii_set_bits(name,bits)

parameters:
name – name of requested item
bits – uint32 value with new data for requested bits

return values: none

This function assigns new value to the word identified by the parameter
“name”.

Example:
ii_set_bits(‘BITS_5’,uint32(123));

 24

area = ii_get_area(name,start,size)

parameters:
name – name of requested item
start – offset calculated from the beginning of the area (type: uint32)
size – requested number of words to read

returned values:
area – vector of uint32 words read from the specified range (described
by “start” and “size” parameters) of requested area.

This function returns a vector of values read from the area identified by the

“name” parameter. Returned values are taken from the range specified by the
parameters “start” (offset) and “size”(number).

Example:
 Variable x will contain first 15 elements of area named “AREA_1”
 x = ii_get_area(‘AREA_1’,uint32(0),uint32(15));

[] = ii_set_area(name,start,size,area)

parameters:
name – name of requested item
start – offset calculated from the beginning of the area (type: uint32)
size – requested number of words to read
area – an uint32 vector of new values to write to the area

returned values: none

This functions stores values from the parameter “area” in the area specified by
“name” in location specified by parameters “start” and “size”.

Example:
X = uint32(ones(1,15));
ii_set_area(‘AREA_1’,uint32(0),uint32(15),x);

 25

6. The IIE AS NETWORK CLIENT (IIE ADAPTER)

The IIE is designed to work on one platform, but it can work in network as well.
The environment can operate in two modes: local and remote. In the local mode, the
client is located on the same machine which has the FPGA hardware connected, in
remote mode the client is connected to the system over TCP/IP network.

All previous considerations were made in context

of the local mode, to enable remote mode, it is
necessary to make two steps:

– On the system which has the hardware
connected, the user has to stop the current
Client Application to and start a TCP server
as a client, typically execute ii_unlock in
Matlab (if it is running and has been
connected to the hardware), and execute the
start.bat file from server files.

– On the system which will be used by the
operator, the user must place (replace)
special libxiid.so library which is called
“lightweight xiid”. This library is different from
the normal xiid, because it does not parse IID
files and does not communicate with
hardware directly, but it sends all client
request to the server, and brings back the
responses from server to client.

TCP/IP communication is transparent for the all
parts of system except the server and lightweight
xiid, so any application or Matlab script can operate
in both configurations without any modifications. Any
hardware that is controlled by the system can be
operated remotely.

Because of constant interface of IIE, working in
network is served by additional software layer. It is
developed in server-client architecture. Server is
treated as user application for IIE and client is
treated as IIE Adapter for user application on the remote computer. IIE and IIE
Adapter have the same interface so it is fully transparent for user application.

Communication protocol uses commands. They describe functions which must be
call by server. All available commands are showed below:
 CMD_GET_ITEM_ID = 0,
 CMD_SET_WORD = 1,
 CMD_GET_WORD = 2,
 CMD_SET_BITS = 3,
 CMD_GET_BITS = 4,
 CMD_SET_AREA = 5,
 CMD_GET_AREA = 6,
 CMD_GET_ITEMS_COUNT = 7,

FPGA

II Engine

Matlab

Local

II
E

ng
. A

P
I

C
ha

nn
el

FPGA

TCP Server

Matlab

Remote

II
E

ng
. A

P
I

C
ha

nn
el

TCP Client

TC
P

/IP

Figure 7. Local and remote
configuration

II Engine

II
E

ng
. A

P
I

 26

 CMD_GET_ITEM = 8,
 CMD_MERGE_BITS = 9,
 CMD_SET_MERGED_BITS = 10

Single communication operation uses one request and one response frame.
Each of frame contains command byte as the first byte in frame. When request and
response frames have the same command it means that they describe the same
operation.

6.1. IIE Adapter Configuration
IIE Adapter is encapsulated in shared dynamic library which is called xiid.dll (for
compatibility reasons). It is configurable by two text files:
– host.txt - IIE Adapter uses this text file to get information about host. It can be IP

address or full name of server.
– port.txt – IIE Adapter uses this text file to get information about port's number in

host to communicate with.

6.2. IIE Adapter Communication Protocol

get_item_id

request frame:
 CMD_GET_ITEM_ID, char length, char name[]

Parameters:

Length - Length of name in bytes.
name
 Name of II component.

response frame:
 CMD_GET_ITEM_ID, char status {, unsigned long id }

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.
id
 If no error occurs, id equals identificator of II component. Otherwise, this field
 is omitted.

get_items_count

request frame:
 CMD_GET_ITEM_COUNT

response frame:
 CMD_GET_ITEM_COUNT, char status {, unsigned long count }

 27

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.
count
 If no error occurs, count equals number of II components. Otherwise, this
 field is omitted.

get_item

request frame:
 CMD_GET_ITEM, unsigned long id

Parameters:
id
 Identificator of II component.

response frame:
 CMD_GET_ITEM, char status {, struct iid_item_t item }

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.
item
 If no error occurs, item equals information about II component. Otherwise, this
 field is omitted.

set_word

request frame:
 CMD_SET_WORD, unsigned long id, unsigned long data

Parameters:
id
 Identifier of II word component.
data
 A value to set.

response frame:
 CMD_SET_WORD, char status

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.

get_word

request frame:

 28

 CMD_GET_WORD, unsigned long id

Parameters:
id
 Identificator of II word component.

response frame:
 CMD_GET_WORD, char status {, unsigned long data }

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.
data
 If no error occurs, data equals value from II word component. Otherwise, this
 field is omitted.

set_bits

request frame:
 CMD_SET_BITS, unsigned long id, unsigned long data

Parameters:
id
 Identificator of II bits component.
data
 A value to set.

response frame:
 CMD_SET_BITS, char status

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.

merge_bits

request frame:
 CMD_MERGE_BITS, unsigned long id, unsigned long data

Parameters:
id
 Identificator of II bits component.
data
 A value to merge.

response frame:
 CMD_MERGE_BITS, char status

 29

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.

set_merged_bits

request frame:
 CMD_SET_MERGED_BITS

response frame:
 CMD_SET_MERGED_BITS, char status

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.

get_bits

request frame:
 CMD_GET_BITS, unsigned long id

Parameters:
id
 Identificator of II bits component.

response frame:
 CMD_GET_BITS, char status {, unsigned long data }

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.
data
 If no error occurs, data equals value from II bits component. Otherwise, this
 field is omitted.

set_area

request frame:
 CMD_SET_AREA, unsigned long id, unsigned long off, unsigned long num,
 char data[]

Parameters:
id
 Identificator of II area component.
off
 Offset from the beginning of II area component.
num
 Number of bytes to set.

 30

data
 Array of bytes to set.

response frame:
 CMD_SET_AREA, char status

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.

get_area

request frame:
 CMD_GET_AREA, unsigned long id, unsigned long off, unsigned long num

Parameters:
id
 Identificator of II area component.
off
 Offset from the beginning of II area component.
num
 Number of bytes to get.

response frame:
 CMD_GET_AREA, char status {, unsigned long num, char data[] }

Parameters:
status
 If no error occurs, status equals zero value. Otherwise, non-zero value is set.
num
 If no error occurs, num equals number of bytes which has got from II area
 component. Otherwise, this field is omitted.
data
 If no error occurs, data equals value from II word component. Otherwise, this
 field is omitted.

6.3. IIE Compatibility
IIE is developed on Win32 and Solaris platform. There have not been noticed any

differences in work on these platform.

 31

7. BOOTING FPGA CHIP

Each FPGA chip must be configured to realize specified function before it can be
used.
In general, there may be two sources of configuration data:
• on-board EEPROM memory; the chip is configured automatically when the power

is switched on.
• External source (computer system), connected to the board using specific

interface, for example Altera provides ByteBlaster and BitBlaster cables, and Xilinx
provides Cable III and Cable IV.

In this system, JTAG protocol is used to load the FPGA configuration, but the

hardware interface is not specified, it may be any channel configured in the system
(currently LPT or VME).

Each board has at least one FPGA chip which is configured from the on-board
EEPROM, this chip is responsible for the communication interface (channel). Other
FPGA chips are loaded though this chip. The example topology is in the figure below:

Fig. 8. FPGA board topology

All FPGA chips are visible in the same (channel) address space, but right after

the board is switched on only the communication FPGA is accessible. All other chips
must be loaded over communication with FPGA, this chip has special entries, it's
address space – sets of bits - which represent the JTAG lines of other FPGA chips.
Each configured FPGA chip is automatically visible in the channels address space
beside the channel of FPGA entries.

At this moment the system accepts configuration data in JAM format, this
format is native for Altera's Integrated Development Environment (Quartus). Xilinx
tools exports configuration data to the SVF format, but Altera has provided a SVF to
JAM converter.

JAM-Loading application (called Jambo) is based on the JAM-Player source
codes published by Altera. Technically this is just another client of the system – it
simply reads and writes JTAG bits from Channel FPGA's address space. Currently
Jambo has been tested and is available on Win32 and Solaris environments.

FPGA

EEPROM

FPGA 1
FPGA 2

FPGA 3

 32

8. EXAMPLE OF USING MEX-FUNCTIONS

In this section there is shown an example of using MEX-functions. Using the GUI
tool in the Matlab, there was built a simple widow to show the possible way of using
these MEX-functions.

This window shows how the IID file was parsed and how the registers of the
FPGA device looks like. The window consists of two lists. The left list includes all of
bits which are found in the TESLA SIMCON and they are accessible for the software.
The second one presents
all words. In this window
there was used IIEngine
function, which returns
structure composed of
bits, words and memory
areas. Each element of
structure was read from
IID file. Thanks of that,
we have got the map of
the SIMCON elements,
which can be write or can
be read.

This window allows
to read every element of
the SIMCON, that value
appears in BIT_VALUE
or WORD fields.
Functionality of this
window is especially
useful during testing of a
new device. In an easy
way, the behaviour of the
new device can be
observed or the
developer can perform
control operation step by
step by putting the values
in the appropriate
registers.

Figure 9. Test Panel

 33

9. ACKNOWLEDGEMENT
We acknowledge the support of the European Community Research Infrastructure Activity
under the FP6 "Structuring the European Research Area" program (CARE, contract number
RII3-CT-2003-506395)

10. REFERENCES

[1] Poźniak K., Pietrusiński M.: “Internal Interface standard specification (version 1.0,

February 2002)”

[2] Poźniak K. T., Czarski T., Rutkowski P., Romaniuk R. S.: „DSP integrated

parameterized FPGA based Cavity Simulator & Controller for TESLA Test Facility
SIMCON version 1.0 rev. 1, 02.2004”

[3] P.Rutkowski, R.Romaniuk, K.T.Pozniak, T.Jezynski, P.Pucyk, M.Pietrusinski,

S.Simrock: “FPGA Based TESLA Cavity SIMCON DOOCS Server Design,
Implementation and Application”, TESLA Technical Note, 2003-32

[4] K.T.Poźniak, M.Bartoszek M.Pietrusiński: “Internal Interface for RPC Muon

Trigger electronics at CMS experiment”, Proceedings of SPIE, Photonics
Applications II In Astronomy, Communications, Industry and High Energy Physics
Experiments, Vol. 5484, 2004

[5] http://www.mathworks.com/ [Matlab Homepage]

